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ON COMPATIBILITY CONDITIONS FOR MIXED
BOUNDARY VALUE PROBLEMS IN MICROPOLAR
THEORY OF ELASTICITY

GYORGY SZEIDL!

Abstract. The main objective of the present paper is the investigation of the conditions of single-
valuedness for multiply-connected micropolar bodies. Assuming mixed boundary value problems it has
been shown that the supplementary conditions of single-valuedness including the compatibility conditions
in the large are natural boundary conditions of the principle of minimum complementary energy as a
variational principle.
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Zusammenfassung. Der erste Teil des Artikels fiihrt den Begriff einer neuen AusschlieSungsfunktion
ohne Ableitungen ein und gibt die grundlegenden charakteristischen Eigenschaften dieser Funktion an.
Der neue Begriff wird im zweiten Teil zur Bestimmung des globalen Minimums einer speziellen Maxi-
mumfunktionen benutzt.

1. Introduction

For micropolar bodies the problem of the necessary number of stress functions to repre-
sent any state of stress and that of the necessary and sufficient number of compatibility
conditions have been investigated in papers [1] and [2] in the same manner as in the clas-
sical case under the assumption of a simply-connected body and mixed boundary value
problems [3,4,5].

By macro conditions of compatibility is meant the totality of those additional conditions
the strains should meet to be compatible on a multiply—connected body. Depending on
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what the boundary conditions are in the points of a simply-connected and closed curve
on the surface of the body the macro conditions of compatibility are separated into two
groups. If tractions are imposed in each point of the curve the condition is referred to as
a compatibility condition in the large. If there exists at least one arc on the curve along
which displacements are imposed then the corresponding condition is called supplementary
condition of single—valuedness.

The paper [6] was devoted to the problem of compatibility conditions on a triple connected
body assuming that tractions are imposed and it had been pointed out that the compat-
ibility conditions in the large can be obtained in two distinct ways both from the general
dual form of principle of virtual work and from the principle of minimum complementary
energy.

In view of the foregoing it seems to be an open question what supplementary conditions
of single-valuedness are needed for mixed boundary value problems on multiply connected
regions. On the bases of all that has been said the present paper is aimed at investigating
the problem of what natural boundary conditions follow from the principle of minimum
complementary energy for micropolar bodies under the assumption of a three dimensional
and multiply-connected body and a certain class of mixed boundary value problems.

We shall also assume that the linear theory of deformations is valid. When applying
Castigliano’s principle in addition it will be assumed that the body is linearly elastic.

In section 2 we collect some preliminary results and detail some geometrical considera-
tions. Section 3 is devoted to the problem of how the supplementary conditions of single
valuedness can be obtained from the principle of minimum complementary energy. Section
4 is a summary of the results. Finally there is section 5 where some longer transformations
are presented.

2. Preliminaries

The bounded region of the three dimensional space occupied by the multiply-connected
body and the surface of the body are denoted respectively by V' and S. In principle the
surface S of the body may consist of not only one but more closed surfaces, in which case
the region is multiply-bordered, though the latter circumstance will play no role in the
investigations. The common bounding curve of the parts S, and S; of S is denoted by g¢.

The present paper restricts its attention to the triple-connected but single-bordered body
represented in Fig.1 which contains some further notational conventions. It is clear from
Fig.1 that both the subsurfaces S,, S; and the curve g consists of more parts, i.e.,

L (2 m @ @G , , , , 4
Sy = S, U Sy; S;p=85USUS and g= (190) U (191) U (1g2) U (1g3) U (1g)

In a limit case any of the subsurfaces

(1) (2) (1) (2 (3)
ws Sua and Su or Sta St7 St and St
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Figures 1(a) and (b)

may be an empty set. The non-intersecting, simple and closed curves L; and Ly encircle
the first and second holes.

