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BOUNDARY INTEGRAL EQUATIONS FOR PLANE
PROBLEMS - REMARK TO THE FORMULATION FOR
EXTERIOR REGIONS

GY. SZEIDL!

Dedicated to Professor Barna Szabd on his Sizty Fifth Birthday

Abstract. Assuming linear displacements and constant strains and stresses at infinity we reformulate
the equations of direct method for plane problems of elasticity. This makes possible that plane problems
on exterior regions can be attacked without replacing the region under consideration by a bounded one.
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1. Introduction

In spite of a great number of publications devoted to plane problems — without being able
to achieve completeness we mention only a few articles [1], [2], [3], [4], [5] and the books
[6], [7], [8] in which further references can be found — the formulation for exterior regions
has the disadvantage that no stresses can be prescribed at infinity. As regards the reasons
we cite the paper [4] in which a clear assumption is made on the far field pattern of the
displacements. This assumption makes possible to establish an appropriate Betti’s formula
and to prove uniqueness and existence for the exterior Dirchlet and Neuman problems.
On the other hand the assumption made on the far field pattern excludes those problems
from the theory for which the displacements are linear while the strains and stresses are
constant at infinity. If the direct formulation reproduces this displacement field, then
the resulting strain and stress conditions are also constant at infinity. Consequently
plane problems for the exterior regions can be attacked without replacing the region by
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a bounded one. The idea to approach the problem in a somewhat unusual manner stems
from the thesis [9] which presents a direct formulation in terms of stress functions of order
one. They must be linear at infinity to produce a constant stress condition there.

The present paper is an attempt to clarify how the formulation changes if we accept that
the displacements are linear at infinity:.

2. Preliminaries

Throughout this paper x; and x5 are rectangular Cartesian coordinates, referred to an
origin O. Greek subscripts are assumed to have the range (1,2), summation over re-
peated subscripts is implied. The simply connected exterior region under consideration is
denoted by A, and is bounded by the contour Lo. We stipulate that the contour admits a
nonsingular parametrization in terms of its arc length s. The outer normal is denoted by
n,. In accordance with the notations introduced 0, is the Kronecker symbol, 9, stands
for the derivatives with respect to x, and €3, is the permutation symbol. Assuming plane
strain let u,, e, and t,, be the displacement field and the in plane components of stress
and strain respectively. For isotropic materials u is the shear modulus of elasticity and v
is the Poisson number.

For homogenous and isotropic material the plane strain problem of classical elasticity is
governed by the kinematic equations

1
Ep) = 5(8pu)\ + upa)\)a (21)
Hook’s law
v
tp)\ = 2,LL (6/))\ + Eémew> (22)
and the equilibrium equations
tp,\ﬁ)\ + bp =0 (2.3)

which should be associated with appropriate boundary conditions not detailed here since
they play no role in the investigations. The basic equation for u) takes the form

b
Dp)\u,\ +2=0 (24)
v
where !
Dp)\ - A(Sp)\ + Eap(%\ A - (90-80 . (25)

Let Q(&1,&5) and M (1, x2) be two points in the plane of strain (the source point and
the point of effect). We shall assume temporarily that the point @ is fixed. The distance
between () and M is R, the position vector of M relative to () is r,. The small circle as
a subscript (for instance M, or Q,) indicates that the corresponding points, i.e., @ or M
are taken on the contour.
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The well known singular fundamental solutions for the basic equation (2.4) are given by
the formulas

1 1 r.ry  (—8v
M R — —4v)In — — — 2.
U)\n( 7@) 87TM(1 — V) [(3 V) n Rén/\ + R2 5 55A1 ( 6)
and
1 1 N To Tkl
T)\K(M, Q) = mﬁ |:(1 — QV)(TL/\’I”,i — NT\ — NeTy 6&/\> — QT} (27)
where

ur(M) = Uye(M,Q)es(Q) and tA(M) = Thu(M,Q)es(Q)

are the displacement vector and stress vector on a surface element with outward normal
nx = ny(M) at the point M due to the force e, = e.(Q) at Q.

