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Abstract

This paper studies the plane strain problem of micropolar elastostatics assuming that the governing
equations are given in terms of stress functions of order one. We clarify the conditions of single
valuedness and construct the fundamental solution for the dual basic equations. We then establish
the integral equations of the direct method. Numerical examples illustrate the applicability of these
integral equations.

1 Introduction

In their book [1], the COSSERAT brothers assume that the motion of a material particle is described by a
displacement field and an independent rotation field. According to this assumption a material particle of
the body behaves as if it were a very small rigid body. Under this assumption a correct description of the
interaction on the inner surfaces of a solid body requires the existence not only of force stresses but of
couple stresses as well. The corresponding stress and couple stress tensors are, however, not symmetric.
The COSSERAT brothers did not deal with the issue of the constitutive equations.

The theory was reinvented among others by ERINGEN and SUHIBI [2, 3] and ERINGEN [4] who
supplemented the theory with the constitutive equations. Books [5] and [6] by NOWACZKY provide an
excellent overview on the linear theory of micropolar elasticity

According to the famous TONTI scheme [7, 8] the variables in the equations of mathematical physics
are categorized as fundamental variables, intermediate variables of the first and second kind and source
variables. Problems of mathematical physics can be set up in a primal formulation and in a dual one.
In [a primal]{a dual} formulation the set of field equations involve the defining equations, which relate
the fundamental variables to the intermediate variables of the first kind, the constitutive equations, which
connect the intermediate variables of the second kind to those of the first kind, and the balance equations,
which relate the intermediate variables of the second kind to the source variables. The intermediate
variables of the second kind in the [primal]{dual} formulation (system) coincide with the intermediate
variables of the first kind in the [dual]{primal} formulation (system). In addition the [primal]{dual}
defining equations identically satisfy the [dual]{primal} balance equations.

As regards the primal formulation in micropolar elasticity the displacement and rotation vectors
(together are referred to as displacements) are the fundamental variables, the asymmetric strain tensor
and the curvature twist tensor (together strains) are the intermediate variables of the first kind while the
asymmetric force stresses and couple stresses (together stresses) are the intermediate variables of the
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second kind. The body forces and couples constitute the source variables [9, 10]. Problems in the primal
formulation are governed by the kinematic equations (defining equations), which give the asymmetric
strain tensor and curvature twist tensor (together the strains) in terms of the displacement and rotation
vectors (together the displacements), HOOKE’s law which connects the force and couple stress tensors to
the two strain tensors, and the equilibrium equations (the balance equations) which relate the force and
couple stresses to the body forces and couples (the source variables).

General solutions to the primal equilibrium equations in terms of stress functions of order one have
been established independently of each other by SCHAEFFER [11, 12] and CARLSON [13]. It is worth
mentioning that their solutions are equivalent to each other.

For the dual formulation of micropolar elasticity stress functions of order one are the fundamental
variables, the force and couple stresses are the intermediate variables of the first kind, the asymmetric
strain tensor and the curvature twist tensor are the intermediate variables of the second kind and the
tensors of incompatibility (they are equal to zero in real problems) constitute the source variables. Prob-
lems in the dual formulation are governed by the representation of stresses in terms of stress functions
of order one (dual kinematic or defining equations), the inverse form of HOOKE’s law (dual constitutive
equations), which relates the dual intermediate variables of the second kind (the strains) to that of the
first kind (to the stresses), and the compatibility equations (dual balance equations).

The first plane problem of micropolar elasticity was formulated in the primal system by [14, 5].
Assuming isotropy, Iesan derived the associated integral equations [15]. Schiavone made these results
more accurate and precise for outer regions, and also investigated mixed boundary value problems in [16].
Fuang and Liang [17] developed a boundary element analysis of stress concentration in a micropolar plate
to determine the stress concentration factors for some cases.

A dual formulation for the first plane problem was published in paper [18]. To the best of our
knowledge, the direct boundary element formulation for the first plane problem in the dual system has
not yet been developed. In unpublished work, SZEIDL and IVAN [19] dealt with the formulation of
indirect boundary integral equations and presented some existence theorems.

In this paper, we first investigate the conditions of single valuedness for the first plane problem of
micropolar elasticity. Using these conditions we develop the fundamental solutions of order one and two.
Then we derive the SOMIGLIANA relations both for inner and outer regions. Finally we set up a direct
boundary element formulation and present an algorithm for numerical solutions.

The paper is organized into ten sections. Section 2 presents some preliminaries, and Section 3 clar-
ifies the supplementary conditions of single valuedness. The basic equations and the fundamental solu-
tions of order one are established in Section 4. Section 5 deals with the determination of the fundamental
solutions of order two. The dual SOMIGLIANA relations for inner and outer regions are derived in Sec-
tions 6 and 7. Section 8 clarifies how to determine the stresses on the boundary. The last two sections
present some numerical examples and a conclusion. The paper is closed by an Appendix which collects
longer proofs and derivations.

2 Preliminaries

Throughout this paper z; = x, xo = y and x3 = z are rectangular Cartesian coordinates with origin
O. The coordinate plane (x1,z2) coincides with the plane of strains. The ordered pair (x1,z2) is
denoted by x. {Greek}[Latin subscripts] are assumed to have the range {(1,2)}[(1,2,3)], and summation
over repeated subscripts is implied unless explicitly suspended. The triple connected plane region under
consideration (Figure 1) is denoted by A™ — inner region — and is bounded by the outer contour

Lo=LpnULyULzULyy

and the inner contours
L1 =L and Lo = Ly



Integral Equations in Terms of Stress Functions for the First Plane Problem

which — partly or wholly — consists of the arcs L;1, L3, L15 and L0, L4, Lyus. Here the first {£}[u] in
the subscripts expresses that {displacements }[tractions] are prescribed on the arc considered. The second
subscript counts the arcs which constitute the contours. Note that the inner contours £1 and L5 lie wholly
in the interior of the outer contour £y and they have no points in common. We assume that each contour
has a continuously turning unit tangent 7, and admits a nonsingular parametrization in terms of its arc
length s. The outer normal is denoted by n,. Let d,) denote the Kronecker symbol, 0, the derivatives
with respect to z,, and €3, the permutation symbol.