(1) (2
It is essential for the further investigations that S, and S, are respectively triple and

double connected surfaces in the way they are represented in Fig.1. The curves L; and Lo

intersect the curve g and L at the points Py, Pia, Pi3, P4 and Ps;. Let the parts of Ly
be defined by Li; = Pij Pij41 j = 1,...,4. When performing integral transformations
by making use of Stokes’ theorem one must keep in mind that the theorem is applicable
under the condition that the surface considered is simply-connected. Fig.2. represents a
possibility for cutting up the surface S into simply-connected parts by utilizing the curves

g, L1, Lyand L on S.

It is worthy of mention that the restrictions we have made in connection with the body
considered are not essential for the body is at least triple-connected and the partition of
boundary surface S is sufficiently general.

Indicial notations and three coordinate systems, the (y!,4?, %) Cartesian, the (z!, 22, 23)
curvilinear and the (¢, €2, €%) curvilinear, defined on the surface S, are employed through-
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out this paper. Scalars and tensors, unless the opposite is stated are denoted indepen-
dently of the coordinate system by the same letter. Distinction is aided by the indication
of the arguments y, x and £ that are used to denote the totality of the corresponding
coordinates. Volume and surface integrals — except formula (2.7) — are considered, re-
spectively, in the coordinate systems (z!, 22 2°%) and (£*,¢2,¢€%). Consequently, in the
case of integrals, the arguments are omitted.

In accordance with the general rules of indicial notations summation over repeated indices
is implied and subscripts preceded by a semicolon denote covariant differentiation with
respect to the corresponding subscripts. Latin and Greek indices range over the integers
1, 2, 3 and 1, 2, respectively. €"™ and ¢, stand for the permutation tensors; 52 is the
Kronecker delta. In the coordinate system (x!, 2%, 23) the metric tensors are denoted by

gr and gP4.

Let 2% = 2%(¢', €%) be the equation of the surface S where ¢! and £? are the surface
coordinates. Further let £2 be the perpendicular distance measured on the outward unit
normal n to the surface S. On S ¢* = 0.[Base vectors] {Metric tensors} on S are denoted
by [a* and a] {ax and a*}. In the surface oriented coordinate system (&', €2, €%)

n=az=a’, nd=1 and n’ =0 (2.1)
We shall assume that the relationships y* = y* (2!, 22, 2%) and 2% = 2#(¢', €2, £%) are both
one to one.

Now we shall assemble equations of micropolar elastostatics — in a form suited to our
objective — in primal and dual systems as well.

Let u; and ¢ be the displacement field and the rotation field. (For brevity’s sake u; and
¢" are referred to as displacements). Further let 7,, and x, be the asymmetric strain
tensor and curvature twist tensor, respectively (together strains). By t* and u4 we denote
the asymmetric stress tensor and couple-stress tensor (together stresses). Displacements
and strains are assumed to be small.

In the primal system the three dimensional problems of micropolar elastostatics are gov-
erned by the kinematic equations
b

@) = w + e, KM@ =gl weV (2:2)
Hook’s law (valid in this form for a centrosymmetric body)
tht = Aklpq’ypq , p® = By, rxeV (2.3)
and the equilibrium equations
M (x)+b =0, 1 (@) + et + 0, =0  zeV (2.4)

where A¥P? and B4 are the tensors of elastic coefficients. Field equations (2.2-6) should
be supplemented by the boundary conditions

up = Ty, b= P, £eS,
npt™ =1 nepl = i, £es;
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where 4y, and @’ are the prescribed displacements while # and i, are the prescribed
tractions.

Strains 7,, and x,” are said to be [compatible] {kinematically admissible} if the kinematic
equations (2.2) have sufficiently smooth single-valued solution to the displacements u; and
¢" in V and the solution [does not satisfy other conditions| {satisfies the displacement
boundary conditions (2.5)}.

Stresses t* and p? are said to be [equilibrated] {statically admissible} if they satisfy
the equilibrium equations (2.4) and [do not meet other conditions| {the stress boundary
conditions (2.6)}.

