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Abstract. The present paper is devoted to the plane problem of elastostatics assuming that
the governing equations are given in terms of stress functions of order one. After clarifying
the conditions of single valuedness we have constructed the fundamental solution for the dual
basic equations. Then the integral equations of the direct method have been established.
Numerical examples illustrate the applicability of the integral equations.
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1. Introduction, Preliminaries

In spite of a great number of publications devoted to plane problems there are only a
few dealing with plane problems in terms of stress functions of order one. As regards
classical elasticity we refer to the paper [1] and the book [2] by Jaswon and Smith
in which the unknown biharmonic function (stress function of order two) is given in
terms of two harmonic functions as a single layer potential and the authors set up a
pair of integral equations for the unknown source densities.

Application of stress functions of order one was initiated by Frejis de Veubeke in
a new complementary energy based finite element procedure [3,4] since the use of
C° continuous stress functions of order one guarantees continuous surface tractions
and makes possible to construct isoparametric elements. Further applications with an
emphasis on three dimensional problems and laminated structures are due to Bertéti
— see [5,6].

If one uses stress functions of order one calculation of stresses requires determina-
tion of first derivatives (in contrast to stress functions of order two from which stresses
can be obtained in terms of second derivatives) and this property makes them attrac-
tive in boundary element applications though a further equation is needed to ensure
that the stresses be symmetric.

As regards the derivation of integral equations for plane problems it is worth citing
the papers by Heise [7,8], in which altogether 32 + 16 different integral equations are
obtained with the aid of the singularity method. The reader taking an interest in
the various formulations made by Heise is referred to these works and the references
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listed therein.

In the present paper we confine ourselves to the direct formulation within the

framework of classical elasticity. Our aims are as follows:

1. Clarifying the conditions of single valuedness for a class of mixed boundary value
problems assuming multiply connected regions.

2. Derivation of the fundamental solutions for the stress functions of order one.

3. Setting up the dual Somigliana relations (both for inner regions and for outer
ones) from which the boundary integral equations of the direct method can be
derived.

4. Presentation of some results obtained by solving the integral equations of the

direct method.
We remark that some results of the paper can be found in the work [9].

2. Dual equations in terms of stress functions of order one

Throughout this paper 1 = x and x2 = y are rectangular Cartesian coordinates,
referred to an origin O. The totality of 1 = z and x5 = y is denoted by z.
{Greek}[Latin subscripts] are assumed to have the range {(1,2)}[(1,2,3)], summation
over repeated subscripts is implied. The triple connected region under consideration
is denoted by A; — inner region — and is bounded by the outer contour

Lo=L1 UL ULiULyy

and the inner contours which — partly or wholly — consist of the arcs L;1, L3, L5
and Eu27 £u4a LuG-

Figure 1

Further the inner contours £1 and L5 lie wholly in the interior of the outer contour Lg
and they have no points in common. We stipulate that each contour has a continuously
turning unit tangent 7, and admits a nonsingular parametrization in terms of its arc
length s. The outer normal is denoted by n,. In accordance with the notations
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introduced 8, is the Kronecker symbol, 9, stands for the derivatives with respect to
Zo and €3, is the permutation symbol. The {symmetric}[skew] part of a tensor, say
the tensor t,, is denoted by {t(.x)}[tfer]-

Assuming plane strain, let u,, e,y and t.) be the displacement field and the in
plane components of stress and strain, respectively. The stress functions of order one
are denoted by F,.

For homogenous and isotropic material the plane strain problem of classical elas-
ticity in dual system is governed by the dual kinematic equations

o
Tty = e,gpg]:)\ap + tin T € A; (2.1)

o
(txx is the particular solution that belongs to non-zero body forces), the inverse form
of Hook’s law

1
r =50 (tnn) = VtyyOnr) x e A (2.2)
(n is the shear modulus of elasticity, v is the Poisson number), the dual balance
equations

6K,p36)\)iap + 5038)\ = €xp3 (e)\li - 6)\&3503) ap =0 T € Al (23)

(equations of compatibility for a simply connected region; 3 is the rigid body rota-
tion) and the symmetry condition

€3ualcr =0 T € A; (24)

(equation of rotational equilibrium). If this equation is fulfilled, then one of the
equations (2.2) can be omitted. In this way we have nine equations for the nine
unknowns .7:1, .7:2, tu, t12 == t21, tgg, €11, €12 = €21, €22 and ©3.

The field equations (2.1), (2.2), (2.3) and (2.4) should be associated with appro-
priate boundary conditions. If a contour is not divided into parts, then either trac-
tions or displacements are imposed on it. If a contour is divided, then it is assumed
to consists of arcs of even number on which displacements and tractions are im-
posed alternately. In the present case {tractions}[displacements] are given on the arc
{Ly =L ULis UL} HLy = Lyo U Lyg U Lyg]. We remark that hatted letters stand
for the prescribed values.

Upon substitution of the equation (2.1) into the traction boundary condition nyt,, =
t, we arrive at the differential equation

R o d
tp - tp = nnenu?)]:pau = % (25)

o o
where ¢, = nrtr,. One can readily check that the solution on the arcs of £; assumes
the form

ﬁp(s):/s i) ~too)] do . selu, i=135.
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Let the constants (C)p be that of integration. The condition
ti

Fols) =Fols)+ Cp i=1,35 (2.6)

is equivalent to the boundary condition (2.5) and conversely.

