SZILÁRDSÁGTAN

A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

Szilárdságtan

$\operatorname{Pontszám}$

1.	A másodrendű tenzor értelmezése	(2)
2.	A másodrendű tenzor transzponáltjának értelmezése	(2)
3.	Szimmetrikus és ferdeszimmetrikus tenzor értelmezése	(3)
4.	A vektorinvariáns értelmezése	(3)
5.	A felbontási tétel	(2)
6.	Az alakváltozás fogalmának értelmezése általában	(2)
7.	A rugalmas alakváltozás értelmezése	(1)
8.	A képlékeny alakváltozás értelmezése	(1)
9.	A kis elmozdulás definíciója	(1)
10.	A kis alakváltozás definíciója	(1)
11.	Két erőrendszer szilárdságtani egyenértékűségének értelmezése	(2)
12.	A derivált tenzormező és az elmozdulási vektormező kapcsolata (az egyenlet tenz	zoriális
	alakja)	(1)
13.	Elmozdulásmező linearizálása a szilárd test egy ${\cal P}$ pontjának környezetében a d	lerivált
	tenzor felhasználásával	(4)
14.	A derivált tenzor felbontása szimmetrikus és ferdeszimmetrikus részekre és a része	k kine-
	matikai tartalma	(2)
15.	Az alakváltozási tenzormező és elmozdulási vektormező kapcsolata (az egyenlet tenz	zoriális
	alakja)	(3)
16.	Az alakváltozási jellemzők (és előjelük jelentése)	(3)
17.	Az alakváltozási tenzor megadása diádokkal és mátrixokkal derékszögű descartes-	i koor-
	dináta rendszerben	(3)
18.	Az alakváltozási tenzor szemléltetése az elemi triéderen	(2)
19.	Fajlagos nyúlások, fajlagos szögtorzulások számítása az alakváltozási tenzorból	(2)
20.	Alakváltozási főtengelyek, főnyúlások értelmezése	(2)
21.	Alakváltozási jellemzők számítása az elmozdulásokból	(4)
22.	A ρ_n feszültségvektor felbontása az ${\bf n}$ normálisú elemi felületen	(2)
23.	A feszültségi tenzor szemléltetése az elemi kockán	(2)
24.	Feszültségi főtengelyek, főfeszültségek értelmezése	(2)
25.	Az energia tétel és alkalmazása rugalmas testek szilárdságtani feladataira	(4)
26.	A prizmatikus rúd fogalma	(1)
27.	Az egytengelyű feszültségi állapot fogalma	(1)
28.	A lineárisan rugalmas, homogén, izotróp test fogalma	(3)
29.	Az egyszerű Hooke törvény húzásra (nyomásra)	(2)
30.	A feszültségi tenzor és a normálfeszültség értéke húzott-nyomott rudak esetén	(2)
31.	Az alakváltozási energia számítása húzott-nyomott rúd esetén	(2)
32.	Az I_p poláris másodrendű nyomaték értelmezése és kiszámítása kör – és körgyűrű k	ereszt-
	metszetre	(3)
33.	Feszültségi tenzor kör– és körgyűrű keresztmetszetű rudak csavarására polárkoor	dináta
	rendszerben	(2)
34.	A $\tau_{\varphi z} = \tau_{\varphi z}(R)$ feszültségeloszlás szemléltetése kör– és körgyűrű keresztmetszetű	rudak
25	csavarása esetén	(2)
35.	Az alakváltozási energia számítása kör– és körgyűrű keresztmetszetű rudak csa	varása
20	eseten	(2)
36.	Prizmatikus rúd tiszta hajlításának értelmezése	(1)
31. 20	A Bernoulli nipotezis	(2)
38.	Az egyenes hajlitas ertelmezese	(1)

39.	A feszültségi tenzor mátrixa prizmatikus rúd tiszta, egyenes hajlítása esetén	(2)
40.	A $\sigma_z = \sigma_z(y)$ feszültségeloszlás szemléltetése egyenes hajlítás esetén	(2)
41.	A görbület és hajlítónyomaték kapcsolata prizmatikus rúd tiszta hajlítására	(2)
42.	Az alakváltozási energia számítása prizmatikus rúd egyenes hajlítására a nyírás hatás	sának
	elhanyagolásával	(2)
43.	Tengelyre, tengelypárra és pontra számított másodrendű nyomaték értelmezése	(3)
44.	Az A keresztmetszet súlyponti tehetetlenségi tenzora és a tenzor elemei – értelmé	zések
	koordinátarendszerhez kötötten	(4)
45.	Az A keresztmetszet súlyponti tehetetlenségi tenzorának invariáns azaz KR fügs	getlen
	alakja	(2)
46.	A Steiner-tétel tenzoriális és skaláris egyenletei	(3)
47.	Cauchy tétele (feszültség számítása az \mathbf{n} normálisú felületen)	(2)
48.	Az egyensúlvi egyenlet szilárd testre (vektoriális és skaláris alakok)	(4)
49	A teljes feszültségi Mohr kör szerkesztése ha egy főfeszültség ismert	(4)
50	Az általános Hooke-törvény izotróp testre	(1) (2)
51	A failagos alakváltozási energia értelmezése általános esetben	(2) (3)
52	A Mohr szerinti redukált feszültség értelmezése	(0) (1)
53	A Huber-Mises-Hencky szerinti redukált feszültség értelmezése	(1) (3)
5 <i>4</i>	A redukált feszültségek számítása ha egy normálfeszültség és vele azonos síkon egy ((U) S11S7-
01.	tató faszültság nam zárus	(2)
55	Δ forde heilítés ártelmezése	(2)
56.	A refue najntas el termezese	$\binom{2}{(2)}$
50. 57	A foszültsógi tonzor mótriya ós a foszültsógak számítása prizmatikus rudak tiszta	fordo
51.	hailítása osotán	(3)
58	A foszültsági tonzor mátriva ás a foszültságak számítása zömök rudak ovcontrikus hi	(0) izáco
50.	n reszunsegi tenzor manina és a reszunsegek szamnasa zomok rudak excentrikus ne nyomása esetén	(3)
50	A zérusyonal egyenlete zömök rudak evcentrikus húzása, nyomása esetén	(0)
60 60	A redukált nyomaték értelmezése	(1) (2)
61	Hajlított és csavart kör és körgyűrű keresztmetszetű egyenes rudak ellenőrzése és m	érete-
01.	zése feszültségesúcsra	(2)
62	A feszültségi tenzor mátriva és a feszültségek számítása hailított nvírt prizmatiku	s rúd
02.	esetén	(4)
63	A nyírófeszültségek számítása téglalankeresztmetszetű rúdra	(1) (2)
64	A nyírási középpont definíciója	(2) (2)
65	Az I ártelmezése	(2) (2)
66.	Λ görhülat ás hailítányomaták kancsolata síkgörha rúd tiszta hailítására	(2) (2)
67	A Grashoff formula és árványossági tartománya	(2) (3)
68	A sílagörba rúdban folhalmozódó alakváltozási anorgia	(3)
60.	Δ Batti tátal	(2)
70	A Castigliano tátel	(2) (2)
70.	A Castignand teter Mikor mondiuk, hogy a vizsgált szorkozot külsőlog statikailag határozatlan	(2)
71. 79	Mikor mondiuk, hogy a vizsgált szerkezet külsöleg statikailag határozatlan	(2)
12. 73	Δ törzeterté fogelme	(2)
70. 74	A tongolywonal és a rugalmas vonal definícióia	(2)
75	Mit jolont a kánzolt torbolás médszere	(1 ± 1)
76 76	Horvan számítunk szörelfordulást a kápzolt torbolás módszorávol	(2)
77	Hogyan számítulk szogenordulást a képzett terhelés módszerével	(2)
78	Hogyan számítjuk a v luggoleges elmozdulást a képzelt terhelés módszerével	(2)
10. 70	Λ_z ograngiju alak stabilitiga karsti nyomatt midra	$\binom{2}{2}$
19.	Az egyensuiyi aiak stabilitasa karcsu hyömött rudra Milen lénhet fel kiha ilén és miért jelent vessélet	(2)
0U. 01	winkor iepnet iel kinajias es miert jelent veszelyt A kihajiási katánzönka (imitilma fagzültaán) a menleta (Eulen kinankala. Euterin i	(ə) (ə)
01.	A kinajiasi natargorbe (kritikus ieszütseg) egyenlete (Euler niperbola, Tetmajer egy	(4)
	C5 a.D1 a20145a	(4)