Body forces b and body couples ¢, can always be given in the form
V' =-AB'=—-¢"B' ¢ =-AC"=—-¢"Cyy, x€V
where B'(x) and Cy(z), provided that the integrals

Irr bl ( )] Cb
B Q) 4w/|y = Ol 47r/|y >|dVP QeV

(2.7)

have been determined first, are obtained from (2.7) by transformastion.

It can be shown [7,8] that every solution of the equilibrium equations (2.4) admits the
following representation found independently of each other by H. Schaefer and D. Carlson

tkl = ekpyﬁvy.l;p —i—gksB,l;s s ,LLU;) = 6apy<l£[yb;p + Ebplpy.l) —i—g“l(elbsBs + Cb;l) rzeV (28)

where Hyb and pr are the stress function tensors whose components will also be referred
to as stress functions. The above stress representation involve nine-nine stress functions.
It can be shown, however, that every stress condition can be given in terms of six-six
stress functions [1].

Let 3, and g be arbitrary tensor fields on V. Furthermore let 7!(z) and wy(z) z €V
be two unknown vector fields. By ;* and 45 we denote those subsets of the possible
values of index pairs ;! and 4 for which the differential equations

T{;;K:ﬁ[jé(x), wp.A + €gapT7 = aap(x) reV

have solutions for the vector fields r!(z) and wj(z). It is obvious that the index pairs ;-

and 45 may have only three-three different values. Let { ¢’} [xy] be the supplementary
subsets of index pairs the union of which with { £} [45] is the set of index pairs {,'} [4].
It is clear, that the index pairs ¢ and yy may have only six-six different values.

Since the stress state in terms of the stress functions

Hy, = ﬁyb + Wpyy + €pysT? Fl = F Ly rl. reV (2.9)

is the same as the stress state in terms of Hyb and Fl the stress functions H,p and F,.F %
can be set to zero and we shall assume that Hqp =0 and F¥ = 0 independently of what
indices are used, i.e., capitalized or not — see paper [1] for further details.
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By inverting Hooke’s law one obtains

-1 —1
,}/kl :Aklrstrs Rab :Babpq/,bpq T € V . (210)

The strains 7,, and 2 are said to be [equilibrated]{statically admissible} if they are
calculated from Hooke’s law (2.10) by substituting [equilibrated]{statically admissible}
stresses tF | p4.

For the strains v, and k.’ to be [compatible] {kinematically admissible} in a simply-
connected region V' it is necessary and sufficient that the differential equations of com-
patibility

VXY (2) = eka/{,f;p =0 D () = (Y py, + EquK,pI_)) =0 z€V (2.11)

(Y™ and D™ are the tensors of incompatibility) and the boundary conditions of compat-
ibility

n3y3b(€) = n3€37rx"€xl?;7r =0, n3ID§l (5) = n3637rx(7xl;7r + Exlb/@rl?) =0

(2.13) for € € S] {(2.14) for € € S}

and [no further conditions| {the kinematic boundary conditions

KT]I.) - Col?;n =0 ,Yxl - al;x - elbeAOb =0 § S Su (214)

} should be fulfilled. It can be shown that the fulfillment of kinematic boundary conditions
implies the fulfillment of boundary conditions of compatibility [1].

For the equilibrated stresses
tkl = EkpyFy .l;p +ngB.l;S ,u% = eapy(Hyb;p + Ebple'l) —i—g“l(qbsBS + Cb;l) zeV (2.15)

obtained from (2.8) by substituting Hy, and F,' for H and F to be statically admissible
it is sufficient if the traction boundary conditions (2.6) in terms of stress functions H,,
and Fy.l are fulfilled

' = ngt™ =ng("F.! +a*B')) Ee s, (2.16-a)
:&b = ”3/1?1; =ngs [637”7([{771,;7r + Ebﬂan%) + a3l(61bsBs + Cb;l)} e s, (216—b)

For simply-connected micropolar bodies the three dimensional problems of elasticity in
the dual system are governed by the dual kinematic equations (2.15) the dual constitutive
equations (2.10) and the dual balance equations (2.11).