3. Basic formulas for exterior regions

Figure 1 represents a triple connected region A, bounded by the contours Ly, L. and the
circle L with radius . R and center at O. Here L. is the contour of the neighborhood A,
of () with radius R. while . R is sufficiently large so that the region bounded by Lg covers
both Ly, and L.. If ;R — oo and R. — 0 then clearly A, — A..

Let u, (M) and g, (M) be sufficiently smooth — continuously differentiable at least twice —
otherwise arbitrary displacement fields on A.. The stresses obtained from these displace-
ment fields are denoted by 5, [u,(M)] and ¢y, [g,(M)] respectively. Equation

[, [0 (5 Pasotn) = o) (1 Buonoan) )| as =
= ) 10 (M) (M) = (O s (V)] 0] s,
M (M) 0 01) = 5 (Ot 0 (M) V)] s
el (M) 1 (M) = O 1, (M) (M) i, . (31

in which M over the letter denotes derivatives taken with respect to the point M and
n.(M,) is the outward normal, is the primal Somigliana identity applied to the triple
connected region AL. Let g\(Q) = u.(Q) = Uns(M, Q)e(Q), which is an elastic state,
non singular in A,. We regard u,(M) as other elastic state in the region A.. Further we
assume that uy(M) has the far field pattern (asymptotic behavior)

(M) = G+ Eantyo + 450015 (3.2)
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Figure 1: Triple connected region

if x5 or which is the same M tends to infinity, where ¢, is a translation, w is a rotation in
finite, ¢, + €3,x2,w is the corresponding rigid body motion, e.3(00) is a constant strain
tensor at infinity and e,3(co)zs is the corresponding displacement field. The stresses
induced by the strains e,(c0) can be obtained by the Hook law:

R O S ) 33)

Upon substitution of the above quantities into the Somigliana identity we have

/Ag—AE lUA(M) (u %MUM(M, Q)> - (u %Mug(M)) Uy (M, Q)} dAn en(Q) =

- % [UA(MO)T)\H(MW Q) - tA(MO)UAn(MCH Q)] dSMo GK(Q)_’_

+ j[ s (M) (Mo, Q) — tr(Ma)Una (Mo, Q)] dsnr, x(Q)

+£ [ux(Mo) T (Mo, Q) — tx(Mo)Une(Mo, Q)] dsar, €x(Q) (3.4)
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since ty, [u,(Mo)] (M) = ta(M,) is the stress on the contour and obviously
t)m [gp(MO)] nn(Mo) = T)\K(MO7 Q)en(Q)

In the sequel we shall assume that there are no body forces. This assumption has no
effect on the result we hope to come to.

It is clear that one can omit e, (Q). As regards the equation we obtain by omitting e, (Q)
our aim is to clarify what the limit is if R, — 0 and .R — o00. The left side vanishes
under the conditions detailed above and as is known (see [6], [7])

7{ ot dm = () + ﬁ [un (M) T (Mo, Q) — tA(Mo)Uns (Mo, Q)] dsa,

R.—0 J,
Consequently
un(Q) = lim [t/\(MO>U)\H(M07 Q) - U)\(MO)TAH(MW Q)] dsMo_l_

eR—00 fr .
‘I‘f [t)\(Mo)U/\n(Mm Q) - u/\(M0>T)\n(M07 Q)] dSMo . (35)

In order to establish the first Somigliana formula for the exterior region one has to find
the limit of the first integral on the right side.

4. Modified Somigliana formulas for exterior regions

In this section our main objective is to prove that

In = lim [t)\(Mo)U)\n(Mo; Q) - UA(MO)T)\H(MM Q)] dSMo =

e R— 00 Lr
=cCst €3PK§pw + 6,.;5(00)55 = ,(Q) (4.1)

Taking the relation

2p(M) = cRng(M)
into account we substitute ty,(co)n,(M,) for tx(M,) and c\ + €3z ,w + eqg(c0)zs for
ux(M,). In this way we get

(1) 2) 3) (4)

Li=Tao+ T+ T+ 1.= _eRthoo b oTa(M Q) ds,
B eRlin 539’\€wa T/\n (Mo, Q) dspr,+
+ Jim t5,(c0) ]{ o(Mo)Upe (Mo, Q) ds,
_eRlinoo €x(00)e RjiR nﬁ(M)T)\n(Mo,Q) dsy, - (4.2)
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REMARK 1.: In accordance with (3.2) the stresses and strains are taken as constant
quantities which are therefore independent of the arc coordinate s.

