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Complete Solution for Stresses in Terms of Stress Functions
Part II: Modification of Variational Principles

1. Kozék, Gy. Szeidl

In the second part of the paper the authors consider the variational problem from which the general and complete
solution of equilibrium equations can be obtained as Euler equations. By deducing the dual pairs of the strain
boundary conditions the static-kinematic analogy has been made complete.

1 Introduction

1.1 The book by Abovski, Andreev and Deruga (1978), which we have also cited in the first part of the paper,
presents variational principles from which the solutions of equilibrium equations in terms of stress functions are
obtained as Euler equations. Contrary to the papers by Tonti (1967) and Stippes (1966) there is a step ahead in the
treatment of the boundary surface but all those terms needed for a complete solution on multiple-bordered regions
are missing. The reason for this is that the particular solutions of the equilibrium equations are assumed to be
known in advance therefore the difference between homogeneous and particular solutions, i.e., self-equilibrated
stresses, are given by the Euler equations mentioned above. It is a further problem that the contradiction between
the number of side conditions (six compatibility differential equations on the volume V') and the number of nec-
essary stress functions (although three stress functions are sufficient to describe any stress condition the resulting
Euler equations involve six stress functions) is also not resolved.

1.2 It is well known that the mathematical structure of the compatibility equations and the stress representations
found by Beltrami are the same. This similarity is often called as static-kinematic analogy. It is obvious that the
fulfillment of strain boundary conditions is the way to cause no incompatibility on S,,. Recalling that compatibility
and equilbrium are dual concepts one can raise the question: under what conditions are there no stresses due to
stress functions on S;? In other words, is there a possibility to extend the static-kinematic analogy to boundary
conditions?

1.3 In view of the foregoing the aims in the second part of the paper are as follows:

— With regard to the previous ideas (completeness, number of necessary stress functions, transformations

of integrals on the boundary etc.) to modify and supplement the corresponding variational principles.

— If possible to extend the static-kinematic analogy to the boundary conditions on S;.
1.4 In section 2 we focus on the free variational problem and briefly show what equations follow from the sta-
tionary condition. Section 3 is devoted to a modification of the principle of minimum potential energy and it is
proved that the dual counterparts of the strain boundary conditions are also stationary conditions. Conclusions
are presented in section 4 which is a short summary of the results. The last section is again an Appendix, i.e., a
collection of some longer transformations.

2 Free Variational Problem

2.5 Notations and notational conventions are the same as in the first part. When citing equations of the first part
the equation number is followed by a comma and the roman number 1.

2.6 There arises the question in connection with equation (3.31,I) obtained from the general primal form of the
principle of virtual work whether it is possible or not to establish a free variational problem where
— vanishing of variations with respect to strain fields ey; of the corresponding functional ensures the fulfill-
ment of field equations (3.32,I) on the volume V' of body and that of boundary conditions (3.33,1) on the
part S; of boundary
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— furthermore vanishing of variations with respect to the displacements uy, yields the fulfillment of bound-
ary conditions (3.34a-b,I), consequently the fulfillment of stress boundary conditions on .S;.

The functional sought can be derived from the functional of the total potential energy by applying the method of
Lagrange multipliers. The domain of the functional involves

the strain fields

er(x) zeV
the displacements
ug(§) £e S,
and
the stress functions
Hkl(l‘) reV
as well as B ~
Hx(§) and Hixs(§) £e€S;

In the latter case, as we have gssumed so far, the stress functions meet the preconditions
Hpap(X)=0 xz€Vand Hi3(§) = 0 €€ 5.

NOTE 1: These preconditions are based on those results presented in Section 2 of part I. We remind the reader
that there are three independent compatibility differential equations 7% = 0 and because of that three multipliers
Hpg are needed to maintain the equilibrium on V.