Field equations (2.15), (2.10) and (2.11) are associated with the boundary condition of
compatibility (2.16a,b) and the traction boundary condition (2.16-a,b) on S; and the
kinematic boundary conditions (2.14a,b) on S,.
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3. Derivation of Supplementary Conditions

For simply-connected domains all the conditions the strains 7,;, xif should meet in order to
be [compatible] {kinematically admissible} can be derived from the principle of maximum
complementary energy [1]. Here and in the sequel an attempt will be made to derive not
only the conditions mentioned but also the supplementary conditions of single-valuedness
from the principle of maximum complementary energy. Consequently, we shall follow the
line of thought presented in [1] with special attention to the line integrals obtained by
applying Stoke’s theorem on the simply-connected parts of S.

For micropolar bodies the total complementary energy functional

1
K=—= / (Y +pskb)dv + / (nst™a +ngp’y@") dA (3.1)
2 \% kl Sy, l

tkl

is a function of the statically admissible stresses t*, ;% and strains 7, x2. In view of

the equation
Oty + Hykg) = 200ty + dprg) = 2(tM 5y, + phokg)

extremum condition for the complementary energy functional (3.1) assumes the form

K = / (v 0t + 52608 dV — / (n3dt® iy + nzop @) dA = 0 (3.2)
|4

u

Since the stresses are statically addmissible the variations of stresses 0t*, §u% can not be
taken at will but should meet the preconditions

5t{€.§k =0 O () + e 0t™ = 0 reV (3.3-a)
n35t3l =0 ngéu?b =0 g S St (33—b)

which follow from (2.4) and (2.6) by taking into account that the variations of body forces
and couples V', ¢ as well as of the prescribed tractions #, fi, are assumed to be zero. It
can readily be shown that variations of stresses 0t*, u% meet the conditions ( 3.3-a) if
they are given in terms of variations of stress functions 0 H,,, 0F," as follows:

Stk = ekpyéFyl.;p opy = €Y (0H yp + ebpl(SFyl) xeV (3.4)
where 5Fyl and 0H, are arbitrary on V' and S, but should satisfy the side conditions
nsotd = n363’7“5Fyl =0 nzop’, = nze®™ (6H pp + ebﬂl(SFyl) =0 (€85 (3.5)

obtained from (3.3-b) by substituting equation (3.4) and renaming some dummy indices.
Let dw; and dr° be two vector fields defined on S;. If 5Fnl and 0H ,;, meet the conditions

(SFnl = 57“?;77 6H77b == 5wbm + Gbnmérm 5 € St (36)
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then equations (3.3-b) hold. Substitution of expressions ( 3.5) for the variations of stresses
in (3.2) yields

SOI = Y 1S = [ (EISEL 4§+ O, I 0V
Vv

—/ [n3 6377”5Fl i + 13€™ (0 H + €0 F,)°) P ldA =0 (3.7)
By applying Gauss’ theorem and a subsequent rearrangement volume integral IV can
be manipulated into a more suitable form. If in addition to this one recalls that 0 H g =
OFE =02 €V while 6Hp and §Fg" & € V are arbitrary and substitute the tensors of
incompatibility YXY and D% where possible then I}V takes the form

M= Vo4 e 4 s z/(yXY(SHXYH?%Fs.T) v
1%

—/ (n363X’75F77l7Xl—I—ngeg’”"(SHnb/ﬂf_)dA—/ (n363X”5Fnqul+n363”’75Hnb/£7f')dA (3.8)
u St

Integral 1 e can be transformed further by making use of equation (A.2) whose appli-
cation requires, however, the substitution of 4, ¢, (5F,7l, 6H,p, S, and g for u;, ¢, Fnl,,
H,y, S, and g,. Recalling that the sign of line integral turn to the opposite on g we have