Figure 1:

Let u, and 3 be the displacement and microrotation vectors (together the displacements); v, and 3
the asymmetric strain tensor and curvature twist tensor (together the strains); and ¢, and 1,3, (13, the
asymmetric stress tensor and couple-stress tensor (together the stresses). Body forces and couples are
denoted by b, and c3. Displacements and strains are assumed to be small. {The symmetric} [The skew]
part of a tensor, say the tensor ¢,.5, is denoted by {Z(xx)} [E<xr>]-

In the primal system the first plane problem is governed by

e the kinematic equations
Kp3 — 930, =0, Vrp — UpOr — €pr3p3 = 0 )

e HOOKE’s law

tex = 21 <7(m\) + W¢¢5m> + 207k (2a)

1—2v
Hy3 = (7 + 5) Ry3, M3y = (’Y - 5) Ry3 (2b)
where u, v, v, v and € are the material constants of an isotropic body, and

e the primal balance equations
Bl,tl,p + bp =0, Oy liys + €3vplyp + C3 = 0. 3)

Field equations (1), (2a,b) and (3) should be associated with appropriate boundary conditions. If a
contour is not divided into parts then either tractions or displacements can be imposed on it. If a contour
is divided into parts then it is assumed to consist of an even number of arcs, with alternating prescriptions
of displacements and tractions. For the inner region shown in Figure 1 {tractions}[displacements] are
given on the arc { £y = L41 U Lis U L5} Loy = Lyo U Lyg U Lyg]. Letters with hats stand for the
prescribed values. The displacement and traction boundary conditions are given by

U = Uy, 03 = Q3 (4a)
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and

~

Nylyp = tp, Nylhys = [ . (4b)

Field equations (1), (2a,b) and (3) should be associated with appropriate boundary conditions. If a
contour is not divided into parts then either tractions or displacements can be imposed on it. If a contour
is divided into parts then it is assumed to consist of an even number of arcs, with alternating prescriptions
of displacements and tractions. For the inner region shown in Figure 1 {tractions}[displacements] are
given on the arc { £; = L41 U Lis U L5} Loy = Lyo U Lyg U Lyg]. Letters with hats stand for the
prescribed values. The displacement and traction boundary conditions are given by

U = Uy, 03 = Q3 (5a)

and

nyty, = tp, Ny by = I . (5b)

In the dual system the first plane problem of micropolar elastostatics [20] is governed by

e the dual kinematic equations

o
tﬁp = eﬂugaﬂfp + tﬁp y (68.)
Hyv3 = €pr3 (aﬂ'H + 637rp-¢p) + ﬁyS (6b)
which give the stresses ¢, and p,3 in terms of stress functions of order one F, and H while g,,p

and ﬁy3 are particular solutions of the primal equilibrium equations,

e the inverse form of HOOKE’s law (dual constitutive equations)

1 1 v
Vrx = @t(m) + o ten — ﬂtqs&m ; (7a)
1
- s 7b
K3 5 pUZE (7o)

e and the compatibility differential equations (dual balance equations)
E= 637rp"’<Vp3a7r =0 Dp = €um (77rp811 + 671'p3/431/3) =0. (8)

REMARK 1.: If 4 > 0,v+¢& > 0,a > 0, v € (0,0.5) then the strain energy density

1(1 1 1
e(tin, - p2s) = 5 {2u (tntmn) = Vigolpp) + Jtemrstamrs + Wﬂpgupg} ©)
is strictly positive provided that at least one stress component is different from zero.
REMARK 2.: For plane problems there are four independent material constants: u, v, « and y + €.
It is customary to introduce the characteristic lengths I, /1 and the coupling number N which are defined
by
[2
gorte 2o teuta) L (10)
4u dua i pt+a
If ['and [; tend to zero, the equations of micropolar elasticity simplify to those of classical elasticity. If
N tends to 1 we obtain the equations of the couple stress theory.

REMARK 3.: The stress representations (6a,b) (the dual kinematic equations) are solutions to the

N2

)

o
primal equilibrium equations. The particular solutions ¢, and ﬁyg have the form

o

o
trp = aﬂ'pp ) Hy3 = €u3nPn + Orq
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in which
App = _bp ) Ag3 =c3 .

These representations were found found independently of each other by SCHAFFER [12] and CARLSON
[13].
REMARK 4.: There belong no stresses to the stress functions

o o

F :fp and H:,}?[_E?ﬁrpxwfp (11)

o o
where F, and H are arbitrary constants. These stress functions correspond to the rigid body motion
which causes no strains in the region under consideration and are referred to as dual rigid body motion.
REMARK 5.: There are no strains due to the rigid body motion

Up = Up + E3npTaps  and 3= Py (12)

where 7 » and 9%3 are arbitrary constants. These displacements correspond to those stress functions caus-
ing no stresses in the region under consideration.

REMARK 6.: The primal kinematic equations (1) are solutions to the dual balance equations (8).

REMARK 7.: If the compatibility differential equations or, equivalently, the dual balance equations
are satisfied, then the strains 7, and k,3 are compatible on a single connected domain, i.e. the primal
kinematic equations have one solution for the displacements u,, and 3 provided that we disregard rigid
body motions.

Field equations (6a,b), (7a,b) and (8) should be associated with appropriate boundary conditions.
Kozak and Szeidl [21] have shown that the strain boundary conditions

di

TrnVmp = % + 7—7r5p7r3953 ) s € Ly (13a)
dé

Teking = 7;;3 , s €L, (13b)

correspond to the displacement boundary conditions of the primal system.
Consider now the boundary conditions on arc £;. Using equations (4b) and (6a,b) we have

.o dF,

tp —tp =Nrem3 (Fp0y) = s se Ly (14a)
. o dH
f— p=nrerz (HOy + €3,,F)) = i npFp, s € Ly (14b)
where S
tp =ng (pp0y) , po=mn, (€p3nPn + q0,) - (14¢)
To solve the differential equation (14a), let
s o
F(s) = / (o)~ 1y(0)] do.  selu. i=135, (15)
P

and let C,, (i = 1,3, 5) be constants of integration. Then any solution of (14a) can be written as
(ti)
Fo(s)=Fp(s)+C, s€Ly i=1,35. (16)
(ti)

This equation is one of the boundary conditions for the arc L;.
Let H (s) be a solution to the differential equation
. d

fi—p = £ﬂ—np.7:"p (17)
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Integration yields
S
H(s) = / [ﬂ(a) — (o) + n,Fy p] do . (18)
P;
Subtracting equation (17) from (14b) and then using (16) we obtain the differential equation

d ~
£(H—H)—npg§=o

which implies the boundary condition

H(s) =H(s)+ g) — €30p [T () — 2:(Pu)] C, s€Ly i=1,35 (19)
: (ti)

where (C’) is a constant of integration.
ti

3 Supplementary compatibility conditions

The compatibility field equations (8) do not guarantee single valuedness of the displacements if the region
is multiply connected or if tractions are prescribed on more than one boundary arc. In this section we
derive compatibility conditions for these cases as well from the principle of minimum complementary
energy. As is well known, the total complementary energy functional is

1 . A
K= _5 /A+ (tﬂ'p%'rp + NV?)’{VB) dA + / (nﬂ'tﬂ‘pup + nuﬂu3@3) ds . (20)

u

The stationarity condition

0K = _/ (YrpOtrp + Ku3opus) dA +/ (Ot rptiy + 1 0p3p3) ds = 0 @1
A+

u

ensures that the strains v, and x,3 satisfy the conditions to be kinematically admissible. In the func-
tional (20) vpand k3 are given in terms of the stresses ¢, and j,,3 via HOOKE’s law while the stresses
t.x and w3 should satisfy the equilibrium equations and the traction boundary conditions. Consequently,
the variations of stresses can not be arbitrary but should meet the side conditions

Onltnp =0,  0y0pu3 + €30ty =0, z€AT (22)
Nrltr, =0, nyouys =0, seLy. (23)

Both (22) and (23) are satisfied if 6¢,, and d 1,3 are expressed with the stress functions and the integration
constants introduced in (16) and (19) as follows

Otrp = €xp30u0F, , O3 = €ung (OnOH + €37,0F,) r € AT

5F,(s)=06C,, i=1,35 seLly (24)
(ti)
6H (s) = 6H (s) + ((stc) — €310p [0 (5) — T(Pui)] 5(cp) ., i=1,35 sely. (25
¢ ti

Substituting equations (24) into the extremum condition and applying the Green theorem we have
0K =0Ks+ 0K+ 0K, =0 (26)

where
5KA:—/ [Dpéfp—i-E(SH]dA:O 27
A+
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and
(SKE = / (nH6uﬁ37wp 5fp + Nr€rp3ky3 5H) dS (283)
L,ULy
(5Ku = / [nﬂ€7ru35]:pauﬂp + NyEuyyp3 (5Ha¢ + 63¢p5fp) @3] ds. (28b)

To derive the final expression for K 4+ 0 K,,, we combine the following observations:
® Nperu3 =Ty and L = L, U Ly;
e the variations of stress functions on £; are given by (24) and (25);

o the variations of stress functions are continuous on £ including the points Py, P, Pis and Py as
well;

e the desired result can be achieved if we perform partial integrations when transforming § K, and
take the continuity of the stress functions into account.