2.7 Equations of linear elasticity in terms of the variables mentioned above consist of the field equations
CP'"e,y = V¥ Hy gy + g" B + g'1BP, — g"' B¥, reV (2.1

ekaeSl”ekl;mp =0 reV (2.2)
and boundary conditions

E[Ii)\ - HmA =0 HK/\;?) - HK)\;?) =0 f S St (23)
exr — U(nk) = 0 e s, (2.4a)
(63#6 - uSll{)”)\ + bg\!(eam - ua\m) - (em/\;S - eAS;m) =0 5 S St (24b)
Exk — ﬂ()\;,g) =0 Ee S, (2.52)
(635 - ﬁ3|l’€)“>\ + bg(eaﬁ - ﬁah@) - (en)\;S - 6)\3;/@) =0 5 € Su (25b)
0 = ENPWHy g9 + a®1B?, + aP B3 — a* B", £es, (2.6a)
3= esweswﬁM;pﬁ + a3qB£_)’;q + aquiq - a33B’ik &e S, (2.6b)
associated with a continuity condition
u—u; =0 Eeg 2.7

Really, simultaneous fulfilment of equations (2.2), (2.4a,b), (2.5a,b) and (2.7) ensures that the strains ey; are
kinematically admissible. Recalling the assertion from the beginning of paragraph 3.10 in part I we can con-
clude with regard to continuity conditions (2.7) that the integration of conditions (2.4a) and (2.4b) yields the
actual displacement uy (&) on S;. If in addition to this, field equation (2.1) is also satisfied then the equilibrium
on V is maintained while simultaneous fulfilment of (2.6a) and (2.6b) is equivalent to that of stress boundary
conditions.

NOTE 2: Here and in the sequel, with regard to its simplicity, we confine ourselves to Schaefer’s solution. How-
ever, the line of thought presented herein can be applied with ease to Gurtin’s solution.

2.8 Now let R R
My = My (ers, wi, Hrs, Hox, Hunz) = Ty + T3¢ + TI5% + 11§ (2.8)
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be the functional sought in which

1 ‘ , , I
my = / [ieplcp“sem — (¢"B',, + ¢g"1B",, — g"' B*})ep] dV + / rmelPe oy HipdV  (2.92)
|4 14

5 = _/S [t' —n3(a® B’ +a"'B%, — a®B*))u dA

_/ 3" PN (exn — () ) Hyo:s
St

+[(€3I€ - u3|l’€)“>\ + bg(ean - ua|n) - (en)\;S - 6)\3;/@) - bg(e)\ﬁ - u(>\|r€))]f{m9+
[exnfo + Exnfio — (U)o — Uanbow]Hys — byo(exn — tnn)) Has} dA (2.9b)

e — /S ns(a® B, +a"B?, — a® B*,) 0 dA

—/ n3e™ 3 (exn — Uy Hyoss
S'U,

H(e3k — Ugj)r + 05 (ean — Uajr) — (€rn;3 — €r3im) — bg(em — U(x|w)) | Hyo
Fexafo F exnlo — (U)o — Usabox] Hyz — byo(exs — Gajxy) Has} dA (2.9¢)

Hg = _j{n36m737—19[(u19|“ — fbgm)gng — (U3|K — fbgm)]‘}y,g] ds + j{ Tneldpf{nd;p(ul _ ﬁzl) ds (2.10)
g g

Observe that the functional contains all the stress functions including those regarded to be zero. When inves-
tigating what stationary conditions follow from equation §IIs = 0 as a variational principle we shall take into
consideration, as we did earlier, that Hy;(x) and Hy; (&) are of special structure — see NOTE 8 in part I and
paragraph 2.2 .

2.9 Vanishing of variation
0l = 6,015 + 0,115 + 6 1Io + 5HH2 =0 (211)

as a variational principle ensures the fulfilment not only of field equations (2.1) and (2.2) but also of the boundary
conditions (2.3), (2.4a,b), (2.5a,b), (2.6a,b) and continuity condition (2.7).

In what follows we briefly outline the proof of the above assertion. Because of the independence of variations
taken with respect to distinct variables stationary condition (2.11) is equivalent to the equations

ScIMy = 0,115 + 0,115 + 8,115 = 0 (2.12a)
6ully = 6,115 + 6,115 =0 (2.12b)
Sully = 6Ty + dpTI5" =0 (2.12¢)
and
0 1ly = 65115 + 05115 = 0 (2.12d)

2.10 Equation (2.12a) can be transformed into a suitable form if utilizing (3.26a-b,I) we substitute
— (3.30,]) into the expression §.I13 replacing first e,, epo;3 and ey by their variations de,.s, de,y;3 and
5€p§
— the opposite of (3.29,1) for 6€H§t replacing first S, H,., and I:Im;g by S, 8H, and 6]?,.@)\;3
and
— the opposite of (3.29,1) for (561'125“' replacing first .S, H,., and ﬁm;g by Sy, 0H,x and 0H .y 3
Upon a subsequent rearrangement we have

Sy = / [CP"5epg — (PY% ! Hyqupr + gPI B, + g"1B",, — g"' B¥)] Seyp dV
1%

+ / nze" P33 (Hy — Hag)dep93 + (Hanz — Hanz)de,9] dA =0 (2.13)
S
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Since the variations dey;, , de,9,3 and de,y are arbitrary, this equation can only be satisfied when field equation
(2.1) and boundary conditions (2.3-a,b) are also fulfilled.