SZILÁRDSÁGTAN

A minimum teszt kérdéseinek megoldásai

1. A másodrendű tenzoron (tág értelemben) a háromméretű tér egy önmagára történő homogén lineáris leképezését értjük. Kartéziuszi koordinátarendszerben az $\mathbf{e}_x, \mathbf{e}_y$ és \mathbf{e}_z vektorok $\mathbf{w}_x, \mathbf{w}_y$ és \mathbf{w}_z képei egyértelműen meghatározzák a leképezést (a tenzort). 2. A

$$oldsymbol{W} = \mathbf{w}_x \circ \mathbf{e}_x + \mathbf{w}_y \circ \mathbf{e}_y + \mathbf{w}_z \circ \mathbf{e}_z$$

másodrendű tenzor transzponáltját a

$$\mathbf{W}^T = \mathbf{e}_x \circ \mathbf{w}_x + \mathbf{e}_y \circ \mathbf{w}_y + \mathbf{e}_z \circ \mathbf{w}_z$$

kifejezés értelmezi. A transzponált tenzor mátrixa a tenzor mátrixának transzponáltja. 3. Szimmetrikus az W tenzort, ha

$$W = W^T$$
,

ferdeszimmetrikus az \boldsymbol{W} tenzor, ha

$$W = -W^T$$
.

Szimmetrikus tenzor mátrixa szimmetrikus:

$$w_{kl} = w_{lk} \qquad l, k = x, y, z;$$

ferdeszimmetrikus tenzor mátrixa pedig ferdeszimmetrikus:

$$w_{kl} = -w_{lk} \qquad l, k = x, y, z \; .$$

4. A

$$\mathbf{W} = \mathbf{w}_x \circ \mathbf{e}_x + \mathbf{w}_y \circ \mathbf{e}_y + \mathbf{w}_z \circ \mathbf{e}_z$$

másodrendű tenzor vektorinvariánsát a

$$\mathbf{w}_a = -\frac{1}{2} \left(\mathbf{w}_x \times \mathbf{e}_x + \mathbf{w}_y \times \mathbf{e}_y + \mathbf{w}_z \times \mathbf{e}_z
ight)$$

összefüggés értelmezi. Ha a vektorinvariáns zérus, akkor a tenzor szimmetrikus.

5. Bármely W tenzor felbon
tható egy szimmetrikus és egy ferdeszimmetrikus tenzor összegére

$$W = W_{asz} + W_{sz}$$

ahol

$$oldsymbol{W}_{asz} = rac{1}{2} \left(oldsymbol{W} - oldsymbol{W}^T
ight) \qquad \mathrm{s} \qquad oldsymbol{W}_{sz} = rac{1}{2} \left(oldsymbol{W} + oldsymbol{W}^T
ight) \;.$$

Fennáll továbbá, hogy

$$\mathbf{W}_{asz}\cdot\mathbf{n}=\mathbf{w}_a imes\mathbf{n}$$
 .

- 6. Terhelés hatására a vizsgálat tárgyát képező szilárd test pontjai egymáshoz képest elmozdulnak és a test anyagi, geometriai alakzatai (anyagi vonalak hosszai, anyagi vonalak által bezárt szögek, etc.) megváltoznak. Ezt a jelenséget alakváltozásnak nevezzük.
- 7. Rugalmas alakváltozásról beszélünk, ha a terhelés megszüntetése után a terhelés hatására alakváltozást szenvedő test maradéktalanul visszanyeri eredeti, terhelés előtti alakját.
- 8. Képlékeny alakváltozásról beszélünk, ha a terhelés megszüntetése után a terhelés hatására alakváltozott test nem nyeri vissza eredeti, terhelés előtti alakját.
- 9. Kis elmozdulások esetén a szilárd test pontjainak maximális elmozdulása is nagyságrendekkel kisebb mint a test legkisebb geometriai mérete.
- 10. Ha a test alakváltozására jellemző mennyiségek (fajlagos nyúlások, szögtorzulások) abszolut értékének maximuma nagyságrendekkel kisebb mint az egység, akkor az alakváltozások kicsik.