Since

f T)\K,(MO7 Q) dSMo = _5n)\ and 53/))\% TpT)\n(Moa Q) dSMO =0
ER ER

(the former is the moment about the origin of the stresses due to a unit force at @)) one
can write

(1 ©)
I kT I k= Ck — Rhm 53/;,\(.&)% (fp + rp>T/\H(MO7 Q) dSMo_I_
eR—00 Lr

TA/-;(Mm Q) dSMo + é‘3p)\(") % TpT)\n(Mm Q) dSMo
Lr

- CH + 53pﬁw§p (43)

=c¢,— lim 53p,\w§p
eR— 00 Lk

which clearly shows that (4.3) reproduces the rigid body motion.

®3) 4)
Determination of the limits I, and I . requires long formal transformations. For this
reason we confine ourselves to the line of thought and the results of the most important
steps.

First we have to expand U,, and T). into series in terms of .R to the power 1,0, —1, —2
etc. This transformation is based on the relations:

na(A) = n, ra(M,Q) = 2a(M) — £,(Q) = 7o — £, (4.4a)
%:£<1+n£‘“—%i§§+---> (4.4b)
ln§:1n6%+njéa—%ic}§§+-~ (4.4¢)

7:;;6 R Nang + 2nanﬁnj’éw B eiR (Eanp + nabs) + - (4.4d)

84



3) 4
Making use of the relations (4.4a,...,d) for I, and I ,we have

®3) B (B2 (33) (4 (39
ly=T,+ 1,4+ 1.+ 1,+ 1=

1
= lim t,\p(oo)% n,C1 (3 — 4v) {ln — + 6’26,\,(”} dsp,+
Lr R

e R— 00 e

+ lim t)\p(oo)% n,C1 (3 — 4v) nagadsMo(SM+
Lr R

e R— 0 e

e R— 0

+ lim t,\p(oo)% n,Cinan,.ds, +
Lr

+ lim ,\p(oo)f anIQn,\nnnago‘dsMo_
L R

e R— 00 e
. 1
= Jim_t3(00) § i (€ + a6, do, (45)
eR— 00 ['R ER
and
(4) (41) (42)
I,= 1.+ 1,=
d
= Rlim exp(00)2u(1 — 2V)Clj{ ng (M, + 1u€y + 1a€y0rn +e ROxk) aoM,
elt—00 Lr e

+ lim 655(00)4,u01%

aS o 1
ng <n,\n,{ + Bn,\nﬁn S L (& \ne + nAfﬁ)) dsy, . (4.6)
eR— Lr R

GR €

where 1 v_q

—8v
= - d =
8ru(l —v) an Ce 2

®3) (4)
When calculating the integrals I, and [ . one also has to utilize the followings:

i

1. The outward unit normal on Lg is given by
ne = (sin @, cos ) (4.7)
where ¢ is the polar angle.
2. The arc element on Lr admits the form

ds o = Rdp . (4.8)

3. As .R — oo the coefficient(s) of . R always assumes (assume) the form: an expres-
sion constant at infinity and multiplied by

2
/ sin™ ¢ cos® o dy
0

where the powers n and k are natural numbers and depend on the term considered
but the integral vanishes.
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4. The structure of those terms being the coefficients of . R to the power zero is similar
but they involve £, and the trigonometric integrals are not necessarily equal to zero.