2.11 Observing that 6UH§ t is the opposite of I fU if in the latter S, u) and ug are respectively replaced by S, duy
and dug, then utilizing (A.50) — in which S, g, and ug are also to be replaced by S, ¢ and duz — and (2.10)
we obtain from (2.12b)

§ully = — / [t — ng(e*"€" " g + a®1 B, + a''B%, — a® BX,)] 6u; dA = 0 (2.14)
St

Since in (2.14) no condition for du; is set down it is arbitrary. Consequently, fulfillment of equation (2.14), or what
is the same thing, fulfillment of stationary condition (2.12b) yields the boundary conditions (2.6a) and (2.6b).

2.12 As regards equation (2.12¢) one should remember that condition (3.19,]) is not independent of (3.8a-b,I).
In the light of this circumstance it can easily be shown that the fulfillment of stationary condition (2.12c¢) is
equivalent to that of field equation (2.2) — Hap = 0 on V, consequently, we assume that 6H p = 0 — and
boundary conditions (2.5a,b) even if 6,3 and § H33 are different from zero, otherwise arbitrary on S,.

2.13 Making use of the independence of variations ¢ gﬂg ¢ and § 5115 we can replace (2.12d) by the following
two conditions
S50t =0 and  §5005 =0 (2.15)

Since H,3 = 0 we can cancel those terms in (2.15-a) — see (2.9b) — which involve H,.5 and Hss. In this way
we obtain from (2.15-a) with regard to the arbitrariness of 6 H,,y and 6 H, .3 that the boundary conditions (2.4a,b)
also hold.

2.14 Before investigating what equations follow from the stationary condition (2.15-b) we define two vector
fields 67 (¢) and &1, (€) on the curve g separating boundary parts S, and S; in order to simplify the necessary

transformations. Let
d ot

ds
This equation always has a solution for the unknown vector field.

- _Tneldpgﬁnd;p teyg (2.16)

S
(Wlal = 7/ TneldpéHnd;pal ds
S

o

In addition to this
d 67t . . d 572 - .
T = 7 (5 5 + 5 20) T = TP (6 H 1 + 6 H1,0) feg 17)
S S
d o S
L T H s feg (218
ds ’
where with regard to (3.35a-b,I)
0Hys, = 0H gy = 0H g o — T, 0Hys — T%,6Hyp tes (2.19a)
6Hp = 6Hyn)p = 6Howp — ap0Hz — by Hys £ecS (2.19b)
Further let 166
W“’” = 72 (egy307 + 6 H ) teyg (2.20)

It is clear that the latter equation also has a solution for the vector field dw,,.

NOTE 3: In view of (2.17), (2.20) and (2.19a,b) we may write
ot = 67 (0H 23, ...) 072 = 072 (6H o3, - - -) ey

and ~ N
512)1:511)1(5}[179,...) (511)2:512)2(5H219,...) ng

where the variations of H, n2:35 Hn1;3, H 19 and fIw are independent of each other and arbitrary. Consequently,
we may assume without any loss of generality that 57 and dw,, are independent and arbitrary on g. Later on it
will also turn out that 673 plays no role in the final form of stationary condition § HH? =0.
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2.15 Now we can turn our attention to the stationary condition (2.15-b). Using (2.10), substituting (2.16) and
(2.20) for ~ 3
T"eld”(and;p and 7’195ng

and entering into no details — these are presented in paragraph 5.1 — we have

ds ds

Sa§ = = F1e7 T (g = )0+ e 0,))67ds =0 @a1)
g g

if we also bear in mind that because of the assumption Hn3 = 0 the corresponding term has been cancelled in
(2.10).

It is obvious that the vanishing of § gHg; for arbitrary dw,, and 07 is equivalent to the fulfilment of equations

d . d N
£(U3IK —g),) =0 and £(1L,.i — ;) =0 Eeyg (2.22)
If the latter two equations hold then continuity condition (2.7) can always be satisfied by means of a proper choice

in respect of the initial values.

