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NATURAL FREQUENCIES OF A CIRCULAR ARCH —
COMPUTATIONS BY THE USE OF GREEN FUNCTIONS

GY. SZEIDL, K. KELEMEN' and A. SZEIDL 2

Abstract. A defintion is given for the Green matrix function of a degenerate system of ordinary differ-
ential equations associated with homegenous linear boundary conditions. In the knowledge of the Green
matrix function self adjoint eigenvalue problems can be replaced by a system of homogenous Fredholm in-
tegral equations with cross symmetric kernel. The latter eigenvalue problem can replaced by an algebraic
one. Solutions are presented for the free vibrations of circular arches.
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1. Introduction

There is a classical definition — see for instance [1] — for the Green function of ordinary
linear differential equations with homogenous boundary conditions. The concept has been
generalized for a class of degenerate systems of linear differential equations by keeping up
at the same time the structure of the definition in [2].

In the knowledge of the Green function self adjoint eigenvalue problems governed by an
ordinary differential equation can be reduced to an eigenvalue problem for a Fredholm
integral equation with symmetric kernel [3]. This approach provides advantages when
discretizing the problem one replaces it with an algebraic eigenvalue problem. In addition
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it also remains valid for eigenvalue problems described by a degenerate and self adjoint
system of differential equations with appropriate boundary conditions.

There are a lot of works on eigenvalue problems associated with the free vibration and
stability of circular arches. Without trying to achieve completeness we should mention
the book by Federhoffer [4], the papers [5], [6] and the thesis [2]. Shear deformation and
higher order deformations can also be taken into account. In this respect the reader is
referred to [7] and the papers cited in it.

2. The Green matrix function

Consider the degenerate system of differential equations

0 0 (n) 0 0 ] (e+1)
ZP (V) n [}H} + e k+1 {}H}
0 Po y2 0 Py Y2
k S S s -
n P11 11312 {}’1}()_{___,4_ 1:11 15312 {yl}()—l--": ;1} (2.1)
0 Py Y2 Py Py Y2 L2

where n > k > s > 0, [ is the number of unknown functions (or which is the same the

size of y), j is the size of y, and the matrices P and r are continuous for = € [a,b]; a < b.
We shall assume that

- P22 and P11 are invertible if = € [a, b]
— the system of ODS (2.1) is associated with linear homogenous boundary conditions

n—1
U.(ly) = Z [A Y(V)( )+ Bwy(”)(b)} =
v=0
n-1 11 12 (v) 11 12 (v)
_ Ay Ay yi(a) + B,, By y1(b) _ |0 (2.2)
= 21 29 y2(a> 21 22 YQ(b) — 0 .
v=0 Ay Ay B, By,

where o = 1,...,n and for v < k the constant matrices A,, and B,, fulfill the

conditions
11 21 11 21

A,=A,=B,=B,=0

— I =nl—[(l — j)k + nj] rows are identically zero in the hypermatrix

Prm | oo (2.3)

By introducing appropriate new variables the system of ODE (2.1) can be replaced by
(I — j)k 4+ ny differential equations of order one and one can construct the corresponding
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Green function. In the present case however there is no need for this transformation
since the definition is based on the original equation. The second condition expresses
that ygy)can not appear in the boundary conditions if v > k. The third condition is a
restriction on the number of boundary conditions.

Solution to the boundary value problem (2.1), (2.2) is sought in the form

y(z) = / Gz, €)r(€)de (2.4)

where G(z, ) is the Green matrix function defined by the following properties:
1. The Green matrix function is a continuous function of z and £ in each of the triangles
a<zx<¢<band a <& <z <b. The functions

(Gu(z,8), Gia(z,8)) [Gar(z,§), Gaa(z, §)]

are (k times) [n times] differentiable with respect to = and the derivatives

’G(x,8) A -
= G @8 (v=12...k)
aG@Lx(f’g) = GY(2,) (v=1,2,...,n; i=1,2)

are continuous functions of x and &.
2. Let & be fixed in [a, b]. Though the derivatives