[f\/[Su = [é\/[Su + [wa :/ [n363xn(ﬁl;x + 6lxlﬁbwanl + n363m¢in5Hnb] dA
Sy

+ / (TS F,) + T"¢ 6 H,y,) ds (3.9)
g
Substitution of side conditions (3.6) into 115" yields
IMS = _/5 [n363x’77xl57{lm + 13K (Swyy + €07 )|dA . (3.10)

Now one should observe that apart from of its sign the above integral coincides with the
surface integral in the left hand side of (A.3) if in the latter 67!, dw, and S, are substituted

for r!, w, and S,. When using the right hand side of (A.3) to transform further equation
(3.10) one has to keep in mind that (a) the union of g and L corresponds to g,, (b) by
applying Stokes’theorem one goes twice along the curve L, (c) dr! and dw, are assumed
to have jumps

[6r'] = 't —6rt - [6wy) = dwy — dwy, | el

(d) by rearranging the terms in the surface integral resulted it becomes possible to
substitute the boundary conditions of compatibility (2.13).

On the bases of all that has been said we obtain

0% = 'S 4 ¢ 4 it = ‘/ (nsD%0r" + ngY* 6w;) dA

St

4 / (St 4 T 5u) dA + /L (P [11] + 77,2 () dA. (3.11)
g
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Comparing (3.7), (3.8), (3.9) and (3.11) we have
—0K = L' + " + B+ B+ 1Y+ R+ 0
or

—6K = / (VXY 6Hyy + D50Fg) dV — / (nsD%6r" + ny Y dw;) dA
\% St

_/ [”3€sxn(7xl — gy — elbeAOb)(SFnl. + n3€3m(”{7rl? - @iw)(SHnb] dA + ]{V[G + [é\/[G + ]{V[L =0
from which it follows — §Hxy, 0Fg are arbitrary on V and S,; ér! and dw; are arbitrary
on Sy; volume, surface and line integrals are independent — the fulfillment of differential
equations of compatibility (2.11,b), boundary conditions of compatibility (2.13a,b) and
kinematic boundary conditions (2.14). Observe that the equations mentioned are those
the strains v,;, k2 should satisfy in order to be kinematically admissible on a simply-
connected domain V.
As regards the line integrals I}¢+I7¢ we substitute conditions (3.6) — the stress functions
are assumed to be continuous on S — and perform partial integrations keeping in mind that
dw; and dr! have a jump at P; and P 1 (1 =1,3). After a subsequent rearrangement
we obtain

IO 16 = 1O = / [Pyt — iy — e @)0r -+ 77(w0 = )] dA
g

+ Z { (511)(, @b [6wb] ‘P1,i+1 + le [57“[} |P1i o ﬂl [5rl] |P1,i+1}

i=1,3
(3.12)

Vanishing of the line integral I2/¢ for arbitrary dw;, and 67! leads to the fulfillment of the
continuity conditions

Tn(Vxl - al;X o elxb¢b) =0 Tn(’%ﬂ'. - @.;n) =0 5 € g
Investigation of condition
M4y =0 (3.13)
requires some preparations. Let us assume that the jumps [57"l] , [0wy] have the following
forms
(i1) (14) 1)
[dwy] = d ¢y +€p0C° [RY — R°(Pyi41)]  [0r°] =6C° i=1,3 (€ Ly (3.14)
(21) 14)
o) = 0 4, 0CF [RY — R (Py)]  [0r] = 60 cely,  (3.15)

1y (1) (21)
in which the vectors ¢ c%,), aC", 5%1)) and 6C® are arbitrary constants, R’ and R"(P) are

the position vectors of the points £ and P in the local basis &.
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The point in the above choice is that there are no stress functions due to the representa-
tions of vector fields [dw,] and [§7°] in the form