NOTE 4: When applying direct methods there is no need to utilize the line of thought presented in paragraphs 2.8
and 2.9 in order that one can prove the fulfilment of continuity condition (2.7).

NOTE 5: Functional defined by the equations (2.8), (2.9a,b,c) and (2.10) corresponds to the last functional
published on p.224 in Abovski et al. (1978). There are, however, some significant differences detailed as
follows:

1. The functional presented in this paper does not imply any contradiction concerning the number of com-
patibility differential equations and that of stress functions. Both are three and not six as it is the case in
Abovski et al. (1978).

2. The present formulation allows us to divide the boundary into parts S,, and S; on which various boundary
conditions can be imposed.

3. The domain of functional Il involves stress functions defined on S; and this is the circumstance which
enables us to handle boundary conditions of various types.

4. It is also worthy of mention that the continuity of displacements on curve g is not a precondition but it
follows from the stationarity of functional IIs.

3 Static-Kinematic Analogy

3.1 If preconditions are set down on some variables then functional Il can assume a much simpler form. If
the strains are kinematically admissible then (2.2) and (2.4a,b) hold and both the displacements and their deriva-
tives on S are continuous along the curve g. If in addition to this stress functions ﬂ'ﬁ » and ﬂ',i ;3 satisfying
stress boundary conditions (2.6a,b) are known then functional II, — see equations (2.8) to (2.10) — reduces to
functional

Iy (egr, wy) = HY(BM) + Hft (wy) + Cf“ 3.1
where )
Iy (e) = /‘/[56101017”567‘8 - (gqul.;q + gqu].a-,q - gplB].C;k)epl] av (3.2a)
15 () = — / n3e W H, g d A (3.2b)
St
and
CcPe = /S n3(a®B',, +a''B%, — a® B¥,))] i, dA (3.2¢)

w

NOTE 6: The same functional can be obtained from that of the total potential energy

1 .
M(exs, ) = 5/ epCP'" e, dV—/ bl dV—/ tlu; dA
14 \4 St
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if one substitutes 151 (equations (3.2-a,I) and (3.3,1)) and (2.6a,b) for the second volume integral and #', respec-
tively, keeping in mind that w;(§) = @;(£) on S,,.

3.2 Functional (3.1) can be transformed further performing partial integrations in Hf” in order that IT; should
depend on ey; only. As regards the details we refer to paragraph 5.2 . Finally one has

Hl(ekl) :HY(ekl)+Hftl(€kl) +H?+Clc+cls“ (33)
in which
Hftl(ekl) = / n365n36ldp(—f~[,7d;p€m + f{ndeﬁl;p) dA (3.4a)
St
¢ (e)) = 7{ T3 (Hy ez — Hyzeoy) ds (3.4b)
g
and
of =~ 7{ TPy H g, ds — 7{ T3 (Hypgtiz — Hystioys) ds (3.4¢)
g g

3.3 Functional (3.3) is subjected to subsidiary conditions which ensure that the strains ey; are kinematically admis-
sible. In contrast to the foregoing one has to choose those conditions of single-valuedness being given in terms of
strains eg;. Consequently, for strains to be kinematically admissible it is necessary that the field equation (3.7-a,l),
the kinematic boundary condition (2.5a,b) and the boundary condition of compatibility

nan® = 637;:@Gldpend;mC =0 £e s, (3.5)

should be fulfilled. Let 3 3
Hps(r) = Hsr(x) reV
Hi (&) =Huw (§) and  Hyp3 =Hons £e€ S,

and

wy(€) §e€S

be undetermined Lagrange multipliers.

In accordance with all that has been said when seeking what equations can be obtained from the stationarity of
functional I1; one should supplement the functional by the sum of integrals

g = % + 113" + 113 = 0 (3.6)
where .
Hg = *IY(HRS) (373)
ng = 7.[‘154(51/,7'&[7 Hkl7 Hn19;3) (37b)
and
Hgt = —/S eSn“eldpend;p,{wl dA (3.7¢)
t

As regards the notations the parameters that have been changed are marked in equations (3.7a) and (3.7b) — see
(3.21a,I) and (3.21b,I) for details.