G@¢ (v=12....k-2;  GH@¢8 (@=12.. k-1
GY(z,&) (w=12,...,n—-1) GY(z,&) (w=12,...,n-2)

are continuous for x = ¢, the higher derivatives Gglifl) (x,€) and ngl*l)(a:, €) have a
jump on the diagonal, i.e.,

lim [G (€ e - G Ve —20)] = Pi(e),
lim [Ggg—”(g +e,6)—Gh V(e —¢, 5)] — P9

3. Let @ be an arbitrary otherwise constant vector. For a fixed £ € [a,b] the vec-
tor G(z, &) as a function of z (x # ) should satisfy the homogenous differential
equation

K[G(z,§)a] =0

4. The vector G(z,&)a as a function of x should satisfy the boundary conditions

U,[G(z,)a|=0 p=1,...,n
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If there exists the Green matrix function defined above for the BVP (2.1), (2.2) then the
vector (2.4) satisfies the differential equation (2.1) and the boundary conditions (2.2).

The part of our statement concerning the boundary conditions follows immediately form
the comparison of the fourth property to the formula (2.4). As regards the second part of
our statement substitute the representation (2.4) into (2.1) and utilize that the matrices

Ggli_l) and Gg;_l) are discontinuous if z = £. In this way we may write

o £aio) f Latng ctng ][0 o0

0 0 ri(z
0 Py () {Gg’;*)(a:, 2—0)—GU V(2 z+ 0)} { I‘2§I§ ] -

K(y) = 3 Py ()=

+

0 0 M 0 0 1'1(5)
"o Pl ] / | GS(2,6) G (a,¢) } {m(&) ] e
[k k 7T b
Pii(z) Pu(a) G (2,8 G (2,9 | [ (&)
i ] 11322(@ 1]322(95) | / [ GH(2,8) GY(,¢) {

+ - Py (z) {Gﬁ_l)(ﬂs,x—o) - Gg’i_l)(ff’x+0>} X ] [ i } T
0 0

Taking into account the first property of the definition and the fact that due to the
second property the sum of integrals vanishes substitute the value of the jump. This
transformation results in the right side of (2.1), i.e., the representation (2.4) really satisfies
the differential equation (2.1).

Let r(&) = e(n)6(¢ —n) where e is a constant at 1 € [a,b]. It follows from (2.4) that
y(z) = G(z,n)e

In other words the columns of G(z,n) are the solutions due to the unit discontinuities
6(§ — n)e; in which e; is the i-th unit column matrix.

3. Existence of the Green matrix function

The general solution of the differential equation K(y) = 0 is of he form

= Y i C 3.5
Y [ (1) (le)](lSD (3.5)

i=1

where C; is a constant non-singular matrix and e is a constant vector.
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For the sake of distinguishing the columns in Y; they are denoted by y;, v = 1,...,1.
Obviously ! columns are identically zero. Consider the hypermatrix

D = | . (3.6)

Taking into account what has been said about the boundary conditions — here we think of
the structure of the matrix P; — and recalling that [ columns are identically zero one can
come to the conclusion that [ rows and columns are identically zero in the hypermatrix
D. Denoting by red(D) the matrix obtained by removing the zero rows and columns one
can establish the following statement:

If det [red(D)] # 0 then there exists a uniquely determined Green matrix function which
meets the properties 1. to 4. of the definition. In addition the solution given by (2.4) is
the only solution to the boundary value problem (2.1), (2.2) for arbitrary right side r.

The proof of our statement is similar to that given in [1].