REMARK 1.: Observe that the number of undetermined constants of integration is
two times as much as the number of those arcs on which tractions are imposed.

Since the displacements do not belong to the unknowns of the dual system one has
to clarify what boundary conditions can be prescribed on the arcs constituting £,,.
Let

1
K= /C(tHA, <p3) = —5/ ta€er dA —|—/ N leally ds — / tn€xrzpszdA (2.7)
A; Ly A;

be a modified form of the complementary energy functional. (The modification is a
must in order to keep up the rotational equilibrium.) Solution to the problem posed
can be sought by making use of the stationary condition

5K =0 (2.8)

since the latter equation should ensure all the conditions the strains e, and the rigid
body rotation (3 are to meet in order to be kinematically admissible. In the functional
(2.7) exy is given in terms of the stresses ¢\ via Hook’s law while the stresses t,)
should satisfy the equilibrium equation and the traction boundary condition though
it is not necessary for them to be symmetric. Consequently, the variations of stresses
can not be arbitrary but should meet the conditions

6t.00. =0 re€ A and N0ty =0 reLly. (2.9)

Both conditions are satisfied if 6t is given in terms of the variations of stress func-
tions
Otien = E,ipg(s.}—)\ap (2.10)

where 6F) is arbitrary on A;. However, with regard to (2.6) it follows that on £;

§F,(s) = 6C (i=1,3,5). (2.11)

Derivation of the conditions the strains e, and the rigid body rotation should meet
in order to be kinematically admissible requires the transformation of the stationary
condition

5K = —/ €nx Olicx dA+/ Ny Ot o\l dS—/ 5tm\€m\3$03d14_/ tix€nradp’dA =0.

(2.12)
The main steps of the transformations are as follows:
1. Substitution of the condition (2.10) into the first and second surface integrals
and substitution of (2.1) into the third surface integral.
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2. Substitution of the relation

d6F
ds

nﬁenp3§.7'—A8p =

into the line integral taken on L,.

3. Application of the Green-Gauss theorem [10] to the first and second surface
integrals.

4. Performation of partial integrations on the arcs constituting £, taking into ac-
count the validity of (2.11) at the extremities of the arcs.

5. Division of the line integrals obtained by the application of the Green-Gauss
theorem by using the relation

then substitution of (2.11) into the line integrals taken on L;.
6. Transformation of the result making use of the equation

Np€rps = — Tk - (2.13)

After performing the steps listed above

‘5K:/ (€Rp3€nkap+‘;03a>\)6f>\d14—/ (Fy0y) 6p3dA
A; A;

duy
T ETR3ERA T 671' - 6 d
+ Z /E’“ {TL [6 3€k\ )\cpg] ds } .7:)\ S

i=2,4,6
+ Z {/ N [€xn3err — Oxa@a]ds — ﬂAhﬁfo“ } 6C =0
i=1,3,5 ~/ Lti (k)

is the stationary condition. Since the variations are arbitrary from this condition it
follows the compatibility condition (2.3), the symmetry condition (2.4) — in the latter
ty is given in terms of Fy, —, the strain boundary condition
diiy
ds

the compatibility condition in the large

=Nr [671'/{36#;)\ - 677)\303] ’ (214)

/ Uz [677%36%)\ - (57/\903](18 =0 (215)
L5
and the supplementary condition of single valuedness
/ Uz [Eﬂ’n?)en)\ - 671—)\@3](18 - 71)\|1p32;+1 =0 (’l = ].7 3) . (216)
Li;

REMARK 2.: The strain boundary condition can also be obtained if one regards
the primal kinematic equation

1
Cr\ = §(unaA + u/\aﬁ)
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on the contour, multiplies it by nrerx3 = 7, taking into account that w0y =
—€xA3P3-

REMARK 3.: Both the compatibility condition in the large (2.15) and the supple-
mentary condition of single valuedness (2.16) can be set up by integrating the strain
boundary condition (2.14) appropriately.

REMARK 4.: It can be shown that only two of the three conditions (as a matter of
fact three times two conditions) (2.15) and (2.16) are independent of each other. In
accordance with this, one can set one times two of the three times two undetermined
constants of integration (g) 0, Say (g)"” to zero since there belong no stresses to the

stress function F, = C , = constant. In other words, we have as many indepen-
t1

dent macro conditions of single valuedness as there are undetermined constants of
integration.

3. Basic equations and fundamental solutions

Here and in the sequel we shall assume that there are no body forces. Substitut-
ing the dual kinematic equation (2.1) into Hook’s law (2.2) and the result into the
compatibility equations (2.3) we have

1 11
ﬂ(l — I/)A]:1 — 5(5 — U)(flal + .7:262)61 + @361 =0, (31&)
1 11
ﬂ(l - I/)Afg - 5(5 — V)(f1a1 + .7:262)82 + @362 =0. (3.1b)

These equations are associated with the symmetry condition in terms of F,:
F101 + F202 = 0. (3.1c)

Upon substitution of (3.1c) into (3.1a,b) the latter, two equations become much sim-
pler. In spite of that and for the sake of a comparison with the plane orthotropic
case, the work on that problem is in progress, we do not change the above equations.
Introducing the notations