It is also worthy of mention that integrals (3.7a) and (3.7b) are considered under the same assumptions as I} and
I were earlier, including the structure of multipliers as well as the not independent condition (3.19,1).

NOTE 7: For strains ey; to be kinematically admissible it is also necessary that some further conditions, referred
to as continuity conditions, should be satisfied on curve g. Joint fulfilment of the former and the latter conditions
— which are presented in the next paragraph — is not only necessary but also sufficient for strains eg; to be
kinematically admissible.

3.4 It follows from the kinematic equations that

eny = 7030 ey (3.82)
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must hold. Using (A.25) it is immediately verified that

dws_ n 3 _ ns,wlA 0.3\ ¢ e (3.8b)

_dS =T wme € 2u19;)\77—7' € [ TIDN g .
This equation expresses that the rigid body rotation w? should be the same in both sides of curve g. As regards
the other two components of rigid body rotation one obtains from (A.26) and (A.27)

1 1 1
why = erql(§ul;qp + 5 Yaitp — §Uq;lp) = " (eigp — eqip) zeV

Changing r and p to ¥ and 77 and decomposing the sums one may write after some manipulation that

9
dw _ P

E - 193)\(

= 7’776193)\(6)\3;17 — Ugny) = T'e€ exm3 — €3m;2) Eeyg (3.8¢)

The above line of thought implies the assumption that the displacements and their covariant derivatives taken on
the surface are continuous when one goes through curve g. Since neither 4y, nor ;9 can be varied freely

ot =0 and (5ﬂk;)\19 =0 ¢ e Su

from which in comparison with (3.8a,b,c) it follows immediately that the variations dey; on g are subject to the
conditions

5e,9 = 0, 7132 Se g = 0 ey (3.92)
and

1P erg, = TP (erys — I, teg (3.9b)
Since 1 1

exs = 5 (urs + ugn) = 5 (uns + ds) £cyg (3.10)

it is easily seen that e,;3 can be varied freely on g.

Consequently, when varying the sum II; + IIg with respect to strains ey; in order to find what equations follow
from the stationarity condition one should keep in mind that ey; can be varied freely everywhere on V' and .S
except the curve g on which the variations dey; are to meet the preconditions (3.9a) and (3.9b).

3.5 Now we shall consider what equations can be obtained from the stationary condition
OcIly 4 0. Ilg = IY + Ig* + I3 +I§ =0 (3.11)

in which I 1‘{ . gt , g’” and [, g denote respectively the integrals taken on V', .S, S, and g when the transformations
aimed to bring 6.11; + J.Ilg into a suitable form have been completed. At present they are not known. It is,
however, obvious that each of the integrals I}/, Igu, Igt and IS must vanish separately since the domains are
different. In what follows we shall utilize this circumstance without referring to it again.

3.6 Recalling (3.2a), (3.7a), (3.21a,]) and repeating the line of thought leading from (A.58) to (A.59a,b) and (A.61)
we have

5 ITY + 8, I1Y = 6,11V + I} (6eps, Hps) = Iy + I + I3 (3.12)
where
Iy = /V [CP'"5eps — ("% Hygupr + g"I B, + g"B",, — g"' B¥,})] bei, dV = 0 (3.13)
and
I I = — /S . nae P33 (o0 ,9.3 — Hanzoep) dA (3.14)

3.7 It is obvious that the integral I g“ consists of two parts.
I = I + 6 113" (3.15)

As regards the variation (SHE“ let us consider the equations (3.7b), (3.21b,I), (3.26a,]) and (3.29,I) from which
follows that

ST = —I7(Su,0ens, Hit)la=o = —Ii5(Su,dens, Hir)
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since the variation is taken with respect to eg;. After performing the necessary letter changes one can substitute
(3.29,1) for 561_[2” in (3.15). Keeping (3.14) also in mind we obtain

IS+ = I7 + 6 105

= / n3€Hp3€>‘193[( [ikf)\,.€ —H,\K)(Semg;?, - ( EIAK;S —H,\K;g,)(;emg] dA ZO (3.16)
Su

3.8 Now we concentrate on the last two integrals Igu and I§ whose sum will be separated into two groups
depending on whether they include Hy;, Hy, or v

IS 4 IS = (ISy, + ISy) + (IS, + 1G,) (3.17)

To begin with we shall consider those integrals containing Hy;, Hy,. It is clear on the basis of (3.3), (3.4a), (3.4b),
(3.6), (3.7a), (3.11) and (3.12) that

ISt + ISy = 6,015 + I + 6.10§ (Hy) (3.18)
Comparison of (3.4a) to (A.59b) yields
S JIT*Y = I3 (Se, dery, Hit) (3.192)

Next integral [ f ¢ will be considered. An appropriate result can be achieved in three steps.
1. We notice that the surface integral in (A.60) is equal to I, f * provided that the following replacements are
made.
S, — S; H—H e — de

2. Comparing (3.4b) to (A.60) we also notice, that the line integral in (A.60) coincides with 6 I1§" if further
letter replacements are made.