- 11. Két, ugyanazon testre ható egymással statikailag egyenértékű erőrendszert szilárdságtanilag is egyenértékűnek nevezünk, ha azok mindegyike – eltekintve az erőrendszerek gyakorlatilag egybeeső terhelési tartományától – lényegében ugyanazt az alakváltozási állapotot hozza létre.
- 12. A derivált tenzort a

$$oldsymbol{U} = \mathbf{u} \circ
abla$$

módon számítjuk ha ismeretes az elmozdulási vektormező.

13. A ${\cal P}$ pont elemi környezetében

$$\mathbf{u} = \mathbf{u}_P + \boldsymbol{U}_P \cdot (\mathbf{r} - \mathbf{r}_P) + (....)$$

alakú az elmozdulásmező, ahol \mathbf{u}_P a P pont eltolódása, \mathbf{U}_P a derivált tenzor a P pontban, $|\Delta \mathbf{r}| = |\mathbf{r} - \mathbf{r}_P|$ sokkal kisebb, mint egy alkalmas hosszegység, az \mathbf{r} a futópont, az \mathbf{r}_P pedig a P pont helyvektora. A derivált tenzor $\mathbf{U}_P = \mathbf{\Psi}_P + \mathbf{A}_P$ alakú felbontásával

$$\mathbf{u} = \mathbf{u}_P + \boldsymbol{\Psi}_P \cdot \Delta \mathbf{r} + \boldsymbol{A}_P \cdot \Delta \mathbf{r}$$

ahol $\Psi_P \cdot \Delta \mathbf{r}$ a merevtestszerű forgás hatására létrejövő mozgás, az $\mathbf{u}_P + \Psi_P \cdot \Delta \mathbf{r}$ összeg pedig a P pont környezetének merevtestszerű mozgása (eltolódás + forgás).

14. Az \boldsymbol{U} derivált tenzor az

$$\boldsymbol{U} = \underbrace{\frac{1}{2}(\boldsymbol{U} - \boldsymbol{U}^T)}_{\boldsymbol{\Psi}} + \underbrace{\frac{1}{2}(\boldsymbol{U} + \boldsymbol{U}^T)}_{\boldsymbol{A}}$$

módon bontható fel, ahol $\pmb{\Psi}$ a forgató tenzor, az \pmb{A} pedig az alakváltozási tenzor. (^T a transzponálás jele.)

15. Az alakváltozási tenzor az

$$oldsymbol{A} = rac{1}{2} (
abla \circ oldsymbol{u} + oldsymbol{u} \circ
abla)$$

módon számítható.

16. Fajlagos nyúlás az n irányban:

Jelölése: ϵ_n ; Előjelszabály: $\epsilon_n > 0$ megnyúlás; $\epsilon_n < 0$ rövidülés

Fajlagos szögtorzulás az egymásra merőleges n és m irányok között:

Jelölése: γ_{mn} ; Előjelszabály: { $\gamma_{mn} > 0$ }[$\gamma_{mn} < 0$] az eredetileg 90° -os szög {csökken} [növekszik].

17. A tenzor diádikus alakban és mátrixával is megadható:

$$\mathbf{A} = \alpha_x \circ \mathbf{e}_x + \alpha_y \circ \mathbf{e}_y + \alpha_z \circ \mathbf{e}_z ,$$
$$\mathbf{\underline{A}} = \begin{bmatrix} \epsilon_x & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{yx} & \epsilon_y & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{zx} & \frac{1}{2}\gamma_{zy} & \epsilon_z \end{bmatrix} .$$

18. Az alakváltozási tenzort az elemi triéderen, az xyzkoordinátarendszerben az ábra szemlélteti:

19. Legyen az
n és m
 egységvektor és m $\perp {\bf n}$ (azaz m $\cdot \, {\bf n}=0).$ Ekkor

 $\epsilon_n = \mathbf{n} \cdot \mathbf{A} \cdot \mathbf{n}, \qquad \gamma_{mn} = 2\mathbf{m} \cdot \mathbf{A} \cdot \mathbf{n}$

a fajlagos nyúlás az n irányban, illetve a fajlagos szögtorzulás az m és n irányok között. (Az $n, m - n \neq m$ – rendre felveheti az x, y és z értéket. Ekkor **n** és **m** helyett értelemszerűen $\mathbf{e}_x, \mathbf{e}_y$ és \mathbf{e}_z áll.)

- 20. Az **n** és **m** egységvektor. Ha $\alpha_n = \epsilon_n \mathbf{n}$ azaz minden $\mathbf{m} \perp \mathbf{n}$ -re fennáll, hogy $\gamma_{nm} = 2\mathbf{m} \cdot \alpha_n = 0$, akkor az **n** irány alakváltozási főirány (az általa kijelölt *n* tengely pedig alakváltozási főtengely), míg ϵ_n a vonatkozó főnyúlás.
- 21. Az xyz kartéziuszi koordinátarendszerben

$$\begin{aligned} \epsilon_x &= \frac{\partial u_x}{\partial x} , \qquad \epsilon_x = \frac{\partial u_y}{\partial y} , \qquad \epsilon_z = \frac{\partial u_z}{\partial z} , \\ \gamma_{xy} &= \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} , \quad \gamma_{yz} = \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} , \quad \gamma_{zx} = \frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} , \end{aligned}$$

ahol ϵ_x , ϵ_y és ϵ_z fajlagos nyúlás, γ_{xy} , γ_{yz} és γ_{zx} pedig fajlagos szögtörzulás (u_x , u_y és u_z a három elmozduláskoordináta).

22. Az \mathbf{n} normálisú lapon

~

$$\rho_n = \sigma_n \mathbf{n} + \tau_n$$

a feszültségvektor. Itt $\sigma_n = \mathbf{n} \cdot \rho_n$ a normálfeszültség, míg $\tau_{mn} = \mathbf{m} \cdot \rho_n$ és $\tau_{ln} = \mathbf{l} \cdot \rho_n$ a τ_n csúsztatófeszültség két összetevője vagy koordinátája ($\mathbf{m} \perp \mathbf{n}, \mathbf{n} \perp \mathbf{l}$ és $\mathbf{l} \perp \mathbf{m}$; az \mathbf{n}, \mathbf{m} és \mathbf{l} egységvektorok).