Building on these steps, we can integrate by parts the expression for d i, and use the continuity of the
stress functions to obtain from (28a) and (28b) the following result:

§Kp+ 6K, = (29)

A~

da,, R dps
= T Ymp — — Tr€prr 0F,d ThRr3 — OHd
/LU{TW,, s 7'6,,3903] .7-",)5—1—/ [7'/4,3 ds} Hds+

+% Trkr3dsd C +7{ Tr [Yap — Kr3€p30 (To — 2o (Pis))] ds 6Cy+
L5 (t5) Lys (t5)
+ Z {/ Tﬂfﬂﬂgds — (,53 ‘I;Z’,Hl} ) C-l-
i=1,3 \/ L Z ()

B Z{ fi:ti T [Vmp = Kns€pso (To — 2o (Fis))] ds—

i=1,3

~ Py ~
_ UP‘PZ +1 -+ P3€p30 (:CU (Pt,i—i-l) — Ty (Pti)) }5(Cp) .
ti

Since the variations are arbitrary in (27) and (29), we obtain four groups of equations:

— the compatibility conditions on A™:

E(z) =0, D,(x)=0; 30)
— the strain boundary conditions on L,:
di dgs

TSP - 7_7T€p71'3¢3 =0, Takng — —— =0 (3D

TrnVmp —
— the compatibility conditions at large on £;:
f Tr [’Yﬂp — Rr3€p30 (xa - xU(PtF)))] ds =0 5 % 7-7r/<57r3d3 =0 ) (32)
El El

and
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— the supplementary boundary conditions on £

P
j{ Tr [Yrp — Fin3€p3o (Lo — 2o (Pis))] ds — iyl p, o (33a)
Ly
+ @3€p30 (2o (Prit1) — % (Pu)) =0,  i=1,3
/ Tatimads — @3 | =10 (33b)
Ly

REMARK 8.: It can be shown that only two of the three macro conditions of compatibility — the com-
patibility condition at the large (32) and the supplementary conditions of single valuedness (33a,b) are
independent of each other. Since each of these conditions involves three equations, we can set three of

the nine undetermined constants — for example, (C) and (C) p — to zero. This follows because no stresses
t1 t1

belong to the corresponding stress functions

Fp(s) = (g)p and H(s) = (% — €3p [Tk (8) — Tk (Ps)] (g)p .

As a result, the number of independent macro conditions for single valuedness equals the number of
undetermined constants of integration.

4 Basic equations and fundamental solutions of order one

Here and in the sequel we shall assume that there are no body forces. Substituting the dual kinematic
equation (6a,b) into HOOKE’s law (7a,b) and the result into the compatibility equations (8) we have

1 1 1-— 1 1 1
{— ( + ) 0101 — —— D20 + ] Fi+ ( - - ”) 0105 F>—
2 Y+e 7 7

p Ao + 4 4o 2
1
- MHH=0, (34
e (34a)
1 1 v 1 1 1—v 1
(35 3) aomr |- (g = S50+ | =
1
— OH =0 34b
s "H , (34b)
1 0o F1 — L 8.7-"—LAH—O (34¢)
vte T e T e T

The quantities that can be prescribed on the arcs constituting £,, are obtained from equations (13a,b):

1—v 1 1
TiY11 + T2Yo1 = { T102 — < + ) 7'131} Fi+

2u p Ao
ALY e s Xrale 6
1 o T202 QMTI 1o 2

1 1 1%
T1Y12 + ToYe2 = {( > T101 — 7'282} Fi+

4u_£ 2u
1+ 11
o4 (— 4 — | ot B (36)
7 4 4o
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1
T1K13 + ToKao3 = m {*Tlfl —1Fs + T182H*7'261H} 37
Let
1 _
G0 -Y) o8
21

be a new constant. It is obvious — see REMARK 1. for details — that a > 0. After multiplying equations
(34a,b,c) with v+ ¢ and straightforward manipulations we arrive at the basic equations in the dual system
of the first plane problem:

(1 — [2A)f1 + ([2 — a)(]-'182 - .7'-281)62 —H=0 (39a)
(I — a)(F10s — F201)01 + (1 — PA)Fy + OH =0 (39b)
OF1 —OhFo—AH =0 (39¢)
or in matrix form
@lkuk =0 s (40)
where
1— 1A + ([2 — a)(‘3282 —([2 — Cl)@lag —09
Dy = —(2 — )81, 1-CA+(P—-a)0101 & 41)
O -0 —-A

is the corresponding differential operator and
ug = (.7:1 ’.7:2 ’H) 42)

is the vector of unknowns, i.e., the vector of stress functions or the dual displacement field.

REMARK 9.: The system of differential equations (40) is elliptic if the material constants meet our
preconditions — see REMARK 1. for details.

Let Dy be the cofactor of D j:

[Dri] =
— [1 —2A + ([2 — a)aﬂ A+ 8% —([2 — a)A6182 + 0109 (1 — [QA)aQ
= —([2 — a)Aagéﬁ + 0904 — [1 —I2A + ([2 — a)@%] A+ 622 —(1 — [QA)(%
—(1 - 12A)0, (1—-1PA)0, (1—1PA)(1 - ad)
(43)
It is obvious that
D@y = D Diy = det(D ;) 0y (44)
where
det(D;;) = a(l — PA)AA (45)
If we introduce a new unknown x; [22], [23] defined by the equation
u, = Dixa (46)
and substitute it back into equation (22), we obtain an uncoupled system of differential equations
Dkt = D Digxy = det(Dj1)x; = 0. 47)

Let Q(&1,&2) and M (x1,x2) be two points in the plane of strain (the source point and the field point).
Further let e with components e; be a unit vector at (). We shall assume temporarily that the point Q) is
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fixed. The distance between () and M is R, the position vector of M relative to Q is r,. We call the
solution of the differential equation

Dupu + (v +€)6(M — Q)er = 0 (48)

in which §(M — @) is the Dirac function the fundamental solution. It follows from our earlier arguments —
see in particular (45), (46) and (48) — that the fundamental solution can be obtained from the fundamental
solution for the Galjorkin functions Y, i.e., from the solution of the differential equation