5. The most important trigonometric integrals one needs are as follows

2w 2w
/ sin? pdp = / cospdp =T
0 0
2w 2w 2m 2m
/ sin® o dp = / sin? p cos p dp = / sin ¢ cos? p dp = / cos® pdp =0
0 0 0 0

21 2w
/ sint pdy = / cos? pdp = §7T (4.9)
0 0 4

2 2
/ sin® ¢ cos pdp = / sin ¢ cos® pdp =0
0 0
2 1
/ sin? pcos? pdp = =7
0 4

After performing the integrations we have

(31) (33)
I,.,=1,=0
(32)
I = Cm(3—4v)[ta(oo)é; + tea(o0)Es]
(34)
I,= 0171'% [3t11(00)&; + 2t12(00)E, + ta2(00)&,] (4.10)
(34) '
I 5 = Cimy [t11(00)€, + 2t12(00)&; + 3taz(00)E4]
(35)
Iy = —Cim[2t11(00)&; + t12(00)Ey + t22(00)&, ]
(35)
I 9= —Cym [t11(00)&5 4 t12(00)&; + 2ta3(00)E,]

and "
I =Cim2p (1 = 2v) [e11(00) + e22(00)] &,
T\ = —Curtp (1 — 20) Ren(00)€, + ens(00)€s + eai ()6 (411)
T2 = —Curtp (1 — 20) fens(00)€, + ear(00)6, + 2eai ()6
Using (4.10), (4.11) and (3.3) it follows that

(3) 4)
I+ 1I,=ep(00)Es

o @
Neglecting the rigid body motion, i.e., setting I ., + I .to zero we obtain

I = €xp(00)&g
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and the first and modified Somigliana formula immediately follows from (3.5) and (4.1)

1n(Q) = exp(00)E4(Q) + 74 (M) Une(Mo, Q) — un (M) Ton (M, Q)] dsa,
QeA, (412)

If @ = @, is on £, nothing changes concerning the limit of the integral taken on Lg.
Consequently

Crptip(Qo) = €xp(00)€5(Qs) +%£ [EA(Mo) Ui (Mo, Qo) — ux(Mo) Tae(Mo, Qo)] dsar,
Q=0 €L, (413)

where Cy, = 0,,/2 if the contour is smooth at ),. This integral equation is that of the
direct method (or the second Somigliana formula for exterior regions).

If @ is inside the contour £, — this region is referred to as A; — then one can obtain easily
that

0 = €x5(00)45(Q) +]{ [EA(Mo) Ui (Mo, Q) — un(Mo) Ton(Mo, Q)] dsa,
Q=Q.cA (414)

which is the third Somigliana formula for exterior regions. It is not too difficult to show
that the stresses at () are given by

tna(Q) = tna(oo) + f it)\(Mo) D}\RO’(Moy Q) dSMo - f UA(MO) S)\KO'(MC” Q) dSMo (415)

o

where, as it is well known, the twopoint tensors D).,(M,, Q) and Skis(M,, Q) are as
follows

1 1 "\TkTo
Dao(Mo, Q) = ~g=—s [(1 = 20)(radns = BrT — rus) — 2275 ] (4.16)
and
" 1 2
S)\RO—(MO, Q) = mﬁ ﬁn,ﬂ’p [(1 — QV)T)\ 550 -+ V((S)\HTU + 6Aarn)]

AT T o 2
)\RT + ﬁy(n,{mrg + neraTk) — (1 — 4v) nxbpeo

— 8N,y

1
+ ﬁ(l —2v) (2np\TeTe + Nbro + ngéAn)} (4.17)

If one recalls formulas (4.12) and (4.15) it turns out that modification of existing codes
can be performed in a straightforward manner.
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5. Concluding remarks

First we remark that the paper by Constanda [5] gives such an asymptotic expansion for
the displacements at infinity which ensures the validity of the Betti formula for exterior
regions. Under this condition the total strain energy stored in the region is bounded. In
addition uniqueness and existence proofs can be given with ease.

We have modified the Somigliana formulas for exterior regions by assuming that the
strains are constants and accordingly the displacements are linear at infinity. Under this
condition not the strain energy but the strain energy density is bounded and there is
no need to replace the exterior region by a finite one if a constant stress condition is
prescribed at infinity. This can be an advantage if one considers an infinite plane with
holes or cracks in it subjected to constant stresses at infinity and an attempt is made to
determine the stresses in finite. Modification of existing codes can easily be performed.
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