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Abstract. Making use of the principle of minimum complementary energy we have clar-
ified what conditions the strains should meet in order to be kinematically admissible for
some mixed boundary value problems of micropolar elasticity in a dual formulation. Em-
phasis is laid on the question of what form the boundary conditions have since neither the
displacements nor the microrotations belong to the set of fundamental variables.
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1. Introduction

1.1. The necessary and sufficient conditions the strains in the linear theory of mi-
cropolar elasticity should meet in order to be kinematically admissible were found by
Kozdk-Szeidl [1] under the conditions that the boundary surface S of the region V
under consideration was divided into two parts S, and S; on which tractions (force
stresses and couple stresses) and generalized displacements (displacements and mi-
crorotations) were imposed.

Similar investigations within the framework of the classical theory have been per-
formed by Kozék [2] who used stress functions of order two when setting up the entire
system of variational principles in the dual system of elasticity. The necessary and
sufficient conditions of kinematic admissibility for the strains were obtained from the
stationary condition of the corresponding functionals.

Bertéti [3] confined himself to the case when the stresses are given in terms of stress
functions of order one and under this condition he clarified, among other things, what
form the equation system of linear elasticity has including those conditions the strains
should meet in order to be kinematically admissible on a simple connected region.
Some generalizations of these results are given in [4].

Returning to the micropolar theory, to the author’s knowledge the cases when force
stresses and microrotations or couple stresses and displacement fields are given on a
part of the boundary (tractions are imposed on the other part of the boundary) has
not been investigated yet though there are some preliminary results in this respect
for the first plane problem — see Szeidl [5] and Ivan-Szeidl [6] for details.
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1.2. The main objective of the present paper is to clarify the form of the boundary
conditions in the dual system if microrotations c,bb and force stresses t* are imposed
on the part Sy, of the boundary surface S while tractions (force stresses t* and couple
stresses [i;,) are prescribed on the other part Sy, (S, USi, =S, StuNSe, =0). Itisa
further aim to derive the unknown boundary conditions if displacements ; and couple
stresses ji, are imposed on S, while tractions (force stresses t* and couple stresses
fu,) are given on Sy, (Sy, U Suy =S, St N Syu = 0). By solving the problem posed
we shall also clarify all the conditions the strains should meet to be kinematically
admissible under the given boundary conditions.

Observe that the problems posed are meaningless in the primal system of microp-
olar elasticity since the displacement field u; and the microrotation ¢’ (referred to
together as displacements) are the configuration variables in this system.

1.3. The paper is organized into six Sections. In Section 2 notations and some
preliminary results are presented. Sections 3 and 4 are devoted to the derivation of the
missing conditions. Our analysis is based on the principle of minimum complementary
energy which, as a variational principle, ensures the fulfillment of all conditions the
strains should meet in order to be kinematically admissible. Section 5 is a short
summary of the results. The last Section is an Appendix which contains some longer
transformations.

2. Notations and preliminaries

2.1. For the sake of simplicity we shall assume that the volume region V occupied by
the body under consideration is simple-connected. The boundary surface S' is divided
into two parts from which the boundary conditions on S, are the same for the two
problems considered. The common bounding curve is denoted by g. Figure 1 repre-
sents the region V' and the parts S;,, S;, and Sy, Sy, for both problems. Indicial
notations and two coordinate systems, the (!, 22, 23) curvilinear and the (&', 2, ¢%)
curvilinear, defined on the surface S — see [7] for details — are employed throughout
this paper. Scalars and tensors, unless otherwise stated, are denoted independently of
the coordinate system by the same letter. Distinction is aided by the indication of the
arguments x and £ being used to denote the totality of the corresponding coordinates.
Volume integrals and surface integrals are considered, respectively, in the coordinate
systems (z'z2z3) and (£'¢2€%). Consequently, in the case of integrals, arguments are
omitted. In accordance with the general rules of indicial notations summation over
repeated indices is implied and subscripts preceded by a semicolon denote covariant
differentiation with respect to the corresponding subscripts. Latin and Greek indices
range over the integers 1, 2, 3 and 1, 2 respectively. €™ and €pqr stand for the per-
mutation tensors; 6\ is the Kronecker delta. In the system of coordinates (x'z2z3)