1 11 11

(1 — V?I-A 1— 5(5 — V)a]_al , _5(5 _1V)?]_82 _81
(D] = 2t ~ 1 L2 _
2M(2 v)0a01 Qﬂ(l v)A 2M(2 V)0209 O
- -0y 0
(3.2a)
and
u, = (F1, F2, —¢3) (3.2b)

the basic equation takes the form

Dikuk =0. (3.3)
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Let Dy; be the cofactor of ®y:

1
—8282 (9182 2—(1 - I/)A@l
[Dkl] = 0201 —0101 2—(1 — V)AaQ . (3.4)
1 1
It is obvious that
DD = DirDiy = det(D 1) 6u (3.5)
where 1
det(®;;) = —E(l —V)AA. (3.6)

If we introduce a new unknown y; [11], [12] defined by the equation
ur = Drixa (3.7)

and substitute it back into the equation (3.3) we have an uncoupled system of differ-
ential equations

Dty = DixDiixi = det(’Dﬂ)x,- =0. (3.8)
Let Q(&1,&2) and M (z1,22) be two points in the plane of strain (the source point
and the point of effect). Further let e with components e; be a unit vector at Q. We

shall assume temporarily that the point @ is fixed. The distance between @ and M is
R, the position vector of M relative to @ is r,. Solution to the differential equation

DU + §(M — Q)ei =0

is referred to as fundamental solution. It is clear from all that has been said — see (3.7),
(3.8) and (3.5) — that the fundamental solution is obtainable from the fundamental
solution for the Galorkin functions, i.e., from the solution of the differential equation

1
det(Dj1)xi + 6(M — Q)e; = _ﬂ(l —V)AAX; +6(M —Q)e; =0. (3.9)
Making use of the fundamental solution
) _ | 2 _ )
xi(M,Q) e — V)R (InR—1)e; (3.10)

valid for the plane biharmonic equation [2] we have

up = (M, Q)er(Q) (3.11)
where
—21nR—3—2% 2’“;2’;2 %(1—1/)%
_ K rary _ _g_gnr 2 T2
Uri (M, Q)] = (=) 2 T 212R 3-2 B H(l )Rz
T T
-(1- )R—; ;(1* )R22 0
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REMARK 5.: The fundamental solution (M, Q) satisfies the symmetry conditions
Ut (M, Q) = (M, Q) = hi(Q, M) = Uy (Q, M) . (3.13)

Consequently

w, = U (M, Qe (Q) = er(Q)thx (M, Q) . (3.14)

REMARK 6.: Each row and column of U (M, Q) as a three dimensional vector
satisfies the basic equation (3.3) both in M and in Q.

Substituting the columns of (M, Q) into (2.1) and recalling that the particular
solution for stresses is assumed to be zero, we have the fundamental solution for
stresses

r
. *67"24’4? 27’17 R2 7/1(171/) R2
11 2 2 2 2 €1
7 4rsm drirg 2 r{ — T3
t 2ry — -2 —(1— e
| IR | TR R TR [
TiT2 7‘1 T17T2
-2 —1= 6r -4 —(1-v)—=
"2t e O A >
(3.15)

It can be shown that t15 = 9.
With the aid of Hook’s law (2.2) one obtains the fundamental solution for strains

3 2
TS5 175 4 172
—2(3—2 4—= 2(1 —2 —4 ——(1-
€11 A (3 U)TQ u R? ( U)rl R? /L( V) R? el
_C driry Ardr, 2 r?—r2
e | = e 2r1 — 2 —2r9 + 2 ﬁ(l —v) B es
€22 riry rs 4 riT2 es
—2(1—-2v)ra +4 2 2(3 — 2v)ry — 4@ ;(1 —v) 2
(3.16a)
A 1
= -, .1
C o — (3.16b)
For our later considerations we shall introduce the notation
du,\
th=——"= 3.17
A ds ( )

where the vector t, is referred to as displacement derivative. Comparing (2.14),
(3.16a,b) and (3.17) for the vector t) from the fundamental solution we get

o

(1) = el(Q)Tn (M, Q) (3.18a)
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where
- 2 ) -
niry <4R2 —2(3 - 2v)) —ngry (4 2 +2(1- 2v)>
73 r?
+noro 4@ — 2(3 — 211) —nN17T2 4—2 — 2(1 — 21})
A <4 o2 )) (4 ry 2(3 -2 ))
o C —nire %) — ZU Nnare oo — ZU
T(M,Q) = izl 52 Jiz
—nyry (4R—22 —2(1— 21})) +nyry (4R—12 -2(3 - 2v)>
r2 — 2 4 rire
—n1—(1—v) 1R2 2 _m;(l_ )?2
4 172 2 rH—Tr3
i —ng—(1 — V)—R2 +n2;(1 v) R2

(3.18b)
Here and in the sequel the small circle over the letters M and/or @ has the meaning
that the corresponding point is located on the contour. The normal n) is taken at
o

the point M.

REMARK 7.: Recalling that in the circle of the boundary value problems considered
either the stress functions or the derivative of the displacements with respect to the
arc coordinate can be prescribed at a point on the contour for our later consideration,

it is worth giving the value of the stress functions from the fundamental solution on
the boundary:

wy = e (Q)shn (M, Q) . (3.19)

The displacement derivative from the fundamental solution is given by (3.18a,b).