Dty + (7Y +)0(M — Q)e; = a(1 — BA)AAY; + (v +)0(M — Q)e; =0 (49)
Let . o2
B=g  and  a= 7;26 - 1*1 - (50)
be further constants. With this notation, equation (49) implies that
(A=) AAy; = ad(M — Q)e; 1)
Consequently
Xi(M,Q) =x(R)e;  x(R) =— 8:k - [PR*In R+ 41n R + 4K,(kR)] (52)

are the solutions for the Galjorkin functions — see [15], [24] — where K, is the modified Bessel function
of order zero. As is well known [25]

22 24 1 =z 22
Ko(z)——lnz—Zlnz—6—41nz—..., Kl(z)—;+§lnz+1—61nz+... (53)
and
T T
K(2) =) e%4.... Ki(2)=4]2e"+.... 4
(2) 5, T 1(2) 2,¢ T (54)

are the expansions in series if z — 0 and the asymptotic expansions if 2 — oo. In addition

L N dK,(kR)
A=Azt g2 Rl e
iRz " RdR' 4R 1(kR) 55)
dKi(kR) 1
Lo = [Ko(kR) + kRKl(kR)} .

Here the () or M superscript means that the differentiation applies with respect to the coordinates of the
point () or M. We will continue to use this notation below. Let

E(z)=(Ky(2)—1/z2) /z and D(z)=Ko(z) +2(Ki(2) —1/2) /=2 (56)

be further functions that simplify notation. Substituting the expansions in series (53) we have

. 1 ) 22
il_r)%g(z)filnz, il_r)r(l)D(z)f—glnz. (57)
Using equations (55) and (56) we obtain
dE(kR) D(kR) dD(kR) 2
IR 7 and IR kK, (kR) 7 (kR) (58)
It is also not too difficult to check that the following equations hold:
ra d 1 d?>  SapR® —rorg d
%= TFar %B= g |gm T R ar|

10
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4kr 1
_ 2 o o _
OaX = . k:4 {k ra(2InR+1) — 7 [Kl(kR) kR]}
a 2 4I€Ta
& 4{k ra (2In R+ 1) 7 S(kR)} ,
_a 9 5agR2 + 2rarg
8a85x = Srkh {k |:26a6 In R+ T -
4k ., 1 4k;2rarﬁ
~ s [R daB — 2rar5] [K (kR) — kR] + R Ko(kR)p , (59)
Ay = IR+ Ko(kR) + 1], 8aAx = —ra&(KR)
27rk2 2w
. i TaTg _ _i
OadsBX = - [(mg(m) o D(kR)} AAY = = Ko(kR)
Combining relations (43), (46) and (52) we have
up = e1 D11 +eaDiox + ez Digx =
—— —— ——
MCE] I I
=er {[1-PA+(P—a)df] A—0F} x+e2 [(IP— a)Ad19y — D102 X +e3{(1 — PA)D} x
(60a)
ug = e1Dor X + e Daox + ez Dogx =
~—— ~—— ~——
21 oD o3
=e1 [(I — a)Add1 — O] x +e2 {[1 — PA+ (P —a)d?] A — 95} x — e3(1 — PA)dry,
(60b)

ug = e1 D31 X + eaD3ax + e3D3zx =
e S~~~ e
$l31 $U32 sz
=e1 { (1-12A 62} X + e2(1 — PA)drx + e3 {(1 —A)(1 - aA)} x . (60c¢)

We can check using the derivatives (55) and (59) and the asymptotic relations (53) that only AAy and
Ad?x/dx,0z s are singular among the derivatives AAYX, Ad*x /02,013, ADX /0T 0, AX, 02X /010075
in equations (60a,b,c) if R — 0:

- 2 S
AAx = 5 InR, AO“x /0,023 27r6aﬁ InR. (61)

Omitting the formal transformations, we obtain from equations (46), (52), (55) and (56) that

W = ex(Q) U (M, Q) (62)
in which
Uas(M, Q) = # {M B In R+ Z + akzg(kR)] - T}?f B + ak%(m} } . (63a)
a o 1 1
S (M,Q) = ~as(M, Q) = 555 (-)/raco (3R + 1) | (63b)
1
$33(M, Q) = —Z:k { R’InR — <k2 ) ~ alnR} (63c)

11
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are the elements of the matrix of fundamental solutions.
REMARK 10.: The fundamental solution x; (M, Q) satisfies the symmetry and asymmetry condi-
tions

i/(k;l(]\4a Q) = ukl(Qa M) ) uaﬂ(Ma Q) = uﬁoc(Ma Q) y i/[301(]\4 Q) QS(M Q) (64)

REMARK 11.: The [rows]{columns} of the fundamental solution ${;(M, Q) as three dimensional
vectors satisfy the fundamental equation (40) if [M]{@} is the independent variable and {Q}[M] is
fixed.

REMARK 12.: Using (57), which gives the singular part of £(z), and the formulas providing the
material constants (38) and (50) we obtain the decomposition of L (M, Q) into singular and nonsingular
parts:

S N
where
S 1 b 0 0 u 21
Ug(M,Q)==—10 b 0 |InR inwhich b= + and d=~v+¢. (66)
27 l1—-v o+
00 d H

5 Fundamental solutions of order two
5.1 Calculating stresses from the fundamental solution of order one
In the absence of body forces the particular solutions arp and ;Oz,jg are equal to zero in equations (6a) and

(6b). Substituting the stress functions (62) into equations (6a,b), which give the force and couple stresses
in terms of stress functions, we have

tin =wdr = €(Q) U (M,Q)0s , tia = up0s = €(Q) L2 (M, Q)0s (67a)
————— ————
S (M,Q) S12(M,Q)
tor = —u101 = —e(Q) U1 (M, Q)01 tag = —u20; = —ei(Q) th2(M, Q)01 , (67b)
——_— —— ——— ——
—Si13(M,Q) —8514(M,Q)
piz = uzdy —up = €(Q) Wiz (M, Q)02 — (Q) U1 (M, Q) , (67¢)
— ——
M1 (M,Q)
p23 = uz0a — uz = €;(Q) i3(M, Q)01 — e(Q) Un (M, Q) . (67d)
— ——
Ml2(MaQ)

Appendix A contains the matrices S;y (M, @), N = 1,2, 3,4, and M, (M, @), since these relations can
also be used in those equations which provide the stresses at the the inner points.
Using (63a), (63b) and (63c), after further derivation we find that the force stresses are

a 1
2mk? eﬂpgﬁ

— ak? (5a,67’p + 5aprg + 55;)7’04 —4

1 ralgT
tra(M,Q) = {2 (5aﬂrp — Saprs — Ogpra + 220 f’)

R2
Tarﬁrp) D(kR) + ak2akaK1(kR)} es(Q)+

R2
o 1 1 r3_aol
T or k?e””?’( e [63_6“”’ <2lnR+4) - 3232/3] () €

12
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while the couple stresses are

1ins (M, Q) = —“{(—1)<ﬁ>e,,p3 [53[,7,) (; In R+ i) T T”’T”] es(Q)+ (69)

+ {m [; R+ 2 + ak2g(m)] - [; + akJQD(kR)} } e5(Q) + (~1)rs_ (; R+ i) eg(Q)}

which belong to the fundamental solutions. Note that in the above equations the Greek powers in paren-
thesis, i.e., () and (), coincide with the free index v and the summation index (3.