23. A feszültségi tenzort az elemi kockán, az xyz kartéziuszi koordinátarendszerben az ábra szemlélteti:

- 24. Az **n** és **m** egységvektor. Ha $\rho_n = \sigma_n \mathbf{n}$ azaz minden $\mathbf{m} \perp \mathbf{n}$ -re fennáll, hogy $\tau_{nm} = \mathbf{m} \cdot \rho_n = 0$, akkor az **n** irány feszültségi főirány (az általa kijelölt *n* tengely pedig feszültségi főtengely), míg σ_n a vonatkozó főfeszültség.
- 25. Az energia tétel az

$$E_2 - E_1 = W_{12} = W_K + W_B$$

alakban írható fel ahol E a kinetikai energia, az 1 és 2 indexek a terhelés kezdetét és végét azonosítják, W_K a külső erők munkája, W_B pedig a belső erők munkája. Szilárdságtanban $E_1 = E_2 = 0$ mivel a vizsgált test (tartó) tartós nyugalomban van. Következésképp

$$W_{12} = W_K + W_B = 0$$

azaz

$$W_K = -W_B = U + W_D \, .$$

ahol W_D a disszipált (elnyelt) alakváltozási energia, U pedig a belső energia. Rugalmas testre $W_D=0$ és így

$$W_K = U$$
.

- 26. A prizmatikus rúd tengelyvonala (súlyponti szála) egyenes, a keresztmetszete pedig állandó.
- 27. Egytengelyű feszültségi állapotról beszélünk, ha csak egy főfeszültség különbözik zérustól (a másik kettő zérus).
- 28. Lineárisan rugalmas, homogén, izotróp testről beszélünk, ha lineáris a T = T(A) függvénykapcsolat (*lineárisan rugalmas az anyag*), az anyagjellemzők (anyagi tulajdonságok) minden pontban azonosak (*homogén a test*) és az anyagjellemzők (anyagi tulajdonságok) nem függenek iránytól (*izotróp az anyag*).
- 29. Húzásra (nyomásra)

$$\sigma_z = E\epsilon_z \; ,$$

$$\epsilon_k = -\nu\epsilon_z \; ,$$

az egyszerű Hooke törvény, ahol az Erugalmassági modulus és a ν Poisson szám anyagjellemzők.

30. Húzott (nyomott) rúdra

$$\underline{\mathbf{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_z \end{bmatrix} \qquad \sigma_z = \frac{N}{A}$$

a feszültségi tenzor és a normálfeszültség. Na ruderő, Aa keresztmetszet területe. 31. HaN=állandó, akkor

$$U = \frac{1}{2} \frac{N^2 l}{AE}$$

a húzott (nyomott) rúdban tárolt rugalmas energia (N a ruderő, l a rúd hossza, E a rugalmassági modulus, A a rudkeresztmetszet területe).

32. Kör– és körgyűrű keresztmetszetű rúdra a poláris másodrendű nyomaték

$$I_p = \int_{(A)} R^2 dA$$

képletéből kör keresztmetszetre az

$$I_p = \frac{d^4\pi}{32} \; ,$$

körgyűrű keresztmetszetre pedig az

$$I_p = \frac{(D^4 - d^4)\pi}{32}$$

eredmény következik.

33. Kör– és körgyűrű keresztmetszetű prizmatikus rúd csavarásakor polárkoordináta rend-szerben

$$\underline{\mathbf{T}} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & \tau_{\varphi z}\\ 0 & \tau_{z\varphi} & 0 \end{bmatrix} , \qquad \quad \tau_{\varphi z} = \frac{M_c}{I_p} R$$

a feszültségi tenzor és a csúsztató feszültség. (M_c a csavarónyomaték, I_p a poláris másodrendű nyomaték, R a vizsgált ponthoz tartozó sugár).

34. Kör– és körgyűrű keresztmetszetű rúdra az alábbi két ábra szemlélteti a csúsztató feszültségek eloszlását polárkoordináta rendszerben:

35. Ha $M_c =$ állandó, akkor

$$U = \frac{1}{2} \frac{M_c^2 l}{I_P G}$$

a csavart kör–, körgyűrű keresztmetszetű rúdban tárolt rugalmas energia (M_c a csavarónyomaték, l a rúd hossza, I_P a poláris másodrendű nyomaték, G a nyírási rugalmassági modulus).

- 36. Tiszta hajlításról beszélünk ha a vizsgált rúdszakaszon csak hajlítás az igénybevétel.
- 37. A Bernoulli hipotézis szerint tiszta hajlítás esetén a rúd deformált keresztmetszetei síkok maradnak, a keresztmetszetek síkjában nincs szögtorzulás és a keresztmetszetek a deformáció után is merőlegesek a rúd deformált középvonalára (tengelyvonalára, súlyponti szálára).
- 38. Egyenes hajlításról beszélünk, ha az \mathbf{M}_S hajlítónyomaték vektor párhuzamos a keresztmetszet valamelyik súlyponti tehetetlenségi főtengelyével.
- 39. Egyenes, tiszta hajlításra

$$\mathbf{\underline{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_z \end{bmatrix} , \qquad \sigma_z = \frac{M_{hx}}{I_x} y$$

a feszültségi tenzor és a normálfeszültség. $(M_{hx}$ a hajlítónyomaték, I_x a súlyponti x tengelyre – a hajlítás tengelyére – vett másodrendű nyomaték, y a vizsgált pont koordinátája).

40. A vázolt rúdkeresztmetszetre az alábbi ábra szemlélteti a $\sigma_y(z)$ feszültségeloszlást

41. Egyenes, tiszta hajlításra

$$\kappa = \frac{1}{\rho} = \frac{M_{hx}}{I_x E}$$

a görbület (ρ a görbületi sugár, M_{hx} a hajlítónyomaték, I_x a súlyponti x tengelyre – a hajlítás tengelyére – vett másodrendű nyomaték, E a rugalmassági modulus).