4. Somigliana identity and formulae in dual system — inner region

Here and in the sequel it is assumed that the region A; under consideration is simply
connected and lies wholly in finite. The contour Ly is divided into arcs of even number
on which displacements (or their derivatives with respect to s) and tractions (or stress
functions) can be imposed alternately. In Figure 2 the region A; is divided into four
arcs though this fact does not play any role in the transformations.

The functions Fy, tex, exx and @3 are referred to as an elastic state of the region
A; provided that they satisfy the field equations (2.1), (2.2), (2.3) and (2.4). Let

*

* * *
Fus texs €xx, ©3 and Fuy ters €xrs ©3

be two elastic states of the region A;. Applying the Green—Gauss theorem and taking
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o
(2.1) into account (since there are no body forces ¢, = 0) one can write

/ (cxpnnd + 303 FadA — / (Fydy) padA = (4.1)

i 1

- % N [677/136/{)\ - 67r)\<)03]f)\d8
Lo

- / (f,pao ad A — / (Fudy) EadA.
A; A,

i

REMARK 7.: Observe that the first surface integral and the sum of the last two
surface integrals on the right side do not depend on the placement of the asterisk
which can be put over the first or the second factor of the corresponding products.

L

t3

Figure 2

If we replace the asterisk over the letters denoting the first elastic state and subtract
(4.1) from the resulting equation, then we get the dual Somigliana identity for plane
problems

/ [@ipng/\ap + ;236A]~7:Ad14 - / <fwaw) <P3dA (42)
Aj A;

- / [EI{pSeH/\ap + 8038)\]-7:/\dA - / (.7:1[;81/)) (ngA =
A; .

i

= fg N [Eﬂ’n?);:n)\ - §7r)\:53]]:/\d3 - % Nx [67753614)\ - 67\’/\903]-7:/\d8~
On the left side we have the integrals of the basic equations. As regards the right
side, we have the integrals of those quantities one can prescribe on the boundary.
Recalling the relations (3.1a,b,c), (3.2a,b), (3.3) giving the basic equations and the
notation (3.17) in which the derivative is given by (2.14), one can cast the Somigliana
identity into a form similar to the Green identity [2]

/ [uk (@;ﬁq) - iklk (’Dklul)} dA = % [u,\t,\ — Jfl)ﬁ)\] ds. (4.3)
A; L,
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REMARK 8.: When deriving (4.3) we have never taken into consideration that W
and uy are compatible, i.e., fulfill the basic equation (3.3). Consequently, the equation

(4.3) is really an identity which is always valid if ﬂk and uy, are differentiable as many
times as required — in other respects both functions can be arbitrary.

In order to establish the dual Somigliana relations it is assumed that fl;€ is an elastic
state given by (3.11) and (3.12). Quantities in the line integrals are defined by (3.19)
and (3.18a,b).

In what follows we shall utilize that u; is also an elastic state.

Since the state identified by the asterisk is singular at the point @ (at the source
point), we distinguish three cases depending on the location of @) with respect to the
region A;.

1. If @ € A;, then the neighborhood of @ with radius R., which is denoted by
A, and is assumed to lie in A;, is removed from A; and we apply the dual
Somigliana identity to the double connected domain A’ = A; \ A.. We remark
that the contour L. of A. and the arc E; of the contour £. within A; coincide
with eac}(} other.

2. If Q@ = Q € 0A; = L,, then the part A; N A, of the neighborhood A. of @
is removed from A; and we apply the dual Somigliana identity to the simply
connected region A’ = A; \ (4; N A.). If this is the case, the contour of the
simply connected region consists of two arcs, the arc E; left from L, after the
removal of A, and the arc E;, i.e., the part of £, that lies within A;.

3. IfQ ¢ (A; UL,), we apply the Somigliana identity to the original region A;.

Since both 1, and uy, are elastic states, the surface integrals in (4.3) are identically
equal to zero. In what follows we regard the three cases one by one focusing attention
on the line of thought.

1. Making use of all that has been said above for @ € A;, it follows from (4.3) that

o o o

7{ [Sk,\(f\o/f, Q)ux(M) — thx (M, Q)tr(M)] dSA% (4.4)

+ f [Toa (M, Q)u (M) — tir (M, Q)ta (M)] dsas =0 .

€

It can be shown that

f Tor (M, Q) dsas = Six (4.52)

L.

H}imo T,{)\(M, Q) [u)\(M) — u)\(Q)] dS]\/[ =0 s (45b)
e L.

fs Q) sy = —— L [ cospdp =0 (4.5¢)
3 ax(, SM—47sz . cospap =4, -9C

(The latter equation is fulfilled for any R. # 0. Consequently, if R. — 0 the
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limit of the integral is also zero.)