With regard to the third property of the definition it can readily be seen that G(z,¢)
takes the form

G(z,€) = 22y Yi(z) [Ai(€) + Bi(¢)] r < (3.7a)

B
G(z, &) =2 2, Yi(2) [Ai(§) — Bi(¢)] A (3.7b)

where A;(§) and B;(§) are [ x | matrices. After partitioning the matrices Y; and B;

{ l—j J

l—3j Y1 T T

i B, B;

i [ Yo } [Ba Bo]
A Ve Ixl

Ix1

from the second property of the definition we obtain the system of equations

S YuBa >, YiBy ] _ [0 0 (3.83)
> YuBia ), YeBjp | 100 :
S YPBy S,YPBa | [0 0
1) 1) = 10 0 (3.8b)
> Yi'Ba 22 Y Bip | I
> Yz(f_l)Bil > Yz(f_l)BiZ _ _11]_3’71 0
(k1) (k1) = 2 11 (3.8¢)
> Y 'Ba 3 Y VB | 0 0
S YEB. Y YWB,| = [0 0] (3.84)
[ S YS VB YL YS VB, | = [ 0 —%f’}l ] (3.8e¢)
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We denote the v-th column vector of B; by B;,. Let
b) =[Bi,|...|B,|...|BL,] (3.9)

where the upper index 7' stands for the transpose of a matrix. The system of equations
we have just established has the same coefficient matrix for each unknown vector b, :

Wb, =P, (3.10)
where
[ Vi1 Y1 Yiv1 Yni1 Yol |
Y12 Y2 Yiv2 Yn12 Yni2
P RRTEEEERRY RARSEEEERRES SETSRERLLLE ARRSERRERELE e
T R
DA I R (I Y
Yita Y1 Yiv1 Yni1 Yni'1
n—1 n—1 n—1 n—1 n—1
511) 511) yz(ﬂ) YT(ﬂl) qul)
(n—1) (n—1) (n—1) (n—1 n—1
| Y112 12 w2 Yn12 nl2
in which

1% l—j
Viy = [ Yiv1 } { —J
J
and P, is the v-th column in the transpose of the matrix

columns in the blocks

! ! s Y J J
k T
0 o -1 <P1‘11> 0 0 0 0 J
n T
0 0 0 0 0 0o -1 (P221) I -]
1 k—1 k k+1 n—1 n

block number

Observe that [ columns in the matrix W are identically zero. Consequently the elements
of b, with the same index are also set to zero. Omitting the zero columns in W one
obtains a square matrix denoted by red(W).

Introducing new variables the system of ODEs L(y) can be replaced by a system of
ordinary differential equations of order one. The new variables can always be chosen
in such a way that det [red(W)] coincides with the Wronsky determinant of the system
of differential equations of order one. Since the Wronsky determinant differs from zero
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and the vector P, has at least one non zero element the linear equation system (3.10) is
soluble, i.e., there exists a solution different from the trivial one.

In the knowledge of B; the functions A; can be determined from the fourth property of
the definition. Let now a be the v-th unit vector in the space of size [ x [. Then it follows
from the fourth property that

U, [zn: Y (2)Ai(6)e| = FU, (3.11)

ZYi(m)Bi(f)a

Let A,, be the v-th column vector in A;. Further let
al = [AT|...|AZ|...|AT] .
Due to the choice of a from (3.11) one obtains the equation system
U, Y1 (@) . [Yo (@) a,(€) = FU, [Y1(@)].. Yale) y(€) p=0,...,n—1

Taking into account the linearity of U, and the notational convention we made for the
column vectors of Y; it can readily be seen, that the coefficient matrix of the equation
system above coincide with the matrix D. For the same reasons as before the elements of
a, with the same index as those elements of b, which have been regarded zero are also
set to zero. Taking into account the third property of the definition one can come to the
conclusion that [ equations are identically zero. It follows from all that has been said that
the elements of a,, being not identically zero are obtainable from an equation system with
the determinant det [red(D)]. The later quantity is not equal to zero, consequently the
equation system is soluble, i.e., there exists the Green matrix function.

4. Eigenvalue problems for degenerate systems of ODEs

Let the system of differential equations read
Kly] =Xy (4.13)

where K[y] is given by (2.1) and A is a parameter (the eigenvalue sought). The system
of ODEs (4.13) is associated with the linear homogeneous boundary conditions (2.1). We
shall assume that the boundary conditions are independent of \.

a= w7 e[

w | }j v | }J

are said to be comparison vectors if they are different from zero, satisfy the boundary
conditions, and (u; and vy) [uy and vo] posses continuous derivatives of order (k) [n].