42. Ha ismert az $M_{hx} = M_{hx}(z)$ hajlítónyomaték, akkor

$$U = \frac{1}{2} \int_{l} \frac{M_{hx}^2}{I_x E} dz$$

a rúdban tárolt tárolt rugalmas energia, ha elhanyagoljuk a nyírásból adódó rugalmas energiarészt (M_{hx} a hajlítónyomaték, I_x a súlyponti x tengelyre – a hajlítás tengelyére – vett másodrendű nyomaték, E a rugalmassági modulus, l a rúd középvonalának mint egyméretű tartománynak a jelölése).

43. Legyen x és y az A keresztmetszet O pontjához kötött egymásra kölcsönösen merőleges tengelypár (Kartéziuszi koordinátarendszer O origóval). Az x, y tengelyekre számított másodrendű nyomatékot az

$$I_x = \int_{(A)} y^2 dA \qquad \text{és} \qquad I_y = \int_{(A)} x^2 dA$$

képletek, az xy tengelypárra számított másodrendű nyomatékot pedig az

$$I_{xy} = \int_{(A)} xy \, dA$$

összefüggés értelmezi. Az

$$I_0 = \int_{(A)} \mathbf{r}^2 dA = \int_{(A)} (x^2 + y^2) dA = I_x + I_y$$

integrál az O pontra számított másodrendű nyomaték.

44. Legyen ξ és
 η az Akeresztmetszet Ssúlypontjához kötött kartézi
uszi koordinátarendszer. A $\xi\eta$ koordinátarendszer
ben

$$\mathbf{\underline{I}}_{S} = \left[egin{array}{cc} I_{\xi} & -I_{\xi\eta} \ -I_{\eta\xi} & I_{\eta} \end{array}
ight]$$

a súlyponti tehetetlenségi tenzor mátrixa, ahol $I_\xi,\ I_\eta$ és $I_{\eta\xi}$ a vonatkozó másodrendű nyomatékok:

$$I_{\xi} = \int_{(A)} \eta^2 dA, \qquad I_{\eta} = \int_{(A)} \xi^2 dA, \qquad I_{\xi\eta} = \int_{(A)} \xi \eta dA$$

45. Legyen **R** a felületelem S súlypontra vonatkoztatott helyvektora és jelölje **E** az egységtenzort. Az \mathbf{I}_S tenzor invariáns alakját a

$$\mathbf{I}_{S} \cdot \mathbf{n} = \int_{(A)} \mathbf{R} \times (\mathbf{n} \times \mathbf{R}) \, dA, \qquad \mathbf{I}_{S} = \int_{(A)} \left[R^{2} \mathbf{E} - \mathbf{R} \circ \mathbf{R} \right] \, dA$$

összefüggések értelmezik.

46. Legyen ξ és η az A keresztmetszet S súlypontjához kötött kartéziuszi koordinátarendszer. Legyen továbbá x és y az A keresztmetszet O pontjához kötött kartéziuszi koordinátarendszer. Feltételezzük, hogy $S \neq O$ és hogy a két koordinátarendszer megfelelő koordinátatengelyei párhuzamosak. A két koordinátarendszerben rendre I_{ξ} , I_{η} és $I_{\eta\xi}$, illetve I_x , I_y és I_{xy} a másodrendű nyomatékok. A

$$\underbrace{\begin{bmatrix} I_x & -I_{xy} \\ -I_{yx} & I_y \end{bmatrix}}_{\mathbf{I}_O} = \underbrace{\begin{bmatrix} I_{\xi} & -I_{\xi\eta} \\ -I_{\eta\xi} & I_\eta \end{bmatrix}}_{\mathbf{I}_S} + \underbrace{A \begin{bmatrix} y_{SO}^2 & -x_{SO} y_{SO} \\ -y_{SO} x_{SO} & x_{SO}^2 \end{bmatrix}}_{\mathbf{I}_{OS}}$$

egyenlet a Steiner tétel mátrix alakja. Skaláris alakban:

$$I_x = I_{\xi} + Ay_{SO}^2$$
, $I_y = I_{\eta} + Ax_{SO}^2$, $I_{xy} = I_{\xi\eta} + Ax_{SO}y_{SO}$.

47. Legyen T a feszültségi tenzor a szilárd test egy belső P pontjában. Legyen továbbá n egy a P pontra illeszkedő belső sík normálisa. A sík P pontjában a síkon ébredő ρ_n feszültségvektor Cauchy tétele szerint a

$$\rho_n = \mathbf{T} \cdot \mathbf{n}$$

módon számítható.

48. Legyen **q** a térfogaton megoszló erőrendszer sűrűségvektora, T pedig a feszültségi tenzor. Az *erőegyensúlyt* vektoriális alakban a

$$\mathbf{T} \cdot \nabla + \mathbf{q} = 0$$

egyenlet fejezi ki. Az ekvivalens skaláregyenleteket az xyz kartéziuszi koordinátarend-szerben az alábbiak részletezik:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + q_x = 0,$$

$$\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + q_y = 0,$$

$$\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + q_z = 0.$$

Itt $\sigma_x,\,\sigma_y,\,\sigma_z$ normálfeszültség, $\tau_{xy},\,\tau_{xz},\,\tau_{yx},\,\tau_{yz},\,\tau_{zx},\,\tau_{zy}$ nyírófeszültség. A nyomatéki egyensúlyt a

$$au_{xy} = au_{yx}\,, \qquad au_{yz} = au_{zy}\,, \qquad au_{zx} = au_{xz}$$

egyenletek fejezik ki, azaz a feszültségi tenzor szimmetrikus.

49. A k, m, n irányok az x, y, z irányokkal egyeznek meg, de a sorrend azonos és eltérõ is lehet. Feltevés, hogy a k irány ismert főirány. A

$$\underline{\mathbf{T}} = \begin{bmatrix} \sigma_x & \tau_{xy} & 0\\ \tau_{yx} & \sigma_y & 0\\ 0 & 0 & \sigma_z \end{bmatrix} \qquad \sigma_x > \sigma_z > 0 > \sigma_y;$$

esetben pl. k = z, x = m, y = n.