Jo — g H—H e — de

3. Then we solve the equation resulting for I, f t,
Finally we have 3 5
Ift = 7I2S’E(St,5€kl,Hkl) *H?((seklkal) (3191‘))

Upon substitution of equations (3.19a) and (3.19b) into (3.18) we obtain
Iy + Iy = I55(S, Sewt, Hyy — Hit) + 10§ (Segr, Hyy — Hy) (3.20)

since the integrals are linear in Hy;. Let - ~
Hy = Hyy — Hyy (3.21)

With (A.60), (3.4b) and (3.21) it follows from (3.20) that

S. G 3 _\9371 17 [ [
IHi‘{ +Igg = / nze™e [H,\H(Sepﬁ;?, — H,\H(Sepg;ﬁ - H3H(56p19;A

St
—H)\,Q;gtsepg + H/\n|1956p3 + H3,§|>\56p19] dA
7% nge”"S(Tﬁﬁng&M - T’\66Mﬁng) ds (3.22)
If in (3.22) we substitute ~
Hkl for 5ekl
and -
€kl for chl

we arrive at (A.54). It immediately follows from this that the point of departure of those transformations leading
to (A.54), i.e., equation (3.26a,1), is the final form of (3.22) provided that ey; and Hy, are respectively replaced by
Hy,; and dey;. In this way we have

ISy 4+ ISy = /Snse""‘ge’wg{ Hy.ben9;3 + (Hoxjo + Hepo)dens

+(Hspopr + b3 How — Horg + Hyg) — bgHM)(seW + by Hydess} dA (3.23a)
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which means that
I§y =0 (3.23b)

3.9 The last integral to be considered is the one which involves the multiplier w;. It is clear from (3.6), (3.7a,b,c)
and the resolution (3.17) that
Iife, + Iff,, = .15 =TI (9ena) (3.24)

In the sequel it is our aim to make use of equations (A.51) and (3.25,]) in order to avoid carrying out long formal
transformations. Comparing (3.17) and the surface integral in (A.51) it becomes clear that after substituting
respectively

St , g, (5ekl and () for SO y 90 ,Ij[kl and wy

in (A.51) and (3.25,]) one obtains an equation with the unknown Hgt (deg;) or since the two expressions are of the
same value of | fU. Consequently, one may write by separating surface and line integrals

I, = —/ nze™ BN 3wy | 0enn:3d A
St

+/ nseﬁnf)ekﬂs[—w)\lﬁuﬁ(;en?) — w(>\|"‘€)b"ﬂ96633 + (bgwwﬁ) — biwam)éenﬁ] dA
St

+/ 77,365"36)\193[—103|H‘|>\(5€mg - w3|>\b19,{5€3n - w3|,ib19)\56773]d14 (3.25)
St
and
Igw = %T"eldpéend;pwl ds — %nge“”?’Tﬁ(wm,iéeng — ws|0eny) ds . (3.26)
g g

With respect to (3.17), (3.23a,b) and (3.25) we have

It = / nge™B 3 (Haw — w(ajn))dens3
St

+[(Hzr — w3)x + 03 (Haw — wapk) — (Hexns — Haz) — bg(Hm — W(|k))]0€ns
J’_[Hm\\lﬁ + H,\,i”g - (’w,\|,§)”19 — w3|,\b,19,.€]5e773 — bmg(H)\K — w(,\|,§))(5€33} dA =0 (3.27)

Making use of (3.17), (3.23a,b) and (3.26) it follows that
Iff = If,,
Decomposing the sum involving € in the first line integral we obtain from (3.26)
Iﬁ; = Igw = —7{7’763)‘19(561977;,\11)3 ds — 7{7"679:”\(56,\77;3 — ez )wy ds
g g
+%Tn6193/\wn|1956)\3 ds + %Tﬂes””wmﬁéew ds =0
g g
Substituting (3.9a) and (3.9b) then performing partial integration with respect to s we get