[bws] = ey + €apdC°[R" — RY(P)],  [0r°] = 0C° §es

where dc, and 0C* are arbitrary constants and P is an arbitrary but fixed point. Really,
it can readily be shown that [dws]. + €15[0r°] = 0, [67°] 5 = 0 if £ € S To obtain the final

form of (3.13) we substitute IM% from (3.11) and ¥ from (3.12) which makes possible
the substitution of representations (3.14) and (3.15). Then we gather the coefficients of

21y (21 i) (L
5% 500 and 6 508

and make some rearrangements. Finally we have

(21
ME 4 aM :7{ T”/ﬁ;abds : aécl)+
Lo
dfx i (21k)
j{ e [yt + €uw(R"(s) — R*(Py1))k,’| @' ds - a, 6C*+
Lo
. . (i1)
Z <_(10bab|pl i1 + ng&b‘Pli ‘I‘/ Tn/‘i;ab dS) : al ) ¢+
i=1,3 ’ Ly
> [— wa'l, ], + and" (R(Prin) — B (Pu))al|p +
i=1,3

X (12)
/L ‘ e hxl + e (R"(s) — R*(Py))k } al ds- ay, (SC’“}

(i) (11)

(21)
@ and 0C* it follows the

from which with regard to the arbitrariness of ¢ ¢;’, 56”“ 0 ¢
compatibility conditions in the large

dgx v
jéz T”/@f_ab ds = 0, a3 - [V + €oo(R'(s) — R (P21))/<;Xl"] alds = 0 (3.16)

and the supplementary conditions of single-valuedness

—@bab|P1‘ —l—gbbab‘Pﬂ—/ T"/f,fabds =0 1=1,3 (3.17)
,i+1 14 Lli
and
— ulal‘P + ’Illal‘Pl e + Elvk(pk(R’U(Pl’iJrl) — RU(PM))al!PM
d x
+/ d”; [V + (R (s) — R*(Py))k,’]a' ds = 0. i=1,3 (3.18)
le

It is worthy of mention that the supplementary conditions of single valuedness can also
be derived from a geometrical line of thought in the same manner as in the classical case

[9].
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4. Concluding Remarks

In accordance with the aims detailed in section 1 the present paper has studied the
question what further conditions the strain fields should meet in addition to the usual
ones in order to be kinematically admissible on multiply connected regions providing
three dimensional and mixed boundary value problems. It has been proved that both
the compatibility conditions in the large and the supplementary conditions of single-
valuedness are natural boundary conditions that follow from the principle of maximum
complementary energy. The significance of this conclusion is inherent in the applications.
In other words application of direct methods — finite element method for instance — to find
approximate solutions from the extremum condition do not require that the admissible
fields should satisfy these conditions in advance.

5. Apendix

Let S, be an arbitrary open surface closed by the directed boundary curve g,. Further
let the positive direction on g, be taken so that 7,,n3 and v, — v, is the normal to the
boundary curve g, that lies in the tangent plane — form a right hand triad. Let b,!(¢) and
¢(€) be surface tensors. Applying the Stokes theorem it can be shown that

/ ng 31 bal,m cdA = 7{ bleym™ds — / ng €1 b, ey, dA (A.1)
So 9o So

The above rule is that of partial integration. Making use of Stokes’ theorem (A.1) and
performing partial integrations it can readily be shown that

/ [n363””Fﬂl.mul + n3€®™ (Hypor + ebﬂanjs)gpb] dA = 7{ (T"uanl. + 71 H,p) ds

o Jdo

_ / (365 .+ €’ L+ nge ™ H, ] dA (A.2)
So
In the same way it can be shown that

/ [n353xn7xlr.lm + n3€3m"57f.(wbm + €ppsr”)] dA = j([ (7" rl + Tn’i:,wb)ds
o Jo

+/s (3™ (Vy1r + et )7 + 03 k0w’ dA (A.3)
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