The vectors

123



The eigenvalue problem (4.13), (2.2) is self adjoint if the product

(W, V) = / WK [v]dz (4.14)

is commutative, i.e., (u,v)y = (v,u)y over the set of comparison vectors and it is full
definite if (u,u)y; > 0 for any comparison vector u.

If the eigenvalue problem (4.13), (2.2) is self adjoint then the Green matrix function of
the boundary value problem (2.1), (2.2) is cross symmetric:

G(z,8) = G (¢, x)

The proof of this statement is left to the reader — see [1] for the line of thought. Recalling
(2.4) the eigenvalue problem (4.13), (2.2) can be replaced by the integral equation

y(z) = A / G(r, &)y (€)dt (4.15)

Numerical solution of the eigenvalue problem (4.15) can be sought by quadrature methods
[8]. Consider the integral formula

@) = [ dladde =Y wipe) €l (1.16)

where ¢(x) is a vector and the weights w; are known. Making use of the latter equation
we obtain from (4.15) that

> wG(x,3;)y(z;) = ky(x)  E=1/A =z €lal (4.17)
=0
the solution of which yields an approximate eigenvalue A =1 /K and an approximate
eigenfunction y(z). After setting z to z; (i =0,1,2,...,n) we have
> wiGlzi,z)y(x;) =ky(x)  E=1/A  z€[ab] (4.18)
=0
or
gDY = RY (4.19)

where G = [G(x;, x;)] is symmetric if the problem is self adjoint,

D = diag(wo, - - -, wo| - - - |[wn, ..., w,) and V= 5 (x) |57 (21)] - . . |37 ()]

l l
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After solving the generalized algebraic eigenvalue problem (4.19) we have the approximate
eigenvalues A, and eigenvectors ), while the corresponding eigenfunction is obtained by
back substitution into (4.17):

Vr(@) = XY w;G(x, )3, (x)) (4.20)

J=0

Divide the interval [a, b] into equidistant subintervals of length h and apply the integration
formula to each subinterval. By repeating the line of thought leading to (4.19) one can
show that the algebraic eigenvalue problem obtained is of the same structure as (4.19).

It is also possible to consider the integral equation (4.15) as if it were a boundary integral
equation and to apply isoparametric approximation on the subintervals, i.e., on the ele-
ments. If this is the case one can approximate the eigenfunction on the e-th element (the
e-th subinterval which is mapped onto the interval n € [—1, 1] and is denoted by £.) by

Y
y= [N, (1)|Na (1) [Na(n)] 32/2 (4.21)
Y3

where quadratic local approximation is assumed, N; = diag(N;), Ny = 0.5n(n—1), Ny =

1—n%, N3 =0.59(n+1), y, is the value of the eigenfunction y(z) at the left endpoint, the
midpoint and the right endpoint of the element, respectively. Substituting the equation
(4.21) into (4.15) we have

e

Mhe Y1
y(z) =X ; G(z,1) [N, (7)[N2(n)[Ns(n)ldn | v, (4.22)
= Y3

in which ng. is the number of elements (subintervals). Using equation (4.22) as a point
of departure and repeating the line of thought leading to (4.19) one shall find again an
algebraic eigenvalue problem.