g and g' are the covariant and contravariant base vectors. The corresponding metric
tensors are denoted by gi; and gP?. The equation of the boundary surface is written
as oF = 2k (¢ L {2) where the coordinates ¢! and €2 are the surface parameters. Let &3
be the distance measured on the outward unit normal n to the surface. On S ¢* =0.
[Base vectors] {Metric tensors} on S are denoted by [a* and aj] {ax; and a*'}. In the
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Figure 1.

coordinate system (£'€2%¢%)

n=az=a’, nd=1 and n”=0. (2.1)
If |€*| /(min{|Ry|, |R2|}) < 1 in which Ry and Ry are the principal radii of curvature
on S then the relationship =¥ = z*(¢', €2, €?) is always one-to-one.

2.2. The components of the asymmetric strain tensor and rotation tensor (together
strains), and the force stress tensor and couple stress tensor (together stresses) are
denoted by v,;,, k. and t*!, 4% respectively. In the primal system of micropolar
elasticity the field equations can be given by the displacements w;, ¢® as configuration

variables, the strains 7, .’ as intermediate variables of order one and the stresses
th, 1%, as intermediate variables of order two:

kinematic equations:
Vi = ULk + Elk?s(ps? Kg =¥ reV (22)
Hook’s law for centrosymmetric body [8]:

t* = a Mpa Tpg> ptt = q HP9 K reV (2.3)

equilibrium equations:

L+ =0, [+ Etpgt? + =0 €V (2.4)
where a klpa and < kpa are the tensors of elastic coefficients while b' and ¢, are body
forces and couples. These equations are associated with the boundary conditions

nst® =1, p* = p* &€ S, (2.5a)
nst3 =4, na3p’y, = i, £ € Sy (2.5b)
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for the first problem and with the boundary conditions

w =1, nap’y, = iy, £ € Suu (2.6a)
nat3 =t nap’y, = i, £ € Sy, (2.6b)

for the second one.

2.3. The stresses t*! and p% are said to be equilibrated {statically admissible} if
they satisfy the equilibrium equations (2.4) {and the traction boundary conditions
(2.5a)1, (2.5b) or (2.6a)a, (2.6b) }. Let

o
M = pl;mgmk and .&ab = 9" (Embyp” + Qbsm) reV (2.7a)

gmnpllmn — _bl and g"m(Zb;mn =—qp . r eV (27b)

Further let fyl and Hy, * € V' be stress function tensors. Then the stresses

o
tkl — Ek’lﬂ’yfyl;m _|_ tkl, Mab — gapy (Hyb;p + gbpsfys) + Z/ab = V (28)
o [e]
are equilibrated and u%,, t*! are particular solutions to the equilibrium equations (2.4)
[9,10]. We shall assume that the particular solutions are known.

REMARK 2.1.: Let ayp(2) and (Y,(z) be differentiable otherwise arbitrary tensors
on V. Further let 4 and KL be the subsets of the index pairs ,; and yl for which the
differential equations

rl = B (x) and  wpa +epasr’ = aap() xeV (2.9)

always have a solution for the vector fields ! and wy. It can be shown that the stress
function triplets Hap and F;& can be set to zero [1].

REMARK 2.2.: The proof of Remark 2.1 [1] is based on the observation that there
belong identically zero stresses to the stress functions

]-'yl = rl;y(x) and Hyp = Wpyy () + epysr® () . reV (2.10)

REMARK 2.3.: Let xy and ¢ be the complementary subsets of the index pairs 45

and . It follows from Remark 2.1 that any stress condition can be given in terms
of the stress functions F¢! and Hap, i.e., by means of six-six stress functions.

REMARK 2.4.: For this reason we shall assume that the stress functions and their
variations have only six independent components each which are identified by the
index pairs xy and ST.