A szerkesztés lépéseit az alábbiak részletezik. (a) Megrajzoljuk a $K[\sigma_k; 0] \pmod{Z[\sigma_z; 0]}$ pontot. (b) Megszerkesztjük az $M[\sigma_m; |\tau_{nm}|] \pmod{X[\sigma_x; |\tau_{yx}|]}$ és az $N[\sigma_n; |\tau_{mn}|] \pmod{Y[\sigma_z; |\tau_{xy}|]}$ pontokat. (c) Az MN szakasz (most XY szakasz) felező merőlegese kimetszi az egyik félkör középpontját (most az O_1 pontot). (d) A megszerkesztett középpont körül R sugarú kört rajzolunk. (e) Az R sugarú kör és a σ_n tengely metszéspontjai valamint a $K \pmod{Z}$ által meghatározott szakaszok mint átmérők fölé két félkört szerkesztünk.

50. Az általános Hooke törvény izotróp testre az

$$\mathbf{A} = \frac{1}{2G} \left(\mathbf{T} - \frac{\nu}{1+\nu} T_I \mathbf{E} \right)$$
$$\mathbf{T} = 2G \left(\mathbf{A} + \frac{\nu}{1-2\nu} A_I \mathbf{E} \right)$$

alakban írható fel, ahol \mathbf{A} az alakváltozási tenzor, \mathbf{T} a feszültségi tenzor, G a nyírási rugalmassági modulus, ν a Poisson szám, \mathbf{E} az egységtenzor, T_I és A_I rendre a feszültségi és alakváltozási tenzor első skalárinvariánsa.

51. Az xyz kartéziuszi koordinátarendszerben a szokásos jelölésekkel

$$u = \frac{1}{2} \mathbf{T} \cdot \mathbf{A} = \frac{1}{2} (\rho_x \cdot \alpha_x + \rho_y \cdot \alpha_y + \rho_z \cdot \alpha_z)$$
$$= \frac{1}{2} (\sigma_x \epsilon_x + \sigma_y \epsilon_y + \sigma_z \epsilon_z + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx})$$

a fajlagos rugalmas energia (az egységnyi térfogatban tárolt rugalmas energia).

52. A Mohr szerint redukált feszültséget a

$$\sigma_{red\ Mohr} = \sigma_1 - \sigma_3$$

képlet értelmezi (a $\sigma_1-\sigma_3$ különbség a legnagyobb kör átmérője a teljes Mohr féle kördiagrammon).

53. A Huber–Mises–Hencky féle redukált feszültséget a főtengelyek koordinátarendszerében a

$$\sigma_{red HMH} = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]}$$

összefüggés, az xyz koordinátarendszerben pedig a

$$\sigma_{red HMH} = \sqrt{\frac{1}{2} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]}$$

képlet értelmezi. (A képletek felírásánál a szokásos jelöléseket alkalmaztuk.)

54. Ha a keresztmetszeten a veszélyes pontban a normálfeszültség és csúsztatófeszültség nem zérus – ezeket rendre σ és τ jelöli –, akkor

$$\sigma_{red} = \sqrt{\sigma^2 + \beta \tau^2} \quad \text{ahol} \quad \beta = \begin{cases} 4 & \text{ha a Mohr elmélet} \\ 3 & \text{ha a HMH elmélet} \end{cases} \quad \text{érvényes}$$

- 55. Ferde hajlításról beszélünk, ha az \mathbf{M}_S nyomatékvektor nem párhuzamos a rúd A keresztmetszetének egyik súlyponti tehetetlenségi főtengelyével sem.
- 56. A zérusvonal (ferde hajlítás) azon pontok mértani helye, ahol a σ_z normálfeszültség zérus, azaz

$$\sigma_z = 0 = \frac{M_{hx}}{I_x}y + \frac{M_{hy}}{I_y}x$$

 $(M_{hx} \text{ és } M_{hy} \text{ az } x \text{ és } y \text{ súlyponti főtengelyekre vett hajlítónyomaték, } I_x \text{ és } I_y \text{ az } x \text{ és } y \text{ súlyponti tengelyekre számított másodrendű nyomaték, } x \text{ és } y \text{ pontkoordináták az } A \text{ keresztmetszeten}$). Az értelmező egyenlet y –ra történő feloldásával

$$y = -\frac{M_{hy}}{M_{hx}} \frac{I_x}{I_y} x$$

a zérusvonal egyenlete.

57. Egyenes prizmatikus rúd tiszta ferde hajlítása esetén a szokásos xyz koordinátarend-szerben

$$\underline{\mathbf{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_z \end{bmatrix} , \qquad \sigma_z = \frac{M_{hx}}{I_x}y + \frac{M_{hy}}{I_y}x$$

a **T** feszültségi tenzor és a σ_z normálfeszültség (M_{hx} és M_{hy} az x és y irányú hajlítónyomaték, I_x és I_y az x és y súlyponti főtengelyekre számított másodrendű nyomaték, x és y pontkoordináták az A keresztmetszeten).

58. Egyenes, zömök, prizmatikus rúd excentrikus húzása (nyomása) estén a szokásos xyzkoordinátarendszerben

$$\underline{\mathbf{T}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_z \end{bmatrix} , \qquad \sigma_z = \frac{F}{A} + \frac{F\eta}{I_x}y + \frac{F\xi}{I_y}x$$

a **T** feszültségi tenzor és a σ_z normálfeszültség [F a húzó (> 0) illetve nyomóerő (< 0), η és ξ az erő támadáspontjának koordinátái, I_x és I_y az x és y súlyponti főtengelyekre számított másodrendű nyomaték, x és y pontkoordináták az A kereszmetszeten).

59. A zérusvonal [egyenes, zömök, prizmatikus rúd excentrikus húzása (nyomása)] azon pontok mértani helye ahol a σ_z normálfeszültség zérus. Az előző kérdésre adott válasz alapján az

$$\sigma_z = \frac{F}{A} + \frac{F\eta}{I_x}y + \frac{F\xi}{I_y}x = 0$$

egyenlet értelmezi a zérusvonalat. Az F/A hányadossal való átosztás után az

$$i_x^2 = I_x/A$$
 s $i_y^2 = I_y/A$

jelölések bevezetésével a fenti értelmező egyenletből két lépésben kapjuk meg a zérusvonal egyenletét:

$$0 = 1 + \frac{\eta y}{i_x^2} + \frac{\xi x}{i_y^2} ,$$

$$y = -\frac{i_x^2 \xi}{i_y^2 \eta} x - \frac{i_x^2}{\eta} .$$

60. A vizsgált kör, vagy körgyűrű keresztmetszetű rúdnak hajlítás és csavarás az igénybevétele. Az összetevőket M_{hx}, M_{hy} és M_c jelöli. A redukált nyomatékot az

$$M_{red} = \sqrt{M_{hx}^2 + M_{hy}^2 + \beta^* M_c^2} \qquad \beta^* = \begin{cases} 1 & \text{Mohr elmélete szerint} \\ \frac{3}{4} & \text{a HMH elmélet szerint} \end{cases}$$

képlet értelmezi. A hajlítás azonban egyenes és $M_h = \sqrt{M_{hx}^2 + M_{hy}^2}$ a vonatkozó hajlítónyomaték.