Jim 7{ T (M, Q) [tr (M) — ux(Q)] dsnr — (4.5d)
T au,\ 6u,\ N
_ngugo{fﬁ T3/\(M Q) [3%1 r1 + a—xQ QTQ] dSM—‘rIE(RE)} =

1 .
= m(tgl — t12) —+ RIEHEO Is(RE) =0 5

(Since uy (M) is an elastic state, the stress tensor is symmetric and the expression
I. is homogenous in R..)

lim U (M, Q)tx(M) dspr =0, (4.5e)
R:—0 Lo
(The relation
¢ Oouy 8u,\ dry  Ouy dxs
W= ATl T A2

ds 81:1 ds Oxy ds

has been applied here and it should also be applied in the following transforma-
tion. In addition one should take the limit limg__,o R In R. = 0 into considera-
tion.)

hmO 113,\(M QM) dsv = p3|g = —uslg - (4.5f)

R.—

If we take the limit of the equation (4.4) as R. — 0 and substitute the formulae
(4.5a,...,e), we obtain the first dual Somigliana relation:

uk(Q) = ﬁ Ui (M, Q) (B s — 745 Ta(VQui(il)ds, . (4.6)

o
2. HQ=Q € dA=L,, it follows from (4.3) by the steps leading to (4.4) that

[, 5 (1. Qpua (D) — (31, Qa1 s, (47)
L

o

+ /L [T (M, Qua(M) — ter (M, Q) (M)] dsar = 0.

€

It can be shown that

lim Ta(M, Q) dsyr = cun(Q) (4.8a)
REHO ‘C’,s

where ¢;)(Q) = 6,2/2 if the contour L, is smooth at the point Q. If the contour
is not smooth, then ¢, (Q) depends on the angle formed by the tangents to the
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o
contour at Q.
It can also be proved that

H}imo Taa(M, Q) {NA(M) - uA(Q):| dsyr =0, (4.8b)
e ﬁ;
lim [ (M, Q)tx (M) dsar =0 . (4.8¢)
RE*)O L"’s

If we take the limit of equation (4.7) as R. — 0 and substitute the formulae
(4.8a,b,c) we obtain the second dual Somigliana relation:

e (Q j{umMQtA Jds o — %sm 7, Qua (M) ds o . (4.9)

REMARK 9.: The two line integrals in (4.9) should be taken in principal value.
REMARK 10.: The integral equation (4.9) with unknowns uy(M) on L, and

(M ) on L; is that of the direct method.

3. fQ ¢ (AU L,), then the line integral in the identity (4.3) is taken on L, (the
surface integrals on the right side are ab ovo equal to zero) and by repeating the
steps leading to (4.4) we have the third dual SOMIGLIANA formula:

Ozf SJM(M Q)t)\( )dSo —7{ ‘Ik,\(M Q)u,\( )dSo . (410)
ﬁo

Making use of the first dual Somigliana formula (4.6) and the dual kinematic equation
(2.1) (in the latter case one has to recall that there are no body forces, consequently the

particular solution is zero) one obtains the formula for the stresses s = (t11,t12, t22)
by performing the corresponding derivations

5(Q) = ﬁ Din (31, Q) (B ds j’i S (M, Qua (M) ds (4.11)

where the elements of DM(]\O/[, Q) and Sk)\(]\(;[, Q) are given by

I R SN Y

DkA(M Q)= (1= )2 DA (M, Q) , (4.12a)
. o 67y — 4T2/R2 —2r; + 47’17“§/R2
Dia(M,Q) = | —2ry +4rir3/R?  2ry — 4r2ry/R? (4.12b)
2ry — 4riry/ R? —67r1 + 4r3 / R?
and

o 1 o
Sea(M, Q) = SO Sia(M,Q) (4.13a)
S11 = — (nyry + nara) 16r§—4(5—2y)r —n 474%*2(3*21/) (4.13D)

11 = 3 (nary + nars 72 2 2 |4 ; .
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A r? 1 r3
Si2 =m1 4? —2(1—-2v)| — =mnar: |16= — 4(1 4+ 2v)r2

R2 R2
1 7"%7"2
—ﬁnlrg 16 B —4(1=2v)rs| (4.13¢)
So1 = S12, (4.13d)
. 1 3 1 2
SQQ = ﬁnl’l"g {16% — 4(3 — 2V)7"1] —|— ﬁngrl |:16T}127;2 — 4(1 — 21/)7"2:|
2
—ns {4% +2(1— 2y)] , (4.13¢)
Sa1 = S22, (4.13f)
3 2
Sgg = %(nﬂj —l— 'ng?“z) [16% — 4(5 — 21/)7"1:| — N1 {4% — 2(3 — 21/):| . (4.13g)

o
We remark that the normal is taken at M.

5. Somigliana formulae in dual system — outer region

By the outer region A, we mean the region outside the contour £y. We shall assume
that the stresses are constants at infinity. These are denoted by

tu(oo), tlz(OO) = tgl(OO) and tQQ(OO).
We shall also assume that there is no rigid body rotation at infinity, that is,
p3(00) =0. (5.1)

Observe that the strains obtainable from the stresses at infinity via Hook’s law are
compatible for they satisfy the compatibility condition (2.3). The corresponding stress
functions are of the form

A (Q) = €azpéatrp(00) + cr(00) (5.2)

where ¢y (00) is a constant vector to which there belong no stresses. Further let

13(Q) = —¢3(00) = 0. (5:3)