2.4. The strains 7, #,’ are said to be compatible {kinematically admissible} if
the kinematic equations (2.2) have single valued solutions for the displacements wy,
¢ {and the solutions meet the boundary condition (2.5a) or (2.6a)s}.
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The incompatibility tensors Y*¥ and D*, are defined by the equations

V() = Py Y

otp and  Di(z) = gk (Ve + Ektblipb) . zxeV (2.11)

It can be seen [1] that the strains v,., &, are compatible on a simple connected
domain V if the six-six compatibility field equations

VX¥Y(z)=0 and D3 (z) =0 zeV (2.12a)
and the compatibility boundary conditions
n3Y 3 (z) =0 and n3D?(x) =0 £EesS (2.12b)

are satisfied [1].

2.5. In the dual system of micropolar elasticity the stress functions Fg'', Hxy are
the configuration variables (FF and Hap are set to zero), the stresses t*, ;% are
the intermediate variables of order one and the strains 7, %, are the intermediate
variables of order two. The field equations consists of

the dual kinematic equations

o

(o)
MM =R E Ly =ty =Y (Hypp + €psF,°)  ® €V (213)
Hook’s law
Vil = CkipgtP?, Kab = Cabpgt"? zeV (2.14)

(@kipg and cqppq are the inverses of a klpa and < kipa)

and the dual equilibrium equations

Y (x) = sxp“/{ai/p =0, D (x) = 5Pk ('ykT;p + €ka/<Lpb) =0. zeV
(2.15)
In view of (2.13) it follows from equations (2.5a,b) and (2.6a,b) that the field equations
(2.13), (2.14) and (2.15) should be associated with the traction boundary conditions
ngt? + nge¥F L = {1 ces (2.16a)
nait®y + nae®™ (Hypr + coms ") = iy £ € Su, (2.16b)

for the first problem and with the traction boundary conditions

n3;3l n n3€3un]:nlm = €€ Sy, (2.17a)
iy ces (2.17b)

03 3
n3p’y + nze”™" (Hnb;7T + Ebm}"ns)

for the second one.

It is obvious that the compatibility boundary conditions (2.12b) should also be
fulfilled.
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We remind again the reader of the fact that no boundary conditions can be imposed
directly on the displacements u; and ¢? since these variables do not belong to the set
of dual variables.

The strains v,,;, kqp are said to be statically admissible if they are given in terms
of statically admissible stresses t?? and p?? by means of Hook’s law (2.14).

3. Kinematic admissibility of strains for the first problem

3.1. The total complementary energy functional for the first problem assumes the
form

1 ~
Ki=3 / (tF'yp + prg’) AV — / nap’,@’ dA (3.1)
1% St

where both the stresses t*| ;% and the strains v, .’ are statically admissible.

According to the principle of minimum complementary energy, the first variation
of the functional K; should vanish:

§Ky =1V + 1D = / (V™ + K 6u%,) AV — / nzép, " dA =0.  (3.2)
1% Stq;

Because the stresses and strains are statically admissible, variations §t*! and §u®, of
the force and couple stresses can not be arbitrary but should meet the side conditions

5t =0, 511 + Ebra6t* =0 reV (3.3a)

and
n3ét3 =0, £cs (3.3b)
ns3dpu, = 0. £€ Sy (3.3¢)

o
In the sequel we shall assume that the variations of the particular solutions ¢** and
ﬁab are equal to zero.
It can be proved by direct substitutions that the side conditions (3.3a) are identi-

cally fulfilled if the variations of stresses are given in terms of the variations of stress
functions as follows:

(Stkl — Ek'rny(s]_-yl;m , revV (34&)
(Sﬂab = Sapy (6Hyb;p + €bps(5~7:ys) . zeV (34b)

Let r! and wy be arbitrary differentiable vector fields on S and Sy, respectively.
Further let the variations of the stress functions on S, and S, be given in terms of
the variations of r! and wy as follows:

§F, =6t ces (3.5a)
(SHnb = 6wb;n + Ebﬂ'lrl . 5 S Stll« (35b)
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If this is the case, side conditions (3.3b) and (3.3¢c) are also identically satisfied.
3.2. If we utilize that

SKy=TY +10% + IS = IV + I + I + I + 15 + 15 + 1€

(the details of the manipulations leading to this form are given in Subsection 6.2) and
substitute equations (6.5), (6.6) and (6.7) into the above equation then the stationary
condition (3.2) yields

6K1 = / VXY 6Hxy + D6FgT) AV — / Nk — ¢ n) S Hay dA
v S

to

7/ X (Yt — Extv @’y )r' A —/ [n3 Y30 6wy + nsD36r'] dA
Ste Stu

+ / (K, — @', )6wpds = 0. (3.6)
g

With regard to the arbitrariness of the variations éHxy,...,0wp this equation is
equivalent to the compatibility field equations (2.15), the strain boundary conditions

Ky =@ =0, €€ S, (3.7)
g3 (’VXl;n - 5le§0bm) =0, g€ Sttp (38)

the compatibility boundary conditions (2.12b) on Sy, and the continuity condition
dpP)ds — k> =0 on g.

REMARK 3.1.: It can be shown with ease that the fulfillment of the strain bound-

ary conditions (3.7) and (3.8) ensures that of the compatibility boundary conditions
(2.12b) on Sy, .

4. Kinematic admissibility of strains for the second problem

4.1. The total complementary energy functional and the corresponding stationary
condition are of the form

1
Kir =3 / (t" v + prg’) AV — / nat3a; dA (4.1)
\4 Suu
and
§Kip =17 + 17" = /V (V™ + K 6u) AV — /S nzét?a; dA =0,  (4.2)

up

respectively. In this case the variations §t¥! and §u?, of the force and couple stresses
should meet the side conditions (3.3a) and

n3ét3 =0, nzdu®, =0, £€ Sy (4.3a)
n3du, = 0. €€ Sup (4.3b)
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Side conditions (3.3a) are again identically fulfilled if the variations of stresses are
given in terms of the variations of stress functions in the same form as for the first
problem — see equations (3.4a,b) for details.

Let 7! and wy, be arbitrary differentiable vector fields on Siu, respectively. If the
variations of the stress functions on Sy, are given in terms of the variations of r! and
Wy

§F,! =o', §Hop = 6wy + Epmr’ € € Sy, (4.4)

then side conditions (4.3a) are fulfilled. If the variations of the couple stresses are
given in terms of the variations of stress functions, then substitution of representation
(3.4b) into the side condition (4.3b) yields

nsdp®, = ¥ (SHypr + €6ms6F,)°) =0 € € Sy (4.5)

from which it follows with regard to (6.2,c) that the variations §F,% and 6}"53 can
not be arbitrary but should meet the conditions

(S]-'QQ = —6]:11 — 837m(67'[773||ﬂ. + b;éHng - bnﬂ-(SHgg) R £ € S (4.6&)
5}';)3 = ESM‘SHW;W = %™ (5Hm>|l7r — byr0Hsp — bpﬂ‘SH?ﬁ) - §E€ 5w (4.6b)
Derivation of the equations that follow from the stationary condition (4.2) requires

a lengthy formal transformation which is based on the use of equations (3.4a,b) and
(4.4), (4.6a,b) since their fulfillment ensures that of the side conditions on V and
S. In addition integrations by parts should be performed by utilizing the Gauss and
Stokes theorems. As regards the transformation the details are given in Subsections

6.3 to 6.4. Here we confine ourselves only to gathering the results. Comparison of the
stationary condition (4.2) with equations (6.8), (6.9), (6.13) and (6.15) yields

SKyp =1V + I = IY + I 4 Iy + I3 + 1§ =
S A IS IS = I A I IS I+ IS =0 (A7)

The final form of stationary condition (4.7) is obtained by substituting (6.4) for I,