61. A veszélyes keresztmetszetben ismert az M_{red} – ennek értelmezését illetően az előző válaszra utalunk – és adott a σ_{meg} . Ha a rúd megfelel akkor fennáll a

$$\frac{M_{red}}{K_x} \le \sigma_{meg}$$

reláció ahol K_x a keresztmetszeti tényező. Tervezéskor K_x az ismeretlen és a reláció egyenlőség. Ellenőrzéskor K_x is ismert és a reláció fennállását vizsgáljuk.

62. Hajlított, nyírt prizmatikus rúd esetén

$$\underline{\mathbf{T}} = \begin{bmatrix} 0 & 0 & \tau_{xz} \\ 0 & 0 & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix}$$

a feszültségi tenzor mátrixa az xyz koordinátarendszerben, ahol a σ_z normálfeszültség az egyenes hajlításra vonatkozó képletből, a τ_{yz} pedig a nyírófeszültséget adó képletből számítható:

$$\sigma_z = \frac{M_{hx}}{I_x} y , \qquad \qquad \tau_{yz} = -\frac{T_y}{I_x} \frac{S_x(y)}{a(y)}$$

Itt M_{hx} és T_y a hajlítónyomaték és nyíróerő, az y pontkoordináta illetve a jelzővonal ordinátája, $S_x(y)$ a jelzővonal feletti (y > 0) [jelzővonal alatti (y < 0)] keresztmetszetrész

statikai nyomatéka az x tengelyre, a(y) pedig a keresztmetszet vastagsága a jelzővonalon. A τ_{xz} pedig a τ_z feszültségvektor irányával kapcsolatos feltételből számítható.

63. Az

ábra jelöléseit is felhasználva

$$\tau_{yz} = -\frac{3}{2}\tau_{k\ddot{o}z} \left[1 - \left(\frac{y}{\frac{b}{2}}\right)^2\right] \qquad \tau_{k\ddot{o}z} = \frac{T_y}{ab}$$

a nyírófeszültség értéke.

- 64. A nyírási középpont a nyírásból adód
ó τ_{xz} és τ_{yz} feszültségeloszlások eredőinek met
széspontja.
- 65. A redukált I_r másodrendű nyomatékot a

$$I_r = \int_A \frac{\rho_0}{\rho_0 + \eta} \eta^2 dA$$

összefüggés értelmezi. A képletben ρ_0 a síkgörbe rúd súlyponti szálának görbületi sugara, az η pontkoordináta az A keresztmetszeten a súlyponthoz kötött $\xi = x, \eta$ koordinátarendszerben, ahol ξ merőleges a rúd síkjára. A görbületi középpontnak $\eta = -\rho_0$ a koordinátája.

66. Legyen ρ_0 az alakváltozás előtt a súlyponti szál görbületi sugara. Jelölje ρ a hajlítás utáni görbületi sugarat. A görbületváltozást az

$$\frac{1}{\rho} - \frac{1}{\rho_0} = \frac{M_h}{I_r E}$$

képlet adja, ahol $\ M_h$ a hajlítónyomaték
, I_r a redukált másodrendű nyomaték és Ea rugal
massági modulus.

67. Síkgörbe rúd esetén a húzás és hajlítás hatására kialakuló normálfeszültségek a

$$\sigma_S = \frac{N}{A} + \frac{M_h}{\rho_0 A} + \frac{M_h}{I_r} \frac{\rho_0}{\rho_0 + \eta} \eta$$

képletből számíthatók, ahol N és M_h a rúderő és hajlítónyomaték, A a keresztmetszet területe, I_r a redukált másodrendű nyomaték, ρ_0 a súlyponti szál görbületi sugara. A képletet olyan esetekben kell alkalmazni, amikor fennáll a

$$\frac{\rho_0}{e_{\max}} < 8 \sim 10$$

egyenlőtlenség. (Az e_{\max} a keresztmetszet S súlypontja és a szélső szálak közötti távolság maximuma, az η pontkoordinátát a 68 számú válasz értelmezi.)

68. A síkgörbe rúdban felhalmozód
óUalakváltozási energiát, ha csak a hajlítást vesszük figyelembe, az

$$U = \frac{1}{2} \int_L \frac{M_h^2}{I_r E} ds$$

képlet adja, ahol az integrált a súlypontvonal teljes hosszán kell venni. M_h a hajlítónyomaték, I_r a redukált másodrendű nyomaték és E a rugalmassági modulus.

69. A vizsgált szerkezeten két erőrendszer működik, elnevezés szerint a egyes és kettes erőrendszer. Jelölje W_{12} az egyes erőrendszer munkáját a kettes erőrendszer okozta elmozdulásokon és forgásokon. A bevezetett jelöléssel összhangban W_{21} a kettes erőrendszer munkája az egyes erőrendszer okozta elmozdulásokon és forgásokon. Betti tétele szerint

$$W_{12} = W_{21}$$
.