When deriving the dual Somigliana formula for the outer region A., we shall follow
the line of thought of the previous section with an emphasis placed on the difference.
It is assumed again that 1*1k is the elastic state described by the fundamental solutions
(3.11) and (3.12). Further, u is also an elastic state arbitrary at finite but it is to
meet the conditions

u,.;:ﬁ)\ and u3:ﬂ3:0

at infinity. Depending on the location of the point @, we distinguish three cases in
the same way as we did for the inner region A;. It is assumed that the origin O is
within the region A;.
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1. If Q € A, we shall consider the triple connected region A’ bounded by the
contours Ly, L. and the circle Lz with radius .R and center at O. Here L. is
the contour of the neighborhood A, of @ with radius R. while . R is sufficiently
large to involve both Ly, and L.. In addition, A. is to lie wholly in A,. Now
we apply the dual Somigliana identity to the region A’ and take the limit of the
resulting equation

¢ Ea 0L Q) - wa (1. Qu () ds (5.4)

o

j{[TkA(M Q)ux(M ) ilkA(M Q) (M )]dsﬁ

€

‘*‘jiR[TkA(M Q)ux(M ) ilk,\(M Q) (M )]dsz&:o

as R. — 0 and ;R — oo. As regards the sum of the first two integrals observe,
that the limit is formally the same as that of the integrals in (4.4):

o

7{ -+ lim "':uk(Q)‘i‘]{ [Tk,\(M Q)ur(M ) ukA( Q0 (M)] ds .
L, Lo

R5—>0 Le
(5.5)

For the limit of the third integral we obtain

lim = i (Q) (5.6)

eR—>OO [fR

By making use of the results (5.5) and (5.6) we shall find from (5.4) for the first
dual Somigliana identity on the outer region that

w(Q) = ix(Q)+

Uen (M, Q)tx (M) ds —j{ T (VL Qua(M) ds ;. (5.7)
L, L,

REMARK 11.: Derivation of the relation (5.7) requires long formal transforma-
tions. First one has to approximate U, and T, with one series in terms of
¢R to the power 1,0, —1,—2 etc. This transformation relies upon the use of the
relations:

2o (M) = Rno(M), ra(M, Q) = 2a(M) — £4(Q) (5.82)
11 Na(M)ea(Q) 1 £a(Q)a(Q)
RR\'"T k7 e (5.8b)
11 na(MDE(@Q)  16(Q)a(Q)
lnﬁ —lne—R + R -3 N 4. (5.8¢)
@ 1
:];26 znan5+2nanﬁn:’é¢ _ G—R(ianﬁ‘i'nafﬁ)"'"' ) (5.8d)

Further one has also to utilize the following:
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(a) For the outward unit normal and unit tangent in terms of ¢, we may write
ng, = (sin g, cos ), Ta = (—cos ¢, sin @) (5.9a)

(p is the polar angle).
(b) For R — oo —see (3.17), (2.15), (2.14) and (2.2) —

o d
(M) = —Z2 — ey =

ds Tﬂi (£x2(00) — VEyy(00)dsa) (5.9b)

and
ds]\a/[ = Rdyp . (5.9¢)

(¢) Since the stresses (consequently the strains as well) tend to constant value
as R — oo the coefficients of . R always assume the form: an expression
constant at infinity and multiplied by

2m
/ sin™ ¢ cos® o d6
0

where the powers n and k are natural numbers and depend on the term
considered, but the integral is of zero value.

(d) The structure of the terms being the coefficients of . R to the power zero is
similar, but they involve &, and the trigonometric integrals are not neces-
sarily equal to zero.

(e) It holds that
7{ Ton(M,Q)ds o = —6,x . (5.9d)
Lr M

(The same relation holds for any simply connected contour provided that
Q is an inner point.)

For keeping the extent of the paper below a reasonable limit we have omitted
the transformations leading to (5.7).

o
. IfQ=Q € dA = L,, we shall consider the double connected region A, bounded

by L, L. and Lr where L/ is the part of £, that is left after the removal of A,
and L is the part of L. that lies within A.. Applying again the dual Somigliana
identity to AL and taking the limit as as R. — 0 and .R — oo, we get the
second dual Somigliana relation for the outer region A.:

o o

(@@ =@+ § a1 QD dsy,~ § DAL QD) ds
L, c

(5.10)

REMARK 12.: The integral equation (5.10) with unknowns uy(M) on £, and

o

tA(J\(}[) on L; is that of the direct method for outer regions.
REMARK 13.: We have omitted again the details since the limit of the integral
on L is the same as that for Q € A, while the other terms can be derived letter
by letter in the same way as for the integral equation (4.9).
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3. It is obvious on the basis of all that has been said above that for Q € A; the
third dual Somigliana relation for the outer region is of the form

0= e (Q) + ﬁ U (V. Q (M) ds . ji T Qui(M)ds, . (5.11)

Let
gk‘ = (tll(OO),tlg(OO),tQQ(OO)) . (512)

By repeating the line of thought leading to (4.11) we obtain the formula for the
stresses at the internal points of the outer region A.:

51(Q) = 3(Q) + 74

) Dir (i1, QM) s~ ¢ Sl QuA(i ds - (5.13)

where Dk,\(Z\OJ, Q) and Sk,\(Z\Oi, Q) are given by (4.12a),...,(4.13g).

6. Examples

We have applied the usual and well known procedure — see for instance [13] — for the
solution of the boundary integral equation of the direct method (4.9). The program
was written in Fortran 90.

In what follows we detail the main features of the algorithm.