5.2 The strains that belong to the fundamental solution of order one.

Substituting the force and couple stresses (7a) and (7b) into the HOOKE law we obtain the strain tensor
Yx and the curvature twist tensor x,3:

1 =CG1(M,Qer(Q),  C=a/dmuk’R* (70a)
1 2
Gin = 5 {(1 —W)ra 27}5’2} — ak? (rg - 47}{7;) D(kR) + ak? ”};"2 kK, (kR) (70b)
2 2 2
Grio = f% {(1 — )y — 27"]1%22} — ak? (rl - 4?) D(kR) + akQ%kKl(kR) , (70c)
2G113 = —(1 - 20)R*(In R+ 0.5) + vR* — 2 (70d)
’712 =C ngk(M Q)ek / Y21 =C ngk(M Q)ek(Q)/Q (71a)
g r2 — rZ —r ,u
Q;i =r { 2 7 i + 2ak? (1 22 ) (kR) + ak?-2 = 1kK1(kR)} aak%leKl(m) ,
(71b)
Guizo _ (18— rd g () o7 PRELL Tl 4% % (kR)| + Eak?ryREK, (kR)
Gor12 2 R? ¢ R ! a 2 ! ’
(71c)
G2z = Go1z =172, (71d)
’Yzz =CGaa (M, Q)ek (Q) s (72a)
1 2 riry 2772
Goo = 5 | (1= 20)rz ol R2 +ak? (r2 — 45" | D(KR) — ak* 2" KKy (KR) | (72b)
1 2 2 2
G = — [(1 — W) + 27“]1%22} + ak? (rl - 47“]1;2> D(kR) — akQ%kKl(kR) , (72¢)
2G903 = —(1 = 20)R* (In R+ 0.5) + vR* —r] , (724d)
a 1
13= 53 TK13k<M>Q)€k(Q) ; (732)
2 7"% rire2 .o
’C131 = —ak 5(/€7‘) — ﬁ'D(kJR) y IC132 = ﬁ ak D(k‘R) s ’C133 = ClR2 5 (73b)
a 1
R23 = mm’cwk(M,Q)ek(Q) ; (74a)
Koz = 2 ak2D(kR Koss = —ak? l€(hr) - 2 DR Kozs = —a— 74b
281 = “pp @ (kR) , 232 = —a (T)_ﬁ (kR)| , 283 =~ 75 - (74b)

13
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The dual stresses are defined by equations
= T171a + 7272 and {3 =TiK13 + T2K23 . (75)

Note that these quantities constitute the right sides of the strain boundary conditions (13a) and (13b). We
now introduce the following additional notation

o —1_1 2 1@DT? 100k2_1 422 ) pikR) — ki M%- 76
01_5(_’/)_(_) ﬁ‘*‘(—) a ) ( )_E 1(kR)| , (76)
o —1_1 2 1@h%_ Jﬁmk2_1 R P 7%M(kR_ 77
p2—§(*l/)+(*) ﬁ*(*)a ] ( )*E (kR)| ,  (T7)
1 1 R?2 r2
_ . 2 (= I 3—kK
&3, = (1-2v)R (21nR+4> v + 5 (78)
1 (r2 42 2 .2 2 .2
%m—Q{%RJl—@4WMM¥O-«-Mmfzp”>D@Ry+wﬂ5R“kKﬂma}+
(79)
+GJ%“%§M3RkKﬂkR%
Kp3 = —ak® [R*€(kR) — r2D(kR)] (80)
\1113 = \1123 = rlrgakzD(kR) . (81)

Substitute now the strains (70a),...,(74b) into the definitions of the dual stresses (75). If we then use the
notation (76),...,(81), we obtain

t, = e (Q)T (Mo, Q) , (82)
where
1
T (M, = 83
(Mo @) = 5o (5%
_ 9 i
—nara®11 + 1P nire®io — nariWia (77"/?5) (—n2i3 +n1Wq3)
2
X | nar1®or +n1raWar —nir1Pog — noroWoo Gt (—n1Kao3 + noWa3)
1 2
i no®31 + §n17“1r2 —n1 Py — §n2r1r2 —ﬁa (n1r1 + nary) |

The last equation is the formula for calculating the dual stresses t; (brought into existence by the incom-
patibility e; = €;(Q)) at the point M, on the boundary where the outward unit normal is n; = n;(M,).
REMARK 13.: The matrix % (M., Q) is that of the fundamental solutions of order two.
REMARK 14.: Matrix T;;(M,, @) can also be resolved into a strongly singular and a non-strongly
singular part:

S N
(Mo, Q) = T (Mo, Q) + Zyie(Mo, Q), (84a)
where
[ OInR OmR ]
877/ o g 88 o
M M
S 1 OlnR OlnR
T(M,, Q) = "o | 95 o 0 (84b)
M M
OlnR
0 0 on o
L M -

14



Integral Equations in Terms of Stress Functions for the First Plane Problem

and

1 2u
- - . 84
I=50-0) a+n (84c)

N S o
The singularity of matrix Tg;(M, Q) is weaker than that of matrix Ty (M, Q).
This statement can be proved as follows. Recall that the dual stresses t; are obtained from equations

(35) provided that the stress functions F7, F» and ‘H are those obtained from the fundamental solutions.
Consequently we can write

gq{iu1bmmﬁﬂwy@mmm+m{@1Q)um@m(;+i)ummmﬂ+
+ 62{27; [(1 = v)(D1202x) + v(D2201X)] + 72 {(41:1—1 410[) (D2202x) — (41u + 41a> (D1281x)] }+
To1
+@{2ﬂﬂm@m%m+uw%QMH7gKit4;>@m%m(Lt%;>ﬂhﬁwﬂ}
T3

(85a)

= {—T (1= )(Dnndhy) + v(Durdo)] + 71 [(1 - ) (D2182) - (1 * 1) (D ”a”‘)] }+

20 4 Ao 4 Ao
T2
+ead =2 (1= 1) (Dasdix) + v(D120ax)] + 71 | [ = = 1) (Daadn) = (= + =) (Do) b
€2 2/1 14 2201 X v{lUi1202X T1 4M dov 2202X 4M dov 1201 X
Too
4 esd = T2 [(1 = ) (Dasdi) + v(Drade)] + 71 | [ = ) (Dasdor) = (= + =) (Disdrx)
€3 % 14 2301 X V(1302 1 i o 2302X i o 1301 X
T32

(85b)

ts = o {71 [(D3102x) — (D11x)] + 72 [(=D3101x) — (Da1x)|}+
T13
+ 627 s {71 [(D3202X) — (D12x)] + 72 [(—D3201x) — (D22X)] }+
To3
+ ey 41_ - {1 [(D3302x) — (D13x)] + 72 [(=D3301x) — (Da23x)]}  (85¢)

T33

Note that these relations provide the elements of the fundamental solutions of order two directly in terms
the GALJORKIN function Y.