(6.14a) for If““, (6.16a) for If“‘ and (6.17) for IF + I§' + I§. After making some

rearrangements we have

6K = /V (VXY 6Hxy + D% Fsh)dV + /S e¥N@ = Vg — K L)SH,, dA+

“r/ [5312 (7:61;1 —711) 6.7:21 + 321 (ﬂ2;2 B fYQQ) 6’7:11] dA+
Sup

+/ X% 17 + bpn@” — K, )6 H s dA~
Suu

_/ 312 [figy + fi1sa — (V19 + Vo1 )] 6F, 'dA — / [n3 VP 6wy +nsD3 67| dA
Suu St“

d@® dil
- j{(di — T"/inb)éwb ds — % {% -7 (771)\ + SnABQJg)] srids =0. (4.8)
g g



Kinematic admissibility of strains for mized boundary value problems 199

Since the variations §H xy, . .., ér” in the stationary condition § K;; = 0 are arbitrary
we obtain

— the compatibility field equations

(2.12a);
— the strain boundary conditions
pr”ﬂ' - bgsbS - '%ﬂ'p =0, § € Sup, (49&)
B+ b — R =0, €€ Sup (4.9b)
and
7:&1;1 — Y11= 0 ) 7:L2;2 — Vo2 = 0 ’ 5 S Suu (410&)
do;1 + a2 — (V12 +721) =0 § € Sup (4.10b)
— the compatibility boundary conditions
(2.12b)
on Sy,
and
the continuity conditions
g’ duy .
ds 7, =0, s T (van Henns@’) . Eeg (4.11)

REMARK 4.1.: It can be shown by performing lengthy hand made calculations,
which require some attention, that the fulfillment of the strain boundary conditions
(4.9a,b) and (4.10a,b) ensures that of the compatibility boundary conditions (2.12b)
on Suy -

5. Concluding remarks

5.1. We have clarified what boundary conditions the strains of the micropolar theory
should meet in order to be kinematically admissible if

— microrotations and force stresses
or

— displacements and couple stresses
are imposed on a part of the boundary surface. The corresponding boundary condi-
tions — like those found by Kozdk-Szeidl in 1981 [2], - are referred to as strain boundary
conditions. We draw the reader’s attention to the fact that the fulfillment of the strain
boundary conditions ensures that of the compatibility boundary conditions for both
problems — see Remarks 3.1 and 4.1.

5.2. It is a further issue what form the strain boundary conditions have if for
instance displacements are given in the tangent plane to the surface and force stress
is prescribed perpendicularly to it etc. Investigations to find an appropriate reply to
the latter problem are in progress.



200 G. Szeidl

6. Appendix

6.1. Let b7 and b, be the mixed and covariant components of the tensor of curvature
on S. Further let $* and H., be differentiable vector and tensor fields defined on V/
and S. The covariant derivatives taken on the surface with respect to the surface
coordinates and the surface covariant derivatives are denoted by @”lﬂ, H oy and (,ZJ”HW,
H b, respectively. The following relations hold

R R (61)
Hypim = Hnﬁlﬂ = 7‘(,]/3||7T — meHgﬁ — bﬁﬂHng , (6.2)
Hyziw = Hysje = Hpspjr + b7 6Hyo — byréHas . (6.3)

6.2. Transformation of the volume integral I}’ — see equation (3.2) — requires

— substitution of (3.4a,b) for the variations 6t* and §u?,

— performance of integrations by parts making use of the Gauss theorem

and

— an appropriate rearrangement after utilizing the definitions given by (2.11) for

Y*¥ and D?%,.