We have used partially discontinuous quadratic elements by mapping the element
onto the interval n € [—1,1]. The corresponding shape functions are Lagrange poly-
nomials

1
N'(n) = n=n")n-n"),
= G )
1
20\ — 3 1
1
N°(n) = n—n)n—n’
N DI
with local nodal points n', n? and n® where n' = —1 and —1 < 72 < 73 < 1 are

regarded as previously fixed parameters if the discontinuity occurs at n = 1 while
n3 =1and —1 < n!' < n? < 1 are regarded again as previously fixed parameters
if the discontinuity occurs at n = —1. For n' = —1 72 = 0 and 7® = 1 the above
polynomials give the usual isoparametric approximation.

Let npy, be the number of nodal points. Further let 1y be the number of boundary

elements. The elements are denoted by L. —e =1,..., npe.
Let ) )
u) t .
u; = |: ]1 :| and tj = |: ]1 :| J = 1, B 179 (62)
wy t

be the stress functions and the displacement derivative —duy/ds at the nodal point
j. The matrices of the stress functions u and that of the displacement derivatives t
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are defined by

u?l = [ulud 33| Ll ] (6.3a)
N~ N——
uf  uf ull,,
th =g g|ege]... g grm]. (6.3b)
S~ N~ N——
t7 tl LT

Let there be constructed a function a(j, e) giving the local node number of the node
on element e with global node number j. For our latter considerations we introduce
the integrals

i, — /[; T (Qu, )N ()1 (1) dp (6.4)

ecy

and

by = / e (Qi, M) NG (3.7 () iy (6.5)
. L:e

ecy

where the summation is taken over those elements containing the nodal point with
number j, @; is the i-th nodal point (collocation point) and J(n) is the Jacobian.
With the notations (6.2),...,(6.5),

Ci; = [%A(Qz‘)] (6-6)
and )
hi,' + Cy; ha i :]
h'L R — ~ . . .
J { h;; ha i#j (6.7)

it follows from the second dual Somigliana formula (4.9) taken at the collocation point

Q = Qz that

u; ty
u t

[ hj; hiy - hip,, ] § = [ bii b bin,, ] 2 )
Un,,, L2

After uniting these equations we have

hi, hio <o+ hin,, u b1 bi2 <o+ bin,, t1

hy; hoo <o+ hap,, us | ba ba2 <o+ ban,, to

h"bnl h"bn2 T h”bn"bn Uny,, b"bnl b"bn2 e b”bnnbn tnbn
(6.9)

or in a more compact form
Hu = Bt. (6.10)
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After solving the above system of linear equations we have the nodal values of the
unknown stress functions uy on £, and the nodal values of the unknown displacement
derivatives ty on L;.

In the knowledge of the nodal values stresses at the internal points are computed
by using (4.11). Stresses on £, are computed element by element by substituting the
local approximation of the stress functions into (2.5).

Since there belong no stresses to the constant stress functions they are determined
with the accuracy of a constant vector. Consequently

duy, dz"®
—_——_— = —€
ds ¥3 ds 3K\

ty

where 3 is the rigid body rotation which is to be constant if there are no stresses
and strains. Therefore it can be set to zero. If this is the case then t = 0 and if we

take the constant stress functions as up =1 (k= 1,...,mp,), then we have
2Npn 2npn
Z H;; =0 or, which is the same thing, H;; = — Z Hi;  i=1,2,...,2np, ,
Jj=1 j=1
(i#3)

(6.11)
where H;; is an element of the matrix H. By using this property one can avoid the
numerical integration of strongly singular integrals.

If the region under consideration is an outer one, then there are some changes in
the final equation system. Let the matrix t be defined by

ST pe1~1) 5252 SNy <N
a' = [l |ugug| ... |uper uger ] (6.12)
~—— ———
af ooy W
where 0 is the matrix that involves u,; at the nodal point Q; (j =1,...,np,). With

this notation the equation system to be solved for the unknown nodal values takes
the form

Hu =14+ Bt. (6.13)
Computation of strongly singular integrals can be avoided if we use the relation

2npn
Hy=-Y Hj+1 i=1,2,... 2. (6.14)
j=1
(i#7)
Equation (6.14) can be established in the same way as (6.11). ¢, in @; — see (5.2) —
is set to zero.

Three examples are presented. The region under consideration including its matter,
is the same for the first two cases. ro = 10[mm], u = 8 - 10*[MPa], v = 0.3
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y
I I,
P ‘Ar UQ L P
C X \C Bl X
Figure 3.

Problem 1. On arc BC the radial stress (normal stress) is o, = 100 [MPa] (there are
no shear stresses). On arc CB the radial displacement is u, = (1 —2v)0o,r,/2u (there
is no tangential displacement). One can check with ease that these values determine
a homogeneous state of stress of the region. The exact solutions are given by the
equations

F1=Fp =00y =0orsing, Fo=F, = =00k = —0orcosy,
Oxx = Oyy = 0o szzoa
1—2v 1—2v .
Uy = 0o = Oorsing ,
2
1-2v 1-2v
Uy = o OoY = o 00T COS
where r and ¢ are polar coordinates. On arc BC and C'B
Uy = Fyp = 0oTosing uy = Fy = —0,7,COS
and
¢ duy 1—-2v i du, 1—-2v cos
—t, = — = ———0,sin —t, = = o
z ds 2 C° (20 ty s 2 ° P

are the boundary conditions. The contour was divided into 16 equidistant elements.