70. A vizsgált szerkezetet a ${\cal P}_i$ támadáspontú

$$\mathbf{F}_i = F_i \mathbf{e}_i; \qquad F_i > 0, \qquad \mathbf{e}_i \cdot \mathbf{e}_i = 1, \qquad i = 1, \dots, n_f$$

erők és a P_i támadáspontú

$$\mathbf{M}_j = M_j \mathbf{e}_j; \qquad M_j > 0, \qquad \mathbf{e}_j \cdot \mathbf{e}_j = 1, \qquad j = 1, \dots, n_m$$

erőpárok terhelik. Legyen \mathbf{u}_i és ψ_j rendre a P_i illetve a P_j pont elmozdulása és szögelfordulása. Az alakváltozási energiát U jelöli. Castigliano tétele szerint

$$\frac{\partial U}{\partial F_i} = \mathbf{u}_i \cdot \mathbf{e}_i = u_i$$
 és $\frac{\partial U}{\partial M_j} = \psi_j \cdot \mathbf{e}_j = \psi_j$

- 71. Ismeretesek a szerkezetre ható terhelések. Ha az ismeretlen külső erők (támasztóerők és nyomatékok) nem határozhatók meg statikai módszerekkel (egyensúlyi egyenletek segít-ségével), akkor a vizsgált rúdszerkezetet statikailag külsőleg határozatlannak nevezzük.
- 72. Ismeretesek a szerkezetre ható külső erők. Ha a belső erők nem határozhatók meg statikai módszerekkel (egyensúlyi egyenletek segítségével) akkor a vizsgált rúdszerkezetet statikailag belsőleg határozatlannak nevezzük.
- 73. A törzstartó egy statikailag határozottá tett eredetileg statikailag határozatlan tartó. A határozottá tétel során annyi támaszt hagyunk el, hogy a törzstartó mind statikailag mind pedig kinematikailag határozott legyen (azaz egyensúlyi módszerekkel tisztázható az erőjáték és maga a tartó mozgásképtelen).
- 74. Egyenes rúd *tengelyvonalán* a rúdkeresztmetszetek súlypontjain áthaladó egyenest értjük. Szokás a tengelyvonalat súlyponti szálnak is nevezni. A *rugalmas vonal* a rúd terhelés hatására deformálódott tengelyvonala.
- 75. A középvonalon megoszló hajlítónyomatékokból a

$$\bar{f}_y = \bar{f}_z = \bar{f} = \frac{I_0}{I_x} M_h$$

képlettel fiktív (képzelt) terhelést képezünk (I_0 referenica másodrendű nyomaték) majd a középvonal pontjaiban a merevtestszerű mozgáson túli, tehát a rugalmas alakváltozásból származó szögelfordulást és elmozdulásokat a képzelt terhelésből számítjuk mint képzelt belső erőt és képzelt hajlító nyomatékot.

76. Alábbiakban felhasználjuk az előző kérdésekre adott válaszok jelöléseit. Legyen

$$\bar{f}_y = \bar{f}_z = \bar{f} = \frac{I_0}{I_x} M_h$$

a tartó középvonalán működő fiktív (képzelt) y és z irányú megoszló terhelés. Jelölje a fenti terhelésekhez tartozó fiktív belső erőket rendre \bar{B}_y és \bar{B}_z . A tartó egy keresztmetszetének szögelfordulása – feltéve, hogy nincs a tartón közbülső csukló – a

$$\bar{\psi}_x(s) = \underbrace{\bar{\psi}_A}_{\text{A pontbeli forgás}} + \underbrace{\bar{B}_y(s)}_{\text{rugalmas forgás}}.$$

képletből számítható. Vegyük észre, hogy a második tag az \bar{f}_y (vagy ami ugyanaz az \bar{f}_z) fiktív teherhez tartozó fiktív \bar{B}_y (vagy ami ugyanaz a \bar{B}_z) belső erő (z középvonalú rúd esetén fiktív nyíróerő), amely statikai módszerekkel számítható.

77. A szokott jelölésekkel

$$\bar{v}_P = \underbrace{\bar{v}_A - (z_P - z_A)\bar{\psi}_A}_{\text{merevtestszerű mozgás}} - \underbrace{\int_A^P (z_P - z)\bar{f}_y(s)ds}_{\text{rugalmas mozgás}}$$

a függőleges elmozdulás. Vegyük észre, hogy a merevtestszerű mozgás a kezdőponti \bar{v}_A függőleges eltolódásból és a kezdőpont $\bar{\psi}_A$ merevtestszerű forgásából adódik. A rugalmas mozgás pedig a tartóra működő \bar{f}_y fiktív teherből adódó hajlítónyomaték, amely statikai módszerekkel számítható.

78. A szokott jelölésekkel

$$\bar{w}_P = \underbrace{\bar{w}_A + (y_P - y_A)\bar{\psi}_A}_{\text{merevtestszerű mozgás}} + \underbrace{\int_A^P (y_P - y)\bar{f}_z(s)ds}_{\text{rugalmas mozgás}}$$

a vízszintes elmozdulás. Vegyük észre, hogy a merevtestszerű mozgás a kezdőponti \bar{w}_A vízszintes eltolódásból és a kezdőpont $\bar{\psi}_A$ merevtestszerű forgásából adódik. A rugalmas mozgás pedig a tartóra működő \bar{f}_z fiktív teherből adódó hajlítónyomaték, amely statikai módszerekkel számítható.

- 79. Stabilis a karcsú nyomott rúd tekintett egyensúlyi helyzete ha az egyensúlyi helyzet megzavarását követően (a zavarás megszűnése után) a rúd visszatér a zavarás előtti egyensúlyi helyzetébe.
- 80. Kihajlás léphet fel, ha a karcsú rúdra működő F nyomóerő nagyobb vagy egyenlő mint az első (a legkisebb) kritikus erő az F_{krit} . Ekkor az egyenes alak ugyan egyensúlyi, de nem stabilis (vagyis a rúd a legkisebb megzavarás hatására is elveszti egyenes egyensúlyi alakját és kihajlás lép fel).

A kihajlás azért veszélyes mivel a kihajlás során fellépő hajlítás tetemesen megnöveli a normálfeszültségek abszolut értékének maximumát. (Nyomás helyett hajlítás plusz nyomás az igénybevétel.)

81. Karcsú, nyomott prizmatikus rúd esetén

$$\sigma_{kr} = \begin{cases} \sigma_F - \frac{\sigma_F - \sigma_E}{\lambda_E} \lambda & \text{ha } 0 \le \lambda \le \lambda_E \text{ (Tetmajer egyenes)} \\ \pi^2 \frac{E}{\lambda^2} & \text{ha } \lambda_E \le \lambda & \text{(Euler hiperbola)} \end{cases}$$

a kritikus feszültség. Itt σ_F a folyáshatár, σ_E az arányossági határ, λ a rúd karcsusági tényezője, λ_E a határkarcsúsági tényező. A $\sigma_{kr}(\lambda)$ függvényt az ábra szemlélteti.