5. In plane vibrations of circular arches

Let R be the radius. It is assumed that the arch is symmetric with respect to the plane
of its center line. The cross sectional area and the second moment of inertia with respect
to the centroidal axis y are denoted by A and I = I, respectively. The angle coordinate
¢ changes in the interval [, ], the central angle ¥ subtended by the arch is equal to
29 while U and V' are the amplitudes of the tangential and normal displacements on the
center line. The Young modulus of elasticity is denoted by E. In plane vibrations of
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circular arches [2] is governed by the system of differential equations
y=[00][U (4)+ —m 0] U (2>+
YIZlo1||w 0 2| |w

+HL _(;%1[1[/{/1(1)_'—[8T%][I[/I]/]:)\{II/{/}:)‘Y (5.23)

=

, m=m—1 and A= —qu«

(5.24)

in which ¢ is the mass per unit length and « is the circular frequency of the free vibrations.
Depending on the supports applied the system of ODS (5.24) is associated with the
following boundary conditions:

Simple supported arch:

Ul_y=0, W|_4=0 W®|_ =0 Uly=0, W[,=0, W®?| =0 (5.25)
Fixed arch:
Ul_y=0, W|l_,=0 WW®|_ =0 Uly=0, Wly=0, WI| =0 (5.26)

One can show by using the definitions given in Section 4 that each of the eigenvalue
problems (5.24),(5.25) and (5.24), (5.26) is self adjoint and positive definite if £ > 0.
Under this condition the eigenvalues are strictly positive.

It is worthy of mention the paper [9] by Lin in which the Green function is constructed for
curved Thimosenko beams by reducing the problem to an ordinary differential equation.

It follows from the equations (3.7a,b) that the corresponding Green function matrix as-

sumes the form
4

Gp,¥) = Y Yi(p) [Ai() £ By(v)] (5.27)

where the sign is {positive}|negative] if {p < ¥}[p > Y],

Y, = CQSSD 0 Y, — —singp 0
singp 0 cosp 0 (5.28)
—sinp+pcose (Mm+1)p —cosp — psing 1 '
Y3 = . ~ Y4 -
psin g —m pCosy 0
A= | An e B, — | Bu Do i=1,....4 (5.29)
Ay Agp By By
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As we have already seen in Section 3 — see the equations (3.8a,...,3.8¢) — the second
property of the definition yields the equation system

[ 1 1
| Bu B
cosy —siny —siny+cosyy (1+m)yp —cosyp —siny 1 é é
sin ) cos W sin —m 1 cos 0 311 312
—siny —cosy —psina 1+m —1 cos Y 0 By B
cosyp —sinty 1 cosy + siny 0 —siney + cosyy 0 % %
—sinYy —cosY —siny + 2cosY 0 —1pcosyy —2siny 0 421 422
—cosy siny  —cosy — 3sin 0 Ysiny —3cosy 0 Bi1 B
- - 4 4
| Ba1 B
- 0
0 0
1
o
— m
5 0 (5.30)
0 0
1
0 —=
L 2
from which
B 1'¢1¢¢ B 1w1w'w
= —sinvy — = cos = ——cosY — =1 sin
11 B 1 1 12 1 1
Bu=qysing +scost  Bi=1sing - cose
= —1)sin — = —siny — =
11 1 S 2COS 12 48 1 COS
3 1 3 1
BH = — COS B12 = ZSiH@Z}
. : (5.31)
321—2—~ By =0
m
4 1 4 1
BH = _Z sin¢ B12 = ZCOS¢
4 1 . 4 1
B21:—§(1+m)% B21:§

1 4
Observe that the functions By1(¢), ..., B2 (¥); ¢ € [—13, 9] are independent of the bound-
ary conditions. For the sake of simplicity we introduce the following notations

1 2 3 3 4 4
a = By, b= By, ¢c = By, d = By, e =By;, f = By 1=1,2

Taking into account the boundary conditions (5.25), (5.26) and without entering into
details we can establish the following linear equation systems for the functions

A (@), .., At ();) € [, 9]
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Simply supported arch:

[ cos?  sind sing —dcos?d —(1+m)Jd —cost—sind
cos¥y —sind —sind+Jdcost (14+m)d —cosd —Isind
—sind  cos? ¥sin —m —1 costd
sin ¥ cos ¥ sin —m ¥ cos v
sin? —cost —vsind + 2cos? 0 ¥ cos + 2sind)
| —sinY —cosd —Usind + 2cos? 0 —1cos¥ — 2sin ¥