The table below contains the numerical results for the stresses

x [mm]| | y [mm]| | 0,, [MPa] | 7, [MPa] | o,, [MPa]
-7.50 0.00 99.99927 | 0.0001113 99.99983
-5.00 0.00 99.99912 | 0.0000478 99.99988
-2.50 0.00 99.99917 | 0.0000182 99.99983
0.00 0.00 99.99918 | 0.0000000 99.99982
2.50 0.00 99.99917 | 0.0000182 99.99983
5.00 0.00 99.99912 | 0.0000478 99.99988
7.50 0.00 99.99927 | 0.0001112 99.99983
7.50 5.00 99.98317 | 0.0048330 | 100.00853
5.00 7.50 | 100.00854 | 0.0048269 99.98308
9.00 1.00 99.96938 | 0.0122755 | 100.02786
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Problem 2. The region is subjected to a pair of compressive forces with magnitude
100.0 N/mm. Consequently the boundary conditions on the arcs AB and BC are

Fo=P=-100, F,=0

and
frzo, fyzo,

respectively. With the notations of Figure 4

Oxx =

2P {cos3 91 N cos? 192} P

r1 ro Tre
2P [sin®; cos?¥;  sindy cos? Uy
Toy = ———— - 5
m T1 T9
2P [sin? 0 cos 9y n sin? ¥ cos ¥y P
a. = — —_— —
vy ™ 1 T2 TTo

are the exact solutions [14]. Figures 4 to 6 represent the exact and the numerical
solutions. The latter is denoted by diamonds. In this case the contour was divided
into 40 equidistant elements. The pairs of elements that meet at A and B are partially
discontinuous.

Sigma-xx
160

140
1201
1001

80+

B0

2 4 B8
X

Figure 4. Exact and numerical solution — o, along the horizontal diameter
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Sigma-yy
A

'8 6 4 2 2 4,6 8

Figure 5. Exact and numerical solution — oy, along the horizontal diameter

Sigma-xx

0 8 & -4 2 2 4 ] B8 10
Figure 6. Exact and numerical solution — 0., along the vertical diameter
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Sigma-yy

0 8 6 -4 2 2 4 . B A 10
Figure 7. Exact and numerical solution — oy, along the vertical diameter

Problem 3. Though the contour £, and the material are the same as in the previous
examples the region under consideration is the outer one for which a constant stress
state 04 (00) = 100[MPa), 04y (00) = 0y (00) = 0y (00) = 0 is prescribed at infinity.

J
A
0 X
Ty
o (® |[*+— D —»| 0,®

Figure 8. Outer region bounded by a circle with radius r, = 10 [mm] and centered
at O
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It is well known that the formulae

Oz (00 rg 3r§ 4r§
JM:T() {(1_7“_2) + <1—|— el )005290] ,
Oz (00 r2 3rd
Opp = # [(1 + 7“_;) - (1 + r_40> COS2(p:| ,
Oz (00 3rd 2r2\ |
Orp = # [(1 - 7“40 + r20> 511124,0]

written in polar coordinates give the exact solution to this problem [15], [14]. The
table below shows both the stresses we computed and the exact solution on the y
axis. The contour was divided into 16 equidistant element.

x [mm]| | y [mm] | 0y, [MPa] | 7, [MPa] | o,, [MPa]

0.00 10.00 300.0395 | 0.0000000 0.001035
300.0000 | 0.0000000 0.000000
0.00 11.00 243.7623 | 0.0000000 21.51840
243.7743 | 0.0000000 21.51494
0.00 12.00 207.0554 | 0.0000000 31.82829
207.0602 | 0.0000000 31.82870
0.00 13.00 182.1018 | 0.0000000 36.23794
182.1049 | 0.0000000 36.23823
0.00 14.00 164.5539 | 0.0000000 37.48413
164.5564 | 0.0000000 37.48438
0.00 15.00 151.8498 | 0.0000000 37.03671
151.8518 | 0.0000000 37.03704

7. Concluding remarks

In accordance with our aims we have clarified what the supplementary conditions of
single valuedness are for a class of mixed boundary value problems in the dual system
of plane elasticity assuming multiply connected domains.

The fundamental solutions for the stress functions of order one have also been
constructed. In the knowledge of the fundamental solutions we have established the
dual Somigliana relations both for inner regions and for outer ones, which involve the
equations of the direct method. It has been shown that the system matrix H has the
same properties as in the primal system that is the sum of the elements in a row is
equal to zero (inner region) or to one (outer region). A program has been developed
in Fortran 90 for the numerical solution by using partially discontinuous quadratic
boundary elements. The three examples illustrate the applicability of the algorithm.

Two advantages of the algorithm are worthy of mention (a) calculation of stresses
requires the knowledge of the first derivatives of stress functions (b) concentrated
forces can be handled. It is, however a disadvantage that the supplementary conditions
of single valuedness should be taken into account on multiply connected domains. The
present program has not been capable of handling multiply connected domains.
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It can be shown, though the proof is not presented here, that the integrand in the
boundary integral equations is divergence free. Therefore it is possible to develop the
boundary contour method in a dual system as well [16].
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