In addition one should utilize the assumption in REMARK 2.4. After performing

the steps listed above we have

I =1 +1I} =
— / (VXY 6Hxy + D5 6FGT) AV — / (X 6 F, + ™k, 6Hy) dA. (6.4)
1% S

This transformation is valid both for the first problem and for the second one.
Integral If *? of equation (3.2) can be manipulated into a more suitable form by
applying the Stokes theorem:

f”:fﬂﬁwwm+éEMWMMMAiésmwﬁﬂ%%A
g te to

Substituting (3.5a,b) into the sum Ift“’ + I} and taking the relation S = S;, U Sy,
into account we have

LY I8 =% 4 Y + L 4+ L 4+ 15 + 1€ (6.5)
where

I = / 3W @%)M@NA,J?vz—/ e epnsbrs, @ dA

Ste Sty
g / 3™ Yoy, dA L = —/ ek, 6l dA

Stu Stu

/ 3X”'y l(5r dA, I¢ :7{ TP (6wyyy + epmr') ds
S g

(6.6)
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If we now integrate the right sides of I2S oI f * and I3 by parts — this transformation

is based upon the Stokes theorem — then perform integrations by parts along the curve
g, we obtain

I:f“" + Ift“ + Ift“ + 15 + 16 = —/S g3nx (”/le +5xlb§0bm> ort dA

te
/S

6.3. Substituting equation (3.3a) into the integral If “* and making use of the
Stokes theorem we have:

[n3 6wy + ngD?6r'] dA +/T"(/<nb — ", )owyds . (6.7)
9

tp

=1+ IS = /S ey 5 F,  dA + }{ TS F, dA . (6.8)

wp g

Recalling the relation S = Sy, US, the integral taken over S in (6.4) can be resolved
into two parts

If:I:f‘MrI??W:/ ...dA+/ ..dA. (6.9)
St,u, Suy,
In view of (6.9) it is now our aim to transform the sum

I 4 IS = — / ™ 36H 3 dA — / ™ P§H,5 dA
S S

up upL

+ /S (i, — Vy3) EXPOF, dA + /S (fiaix — Yyr) EXP6F,N A (6.10)

wup up

into a more appropriate form. This aim can be achieved

if we introduce the notations

@ = =¥ (fig;y — Vy3) €€ Suy (6.11)
and

{03 = —¢'? (112;1 - '712) ) §€ Suu (6‘12)

— if we substitute the representation (as a matter of fact side condition) (4.6b) for
6F 3
p
— if we write (4.6b) for 67,2 in the last integral of equation (6.10),
— if we substitute the right sides of the equations

- /S PPV H i n dA = /S TGN My dA + f PP 6H,,, ds
u U

g

— / PP H, 31 AA / e 5 Hy3 A + f{ TG 5 s ds
Sup

up g

each obtained by making use of the Stokes theorem
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and

— if we make an appropriate rearrangement.
After performing the aforementioned steps we get

Iy I = I 4 IS (6.13)
where
Ifw = /3 (€212 (G111 — 711) 6F," +€%'2 (lig2 — 790) 6F, ] dA
UM
_/ €212 [ty + a2 — (Y12 +721)] 6F, " dA
Suu
+ /S g3 [%W — b2 — m,ﬂ §Hyp dA
U
— /S g3 [@5“”” — b @° — ﬁ;‘] §H,y3 dA (6.14a)
uUp
and
5 = 7{ TP 5H,,, ds + 7{ 7136 H 3 ds . (6.14b)
g g

6.4. The integral
ISSt“ = —/ (ESXU’YXléf’I]l + Z':37.‘-”7"<‘-”n'bé7—("7b) dA
Stu

can be manipulated into the form

Iégtu — Ift# + I4G (615)
where
S = / [ns Y™ 6w, + ngD%6r'] dA (6.16a)
St
and
1§ = %T"%l&“é ds + anKan(S’U)b ds (6.16D)
g g

if we substitute (4.4); o for (5.7-",]l and 0H,, and then perform integrations by parts —
the latter step is based on the Stokes theorem.
The sum of the line integrals I + I can be cast into the final form
d~b
I§+I§+1¢ = — f(i—Tnlinb)(wa ds—%
g ds g

i
{% — 7" (Y + Enu3@®) | 67 ds (6.17)

if we substitute (4.4);,2 for 6.7:7]1 and 0H,, and then perform integrations by parts
in order to remove the covariant derivatives from the integrand obtained after the
substitution.
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