If = f{ TP 2w, 9)0exs ds = 0 (3.28)
g

Since in equations (3.13), (3.14), (3.27) and (3.28) no restrictions for

deyp zeV
(5€mg|37 (Sepﬁ f S Su
den(3, 0eny, 0€n3, de33 €5
and
desn §€yg

are set down they are arbitrary. Consequently, the vanishing of integrals I};, Iﬁ“, I ﬁ” and I§ yields
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— the field equation
CP"%epg = VR Hyqpr + 9" B, + 9" B, — "' BY,, zeV (3.29)

as the Euler equation of the problem
— the boundary conditions

i})\n: H)\n and i})\n;?): H)\n;S 5 €S, (330)
Hye — Hye = Hye = W(A|k) £e S, (3.31a)
(H?m - w3|n)|\/\ + b,o\z(Hom - wa|n) - (Hmk;?) - EIAS;K) =0 5 € St (331b)
Hyxjo + Hxwljo — wajsjo — wsabor = 0 §ES (3.31¢)
and
— the continuity condition
Twpey =0 feyg (3.32)

The following notes are aimed at interpreting equations (3.29) to (3.32) obtained from the extremum condition
(3.11).

NOTE 8: Equation (3.29) is the general and complete stress function solution of equilibrium equations set up
in this form by Schaefer (1953). In other words the general and complete solution of equilibrium equations can
really be derived from the extremum of the total potential energy provided that the subsidiary conditions are
appropriately chosen.

NOTE 9: According to equation (3.30) multipliers defined on S, coincide with those defined on V. Consequently,
the stress function solution is valid on S,,.

NOTE 10: Equations (3.31a,b,c) are the dual counterparts of kinematic boundary conditions (3.8a-b,I) and sup-
plementary condition (3.19) since [the former] (the latter) conditions can immediately be obtained from the [the
latter] (the former) ones if we substitute [e for H and u for w] (H for e and w for ). Since (3.19,]) is not in-
dependent of (3.8a) nor is (3.31c) of (3.31a). Consequently, (3.31a) and (3.31b) are the substantial boundary
conditions.

NOTE 11: It follows from NOTE 8 and equations (3.33,1) that stress functions on V" and S; may differ from each

other in the symmetric part of the gradient of a vector field

Hi(€) — Hu(€) = ey (€) £es (3.33)

In the light of this circumstance there arises the question whether boundary conditions (3.31a) and (3.31b) contra-
dict equation (3.33) or not. In what follows we shall prove that there is no formal contradiction between (3.31a),
(3.31b) and (3.33). Our point of departure is the equation

Hi (&) — Hu(€) = Hi(€) = wiy(€) § €St (3.34)

which is obviously equivalent to (3.33). The latter equation implies (3.31a). However, in contrast to (3.34) no
derivatives taken along the normal to S appear in wy ). Proof of the second part of our statement requires some
preparations.

Let r! be the axial vector of wy;. As it is well known

1
rt = §elpqwq;p and Wip] = —€lpsT” £e S (3.35)

In view of (A.2b) and (3.34) one may write

1 1
Wiplix = §(wl;p/\ — Wpn) = §(wl;p>\ + Wxitp — Wxitp — Wpiin) £eS;
or . )
Wipix = Hixp — Hapy £e Sy

After exchanging the left and right sides let us add (3.34) to the latter equation. With respect to (3.35b) we have

Wpp\ = w(l;p);)\ - elpsTi)\ = Ir—’l)\;p - H/\p;l + Hlp;)\ . 5 S St (336)
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Now we shall prove that the latter equation, which is a consequence of (3.34), implies (3.31b).