[ elellell S

[ —acos? —bsind — c(sin® — J cos ) + d(1 4+ m)I + e(cosV + Isind) — f |

acost —bsind — ¢(sin — ¥ cos¥) + d(1 + m)d — e(cos ¥ + I sindd) + f

asintd — bcost — c¥sind + dm -+ el cos
asin® + bcosd + cdsind — dm + el cos

—asind + bcos + ¢(¥sind — 2 cos ) — e(¥ cos ¥ + 2sin )
—asind — beos ¥ + c(—Isind + 2 cos ) — e(V cos ¥ + 2sin V)

Solving the equations (5.32) we have

where
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B By Bogi
ucosﬁ+ 13 2

sin v sin®d  2sin® 0
Tl
Bi; (2(1 + m)0 cos ¥ sind) — m + 3 cos? ) +
4 4
| By (30%mm 4 20° — 2m) + By (2cos ) — dsin )

(¥ cos ¥ + 2sin )

Ql =

Qv Q=

1 4 4
By cos Y 4 By; (9sintd — cos?) + By; cos? 19}

1

3 3
— 2B1; Y — Boy1r
2sin v 14 €08 201

2
By, 1 : 3
v R (¥ cos ¥ + sin ] By;

1 3
o [3m cos¥sin® — 2(1 + m)d cos® ¥ + 20 + 307 By

+
2sin

C = —3msind cos? + 2(1 + M) cos® ¥ + Im

1 4 4
Byim — By; (1 + 20(1 + 1) cos ¥ sin g — 3msin®9) + By cos 19}

(5.32)

(5.33a)

(5.33b)

(5.33¢)

(5.33d)

(5.33¢)

(5.33f)



Fixed arch:

[ cos?  sind  sind —dcos?  —(1+m)) —cosd —Isind
cost —sintd —sind +dJdcos?d (1+m)d
—sind¥  cos ¥sin ¢ —m
sin cos ¥sin ¢ —m
cos v sintd —sind — Y cos 0
| cos?  —sind  sind +Jcosdd 0

Solving the equation system (5.34) we have

—cost — ¥sin¥
—t cos
¥ cos v
cos¥ — ¥sin
cos?) — ¥sind

[N eNeNeolS o

[ —acos? — bsind — c(sind — Y cosV) + d(1 +m)J + e(cosV + Isindd) — f ]
acost¥ — bsind — c(sin® — ¥ cos ) + d(1 + M) — e(cos ¥ + ¥sind) + f
asinv — bcos — cvsind + dm + ev} cos ¥
asind + bcos v + ¢ sind — dm + ev cos ¥
—acost — bsind + ¢(sind 4+ ¥ cos ) — e(cos ) — I sin )
acos? — bsind + ¢(sin ) + ¥ cos V) + e(cos ) — U sin )

I 1 2 ) s . 3 .
Ay = R p— lBll cos” ) — By 9° + By (9sindd 00519)}
2 11 4
4
+Boym (sin ¥ + 9 cos 19)]

3 1
c
3 2

1 4 14
AQZ‘ = 5 |:Blz sind — Blzfﬁ cos + §B21 (19 + SinﬁCOS’ﬁ):|

A Y 1By~ Bysin?9 — Bysincos
™ Y Zsindcosd 1 T DLV T B €08
A Y 19Bycosd— 2By 9sind

2 19—sin19(30579[ 1 COSU = 2BV S U=

—ézi [2mcos® ¥ — (1 +m) (9° — Usind cos 19)]}

where

C = 9(9 + cos¥sin ) (1 + 1) — 2/m sin® 9

(5.34)

(5.35a)

(5.35b)

1 4 4
{Bm? (14+m) + By; [(1 +m) 0 cosv — 2msind] cos ¥ + By sin 19] (5.35¢)

(5.35d)

(5.35¢)

(5.35¢)
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Figure 1.