In the sequel we shall demonstrate how to determine the singular parts for the diagonal element
%11 and the off-diagonal element T15. First we substitute the derivatives of x from the equations (59).
Then we keep only those terms on the basis of equation (61) which contain the derivatives of the weakly
singular In R. We remark that the interchangeability of the derivations might be needed to identify the
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nonsingular terms. Finally we use definitions (10), (38) and (50) of the material constants. These steps
imply

S 1 1 1 1
Tu = 2% [(1 = »)(D112x) + v(D2101x)] + 72 [(4,u - 4a> (D2102x) — (4# + 4a> (D11(91X)] =
= 2% 1—v) [~ (1 - PA+ (12— a)d?) A+ 0% dax + v [(—(1 — a) 2820y + 320:) i x] ¢ +
non singular
1 1 2 1 1 9 9 ) ) N
+Ty 1 1o [(—(P — a)A201 + D201) o] X) — 1 + o [ (1-PA+ (P —a)d7) A+ 07| Orix| ~
non singular
1 1
~ % (1 — V)[2AA82X} — T2 |:<4M —+ 4a> [_ (1 _ [Qa% _ [285 + ([2 N a)alz) A+ 8%] 81X:| ~
1 1
o~ *;L;(l —V)EAAD Y —m <4M + 4a) al (87 + 03) O1x =
_ 2
- _nQML% InR— nlia “‘#aaiag R — _ialnR .
20 2m p o 2m 2m On o
N———— | S — M
=1 -1

For ¥, a similar argument yields

% _2% [(1 =) (D2101x) + v(D1ad2x)] + 11 K‘llu - 410[) (D2185x) — (;ﬂ + 41a) (D1181X):| =
= =5 (1= 9) (P = 02010, — 0:02) ix+v (1= PA+ (P — 0)0F) A= 0F) Do} +
+tn [ (;M - 42) [(1-PA+ (P —a)d7) A -] dix + <41M + 4104) (12 = Q) A8, — 0105) azx} ~
o 4% {20003} Oox + 4%& (o — ) (203 +ad?) A + (a + p) (1 — a) ADZ] Dy ~

~ 4;—2 {2av? A5 — 21007 } Do x + 4;71a [(a = p) (PAJS + ald) + (a+ p) (P — a)Ad3] dix =

1 a

_ ?m {2041/[23% — QuaafA} To0e In R +
T

T [0 =) (P +0) + (a0 (P = o)) mdyIn R =

1 1 m 1 1 24 | OlnR
=— - 0 O1)InR=— - .
2r [2(1—v) a+p (7202 + 1101 In 2 |12(1—v) a+p 851&

For the other cases the procedure is basically the same.

6 Dual Somiglian formulae for inner regions

6.1 The dual Somigliana identity

In this section we assume that the region under consideration is the simple connected inner region A™
depicted in Figure 2.

The functions Fy,, H, tecx, Hu3, Vex and k.3 are called an elastic state of the region AT if they
satisfy the field equations (6a), ... ,(8). Let

f’ll)a Ha tli)\a Hu3y YeXs Ku3

and
* *

* * * *
fi/n Ha tﬁ)ﬂ ,U‘V37 75)\7 Ky3

16
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Figure 2: A simply connected inner region

be two elastic states of the region A", Integrating by parts the compatibility differential equations (8)

(the weights are .7-" and H) using equations (6a) and (6b) and noting that because there are no body
forces the partlcular solutions for the stresses and couple stresses are equal to zero, we obtain

/ €3um (%rp(‘)u + éﬂpgﬂug) ~7:p dA + / €39 HV38¢H dA =
At At
= ?{ TaYrpF p ds —l—% Tyky3H ds+
Lo Lo

+ /A+ Erp3 (.7:,,8#)%,; dA + /A+ Evep3 (H&p + 6¢p3fp)/£,,3 dA . (86)

REMARK 15.: The value of the area integrals on the right side does not depend on whether the
asterisk is over the first or the second variable in the products. This can be seen if we express the strains
Yrp and K3 in terms of stress functions using equations (6a) and (6b) which provide the stresses in terms
of stress functions and then the HOOKE law.

The dual SOMIGLIANA identity is obtained if we move the asterisks from their original position to
the variables which belong to the first elastic state, and then subtract the original equation (86):

/ fp €3um <’>§/7rpau + €rp3 /tLH3> dA — / H €3¢yv (;::l,gaw) dA—
At At
Up (/Qpﬂjl) us </©31fll)

- / €3um (%rpau + €rp3 ’fp?)) fpdA + / €3y (Ii,,gaw) HdA =

— ¢ Fordods— ¢ Hrd ds—%’r }ds+f roksHds . (87
fzo p 7r'Y7rp f;ﬁo * 3 . T Yrps p . 3 ( )
up?:p uzts

On the right hand side we have the weighted integrals of the basic equations with the dual displace-
ments as weights. The left hand side involves the products of the quantities on which boundary conditions
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can be imposed. Consequently the SOMIGLIANA identity can be cast into a form similar to the Green
identity of the potential theory. Introduce first the notation

"D =Dp/(v+e). (88)

where "Dy, is the operator of the basic equations (34). Using (41) and (42) with equation (87), after some
manipulations we obtain

"Dyt ) — it (D M:%[?—ﬁ]d. 89
/A+ {uk( k:lul) uy, ( k:lul)} . wt; — tuy | ds (39)

which has the same structure as the Green identity [26].
REMARK 16.: In the argument leading to (89) we did not use that the quantities ﬁk and uy, are elastic

states of the region A™. Consequently (89) always holds provided that ﬁk and uy, are arbitrary functions
that can be differentiated as many times as required.

6.2 The dual Somigliana formulae for inner regions

To derive the dual SOMIGLIANA formulae we shall assume that u;(M/) is an elastic state of the region
AT, Suppose that the other elastic state, denoted by *, is the one which belongs to the fundamental
solutions:

W(M) = e, (QUu(M,Q), (M) = ex(Q)Tw(M, Q) (90)

The latter is singular at the point (). Depending on the position of the point Q relative to the region A™,
we distinguish three cases — two of them are shown in Figure 3.

1. If Q € AT, then we first remove the neighborhood of @) with radius R., denoted A. and assumed
to lie wholly in A™, from A™; and then we apply the dual SOMIGLIANA identity to the double
connected domain A’ = AT\ A.. Note that the contour L. of A. and the arc E;, which is assumed
to be the part of the contour £, lying within A" coincide with each other.

2. If Q = g) € OA = L,, then the part ATNA_ of the neighborhood A. of Q is removed from AT and
we then apply the dual SOMIGLIANA identity to the simply connected region A’ = AT\ (ATNA,).
In this case, the contour of the simply connected region just obtained consists of two arcs, the arc
E; left from L, after the removal of A, and the arc E;, i.e., the part of £, that lies within A;.

3. IfQ ¢ (A' U L,) we apply the dual SOMIGLIANA identity to the original region A™.

Since both ﬁk and uy, are elastic states the surface integrals in (89) are identically equal to zero.

Figure 3:
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We now consider each of these three cases, focusing on the main steps of the argument.