Because of the indices in (3.31a,b) we shall confine ourselves to those equations obtained by setting [ and p to 3
and k: ~ ~ B
W3k = W(3;k)50 — 63&0'7“(,7;,\ = HB)\;m - H/\Ii‘,?) + HSK;A 5 € St (337)

It can be shown readily by using (A.9) that
Hswin = Haopx + bS Haw — bexHss §£e S
Substitution of the latter equation into the right hand side of (3.37) yields
Hyox + 0§ How — (Hexis — Hasie) — beaHss = Waien = W00 — €3x0T 0 €S (3.38)
Using again (A.9) to transform the right hand side of (3.38) we have
W3ix = W3 A + DX Waln — braws;s §€S5

With this equation it follows from (3.38) that

(Hsw — w3 n + b3 (Haw — Wals) — (Hons — Hxgie) — bua(Hsz — ws3) = 0 §esS: (339

If Hyg — ws;3 = 0 equation (3.39) reduces to (3.31b). In this case no derivative of w; taken along the normal to
the surface appear in (3.39). In other words the principle of minimum potential energy ensures the fulfilment of
that part of equation (3.36) which does not involve the derivative of w; along the normal to S;.

NOTE 12: With regard to (3.30a) and (3.31a,b) condition (3.33) is a continuity condition of the form

TV Hyg =71° Hag §€yg

for those multipliers defined on \S; and S, respectively.

4 Concluding Remarks

4.1 The most important functionals of Lagrange’s type have been presented in the second part of the article. As a
result of our modification the corresponding variational principles imply no contradiction concerning the number
of compatibility equations and that of stress functions in terms of which one obtains the general and complete
stress function solution of equilibrium equations from the stationary condition.

4.2 The variational formulation presented ensures more freedom in respect of the boundary conditions (both strain
and traction boundary conditions can be imposed on distinct parts of .S).

4.3 The static—kinematic analogy has been supplemented by appropriate boundary conditions. Each of the strain
boundary conditions and the supplementary identity on S, has its dual counterpart on \S; and vice versa.

5 Appendix

5.1 Transformation of integral § ﬁﬂzG of equations (2.10) and (2.15b)

Cancelling the term that involves 6[17,73 and substituting T”eldpéf[nd;p and Tﬂéﬁfnﬁ taken from (2.16) and (2.20)
into (2.15b) we obtain

511§ = fﬂsemgTﬂ(%In — i), )0 Hyp ds + ]{nﬂ"eld%ﬁnd;p(ul — ) ds
g g

. dot

2, d oW
= f;e””s(% + 7"96771935?3)(u?,‘,g — Ug|y) ds — f;(ul — 1) o ds =0

since n3 = 1.
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Making use of the equation €*"3¢, 33 = —d'5 and performing partial integrations we arrive at (2.21).
5.2 Transformation of integral (3.2b)
Applying the rule (A.20) of partial integration and observing that
6"’736ldpu,.€;lp =0 e s,
one obtains
Hf‘(ekl) = If" + IlG = —/S nge“"?’eld”(—f[nd;pul;ﬁ + ﬁndumlp)dA — fr"eldpf[nd;pﬂlds (B.1)
‘ g

where [ f ¢ and 1€ stand for the surface and line integral, respectively. It follows from the decomposition theorem
(A.2) and the kinematic equation (2.6,]) that

ULk = €k + U[;k] and Up;l = €xl + Ulk;1] 5 € St (BZ)
Upon substitution of (B.2) into the surface integral I f  and comparing the result with (3.4a,b,c) one has
I =1 4 13 (B.3)
where
Iést = —/ n3€K?73€ldp(_ﬁnd;pu[l;K] + ﬁndU[,{;p]) dA
St
B _/ nsemgems(_H’WﬁuP\;ﬁ] + ﬁn&ﬁu[ﬁ;p] + ﬁ[nﬁ;)\u[&ﬁ]
St
+Hyugns — Hygtgeno + Hyotges) dA
Since ~
B Hygupe s = 0 ce S, (B.4-a)
and ~
B3 Hygsupng = 0 ¢e S, (B.4-b)

with the rule of partial integrations one obtains

125” = I3S” =+ IlG = —/S n36m773€)\193[_Hn3(u[)\;H] + U[,{;)\]);ﬁ — ﬁnﬂ(uBm] + U[,{;g]);)\] dA
t

7f’7'776m73(ﬁ771911,[3;,@] - ﬁnSU[ﬂ;H]) ds
g

in which the surface integral vanishes. In view of equation (2.6,I) and continuity condition (2.22) the assumption
is made that

U[3;x] = €3 — g, and UlY;x] = €Ik — ﬂ'ﬂ;f@ €y (B.5)
Substitution of (B.5) and a subsequent comparison of the result with (3.4a,b,c), (B.1) and (B.2) yields
Iy =07 + 10§+ CF

which proves the correctness of transformation mentioned in paragraph 3.2 .
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