1 4 1 4
In the knowledge of the functions By1(1)), ..., Ba1(¥), A11(¥), ..., A (¥); ¥ € [—19, 9] we
can substitute in the formula (5.27) from which we get the Green function matrix. Then
the natural frequencies are obtained by solving the eigenvalue problem

y(p) = A / G, )y ()d (5.36)

Two numerical procedures were used for the computation of the natural frequencies:

First we applied the repeated trapezium rule to obtain an algebraic eigenvalue problem.
The latter was solved by QZ algorithm. We remark that the solution found for the
approximate eigenvalues tends to the exact value as h — 0 provided that the eigenvalue
is simple and the corresponding theorems, which are valid for scalar integral equations
[8], remain valid for our case.

Second we used the boundary integral equation approach to find an algebraic eigenvalue
problem which was solved again by QZ algorithm. The natural frequencies we computed
were the same for three to four digits. The results obtained are shown in Figures 1. to 2.
The variable along the longitudinal axis is the central angle 9.

It is well known that the i-th eigenvalue of the differential equation governing the free
vibrations of a beam (transverse vibrations) is related to the corresponding circular fre-
quency by

5\(, = %lgczvb = g’chmﬂ'{'2 7 = 1, 2, 3, Ce

where ¢, I, and E are characteristic values for the beam while the value of C'p,, depends

on how the beam is supported:

Support 1=11=2|1=3|1=4
Simply supported | 1.000 | 4.000 [ 9.00 | 16.00
Fixed 2.266 | 6.243 | 12.23 | 20.25
The pair of the above relation for circular arches is
\ﬁ - IiRQQ i=1,2,3,... (5.37)

Assume that we are comparing a beam and a circular arch for which ¢ /IE and the lengths
are the same (i.e. [, = RY) and the supports are also the same. Then

L = \ﬂ (5.38)

Figures 1 represents the quotient (5.38) provided that

lima/ap =1 i=1,2,3,4 (5.39)
9—0 1 1

in which [ is the same for both cases.

131



a
i
24-_ Cchar o
223 i
] i it
2.
1.8 2a/a 2a/a
1.6 2" 2" 22
1.44

1.2 M R o e
11
0.8+
E a/o o/o

0.63 1/1r ﬂ 1/1r Q
0.4 — _
0.2 9 9
DDDIEUIJl DIEDIB1I1|21I41IE1IBQ 002040608 1 1.2 14 16 18 2

Figure 2.

It is also known that the i-th eigenvalue of the differential equation governing the free
vibrations of a rod fixed at its ends (longitudinal vibrations) is related to the corresponding

eigenvalue by
Cchar

D =1/La, = —r  i=123... (5.40)

where p is the mass per unit volume and Cpor = 4, (i = 1,2,3,...). Comparing (5.37)

and (5.40) by taking into account (5.24) and the equation ¢ = pA and assuming again
the same length, material and cross section we have

« 1 9

Cehar— = A 5.41
< ch o \/%W\/j ( )

Figure 2 represents the quotient (5.41) provided that

lima/a, =1 i=1,2 (5.42)
9—0 1t 2

in which [ is the same for both cases. We should also remark that the numbering reflects
the magnitude for small central angles ¥ only. The natural frequencies we computed are
in very good agreement with those obtained by using a different method — see [2] for
details.

6. Concluding remarks

In the paper a definition is presented for the Green function matrix of a class of degenerate
system of ordinary differential equations. The existence of the Green function matrix
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has also been proved. Using the Green function matrix self adjoint eigenvalue problems
governed by degenerate systems of differential equations and homogenous linear boundary
conditions can be replaced by an eigenvalue problem for a system of Fredholm integral
equations with the Green function matrix as kernel.

We have determined the Green function matrix for simply supported and fixed circular
arches. In the knowledge of the Green function matrix the self adjoint eigenvalue problem
giving the natural frequencies of the free vibrations of the two circular arches has been
replaced by an eigenvalue problem described by a system of Fredholm integral equations.
The latter is reduced to an algebraic eigenvalue problem and the first eigenvalues are
computed by using the QZ algorithm.
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