1. If @ € A; then substitute (90) into equation (89). This yields

74 (Th(Mo, Qui(Mo) — (Mo, Q)t(M.)] sy, +
+ﬁ [Tkl(Mo,Q)ul(Mo) —ﬂkl(Mo,Q)tl(Mo)} dSMO =0. (91)

Substituting the singular and non-singular parts of the fundamental solutions (M, @) and
Tr1 (Mo, Q) into the left sides of (92a) and (92b), using equations (66), (84a,b) and noting that
the limit of integrals involving the non-singular parts is zero, we obtain

PEILIO ji Tt (Mo, Q) [w(Mo) — w(Q)] dsm, =0, (92a)

lim gkl(Mo, Q) dSMO = 5kl and lim ukl(Mo, Q)’q(Mo) dS]wO =0. (92b)
R:-—0 Le Re—0 Le

Substituting these limits into equation (91) yields the first dual SOMIGLIANA formula
u(Q) = 7{ Uit (Mo, Q) (Ms) dsnr, — f Tt (Mo, Q)w(Mo) ds, - (93)
Lo Lo

REMARK 17.: Given the dual displacements (stress functions) uy (M, ) and dual stresses (the corre-
sponding displacement derivatives) ty (M) on the contour £, the first dual SOMIGLIANA formula
provides the elastic state uy(Q) in terms of two determinate integrals.

I Q = Q. € 0A = L, then repeating the logic leading from (89) to (91) we can write

%l [‘Ikl(Mm Qo)ul(Mo) - i/[kl(]\4o; Qo)tl(MO)] dSMo+

o

+ fz/ [Tht (Mo, Qo)ur(Mo) — Uyt (Mo, Qo)ti(Mo)] dsyr, =0, ©4)
where
Rlim0 , Tt (Mo, Qo) dsar = cxi(Qo) - 95)
S Ls

We remark that ¢ (Qo) = dx;/2 if the contour L, is smooth at at the point Q.. If not then ¢y (Q)
depends on the angle formed by the tangents to the contour at (). In addition

lim [ U (Mo, Qo)ti(Ms)dsyr =0, (96a)
R-—0 L’E

Jim [, Ty (M, Qo) [ (M) — w(Qo)] dsy = 0. (96b)

Combining equations (95),....,(96b) for the limit of equation (94) when R. — 0 we obtain

e (Qu)ur(Qo) = 75 $0(Ma, Qu)ty(M.) dspr, — 74 Tp(Mo, Qo) (M) dsag, . (O7)

Lo Lo
This result is the second dual SOMIGLIANA formula for inner regions.

REMARK 18.: The integrals in (97) are to be taken in CAUCHY principal value.
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REMARK 19.: Since at a point of the contour £, either the dual displacements (stress functions)
u; (M) or the dual stresses (displacement derivatives) t;(),) can be prescribed, the above integral
equation is suitable both for determining the missing u;(M,) at a point ) where t;(M,) is known,
and for determining the missing t;(1/,) at a point ) where u;(M,) is known. Given these quanti-
ties on the whole boundary £,, we can use the first dual SOMIGLIANA formala for computing the
field variables (stresses and strains).

3. f Q ¢ (AU L,) then only the integral over £, remains in (89), and following steps similar to
above, we obtain the third dual Somogliana equation:

0 zy{ U (Mo, Q)4(Mo) dsp, j{ T (Mo, Q)w(Mo) dsp, - (98)
Lo

o

REMARK 20.: Assume that

w(M, Q) = [%1 | Fo | F+ Firg(M, Q) — Fori (M, Q) (©9)

o o o
where H, F1 and F» arbitrary constants while r; and r are the coordinates of some point M with
respect to the fixed point (), which may coincide with the origin. It can be checked neither stresses nor
strains belong to this dual displacement vector. Hence

"D = Dy =0, and t.=0. (100)

Using these equations, identity (89) yields

/ U (/gkl’jl) dA :% ukik ds. (101)
At

o

Assume that ikll and Ik belong to the fundamental solutions. Then a comparison of equations (48) and
(88) gives
*
"D+ (M — Q)er(Q) = 0. (102)

Recalling that

WM, Q) = (M, Q)es(Q),  t(M,Q) = e(Q)Tu(M, Q)

and taking equation (102) into account we get from equation (101) that

~ [ b = Q@) =~ Qi Q. Q@) = § @l Qua(i sy,

o

(103)
Given the structure of the dual displacements (99), simple manipulations imply
f [T+ 123 | Sio = Tz [ Tug] ds o = —0(Q) [0 | G1z | dua] (104)
where
1 if QeA"
1 ) 0
Q=15 i Q=QeL (105)
0 if QeA”

This result will allow us to compute the strongly singular integrals in a numerical implementation devel-
oped for solving boundary value problems in inner regions.
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6.3 Formulae for the stresses

Substituting the first dual SOMIGLIANA formula (93) into equations (6a,b) we obtain the stresses at the
inner points () of region A;:

Q Q
51 = tnn = j{ [ull(MoaQ)aQ]tl(Mo)dsMo - 7{ [Tll(MoaQ)82:|ul(Mo)dSJMOa (106a)
L, Lo
—_— —_—
Su _Dll
Q Q
59 = tip = % [uQZ(MoaQ)a2:|tl(Mo)d5Mo - % |:T2l(Mo>Q)82:|ul(Mo)dsMo> (106b)
Lo L,
N ——— N ———
So; —Dgyy
Q Q
s53 = ty = —7{ |:ull(MOaQ)61:|tl(Mo)d8Ma +7§ |:z1l(Mon)81:|ul(oM)ds]\/on (106¢)
Lo L,
—_— —
75’31 DSL
Q Q
5= mo o= —f [um(Mo,Q)al} () dsw, + [%l(MO,Q)al}ul(Mo)dsMo, (106d)
Lo Lo
—_— —_—
—Sq Dy,

Q
my = f113 :% [ﬂ:sz(MmQ)@z} t(M,) dsnr, *]{ [‘331 M,,Q)o } o) dsnr, —

—_——
My,

_ f (Mo, Q) 4(Mo) dsar, + ¢ [Tu(Mo, Q)] (Mo)wrdsar,,  (106¢)
Lo

o

o

= oy = —fﬁ |:u3[(Mo7Q)gli|tl(Mo)d8Mo +]{ |:T3I(MO;Q)C§1:|ul(MO)dSMo_

o Lo
~—_———
7M2l 7N2l

- f [tor(Mo, Q)] 6(M.) dspr, + f [Tor(Mo, Q) w(M,) dsas,  (106)
Lo L

or in a more concise form
:% SKl(MO,Q)fl(MO) dSMO —{—% DKl(MO,Q)ul(MO) dSMo , K=1,...,4 (107a)
Lo Lo

and

74 My(Ma, Q)t(Mo) dsas, — }’i Not(Mo, Q) (Mo) dsig,—
% ;{l Mon ( o) dsMo +% [Tﬁl(MoaQ)]ul(MO> dsMo ’ k= 172 : (107b)
L

Matrices Si (Mo, Q) and M (M., Q) are all presented in Appendix A. Since the formulae for D (Mo, Q)
and N, (M., Q) are quite long we have not presented them in Appendix A.
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7 Dual Somigliana formulae for outer regions

7.1 Stresses at infinity

Let A~ denote the part of the plane that lies outside the contour £, — see Figure 4. Assume that the force
stresses and couple stresses are constants at infinity. These are denoted by

t11(00), t12(00), t21(00), ta2(c0)  and  p3(00), pa3(co) .
By assumption the body forces and couples b, and c3 vanish at infinity.

Since the couple stresses ,3(c0) are constants at infinity it follows from the equilibrium equation
(3)2 that the force stress tensor meets the symmetry condition

63l,ptl,p(oo) =0.

Consider the stress functions

Fp = emstor(00)& + ¢p(00) . (108)
and
2 2
H = p13(00)&a — pasg(00)&1 + t11(00)%2 — t12(00)&1&2 + t22(00)%1 + c1(00)& — ca(00)&1 (109)

where c,(c0) is an arbitrary constant. If we substitute these stress functions into (6a,b), in which we
neglect the particular solutions since the body forces and couples are assumed to be zero, it follows that
the stresses are constant on the entire plane. It is easy to see that the stress state

t11(00), ti12(00), t21(00), taa(oc)  and  pi3(00), pa3(00)

should be an elastic state of the whole plane (or of any subregion). As a result, the strains that belong to
the above stress state should meet the dual balance equations (8) (the compatibility equations).

Since the couple stress tensor (3 is constant it follows from the HOOKE law (7b) that the curvature
twist tensor k,3 is also constant, i.e., it satisfies the dual balance equation (8);.

If the force stress tensor ¢, is constant then according to the HOOKE law (7a) so is the strain tensor
Yrp- The dual balance equation (8)2 then implies that

Dp = 631/7r’)/7rpau — Kp3 = —Kp3 7é 0 (110)

which means that the second dual balance equation is satisfied if and only if x,3 = 0 or, equivalently
given the HOOKE law (2b), if

p3(oo) = 0. (111)

It then follows that the stress state at infinity is described by the stress functions

Fi1 =m(Q) = &ati1(00) — &1t12(00) + ¢1(00) Fo =1u2(Q) = &atar(00) — &itaz(00) + c2(00)
(112)
and
- & &
H=1u3(Q) = tn(OO)EQ — t12(00)6182 + t22(00)51 + ¢1(00)& — c2(00)&; . (113)

which provide an elastic state on the whole plane (or on any part of it).
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7.2 Derivation of the dual Somigliana formulae for outer regions

Figure 4 depicts a triple connected region A’ bounded by the contours £,, L. and the circle Lg with
radius . R and center O. Here L. is the contour of the neighborhood A, of ) with radius R, while . R is
sufficiently large so that the region bounded by Lz covers both £y, and £.. If ;R — oo and R, — 0
then clearly A’ — A~

Let ug (M) and )jk(M ) be sufficiently smooth elastic states (dual displacements) on A~. The corre-

*
sponding dual stresses on the contour are denoted by t; and t, respectively.

Figure 4: Exterior region, () is an inner point

Equation

[ [0 (Butuan) ~iaan) (Buuian)| s -

O % o o ]

= 7{ O [ul(M)tl(M) —ﬂl(M)tl(M)] ds, + f E [ul(M)tl(M) —{il(M)tz(M)} ds o

* o o o

+7£R [ul(l\?)txM) —&(M)tA(M)] ds,  (114)

is the dual SOMIGLIANA identity (89) when it is applied to the triple connected region A’. Observe that
M over a letter means that the corresponding derivatives are taken with respect to the coordinates of M.
Let again

*

w(Q) = er(Q)Un(M,Q)  and jE1(1\04) = ek(Q)ﬁcl(ﬂ%v Q)

which provide a non singular elastic state of the plane in A’. We regard u;(M) as a different elastic
state in the region A~. Further we assume that u;()) has the the following far field pattern (asymptotic
behavior)

uk:ﬁk.

Without loss of generality, assume that the origin is an inner point of the region A™. We need to consider
three cases depending on the location of the point () — Figure 4 represents the first one.

1. If Q@ € A~ then region A’ is the subject of our investigation. Substituting the above quantities
into the SOMIGLIANA identity (114) and then noting that the surface integrals vanish and omitting
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er(Q) we have

7{ (Tt (Mo, Q)w(Mo) — Uy (Mo, Q)4 (Mos)] dspg,+

o

+ 7{: [Tt (Mo, Qui(Mo) — Uy (Mo, Q)t(M.)] dsar, +
+jé£ [(Tht (Mo, Q)ui (M) — Ui (Mo, Q) (Mo)] dspr, = 0. (115)

To compute the limit of the first two integrals as . — 0 and . R — o0, note that they coincide
with (93) if in the latter all terms are moved to the left side. Consequently

74 -+ lim :uk<Q)+% [Trt (Mo, Q)w (M) — Ly (Mo, Q)ti(Mo)] dsy, - (116)
Lo Re—0 ), Lo

We now need to determine the limit of the third integral denoted by Iy:

e R— 00

lim {f[-:R [ukl(Mm Q)fl(Mo) - (zkl(Mo, Q)ul(Mo)] dSMO}. (1 17)

~~

Ig
In this equation
(a) Ip coincides with the right side of the first dual Somigliana formula (93) which is valid since
(@ is an inner point of the region;
(b) if ;R — oo then u; and t; on the circle belong to the elastic state of the plane for which the

force stresses are constant and the couple stresses vanish everywhere.

Therefore we get
lim Ip=uk(Q) . (118)

e R— 0

Comparing equations (115), (116) and (118) yields the first dual SOMIGLIANA formula for exterior
regions:

up(Q) = 1, (Q) +£ Uy (Mo, Q)4 (M) dsag, —ji Tt (Mo, Q)wy(Mo) dsp,
’ ’ (119)

o
. If @ = M is on L,, nothing changes concerning the limit of the integral taken on L. Conse-
quently

e (Q0)ur(Qo) = i (Qs) + ﬁ 30 (Mo, Qu)ty(Me) dsyy, —

— ¢ Tp(Mo, Qo)w (M) dspy, . (120)
Lo

REMARK 21.: Equation (120) is an integral equation for the unknowns w;(M,) M, € L, and
t;(M,) M, € L;. This is the integral equation of the direct method.

REMARK 22.: We do not detail the derivations leading to (120). This is because the integrals
taken on Lp are computed exactly the same way as before, and the other terms can be obtained in
analogously to the integral equation (97) we set up for inner regions.
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3. If Q is inside the contour £,, i.e., it lies in the region A™, then it is easy to show that

0 =1u(Q) +7§ Uiy (Mo, Q)4 (Mo) dsy, —% Tht (Mo, Q)w (M) dsy, - (121)
Lo Lo
which is the third SOMIGLIANA formula for exterior regions.
REMARK 23.: Let us assume again recalling Remark 20 that u, is taken from equation (99) — see

Remark 20 for details — and apply first relation (101) to region Ap in Figure 4 (Lr and A should stand
for £, and AT in the relation we have referred to). Further let (Q be an inner point of region Ag. Assume

again that ftl and Ik belong to the fundamental solutions. Then repeating the line of thought resulting in
equation (103) we obtain

/AR U ('@kll*lz) dA = ﬁR uktk ds = —w(Q,Q)e)(Q) (122)

Next apply (101) to region A’ in Figure 4. We get

% uktk ds—i—j{ uka ds :/ ug (li)klfll) dA , (123)
Lo [:R, A/

where using (103) we obtain

/, Uy ('@szll) dA = —n(Q)e(Q) [70:1 on |]0:2 o2 |7Of<513]

while the integral on contour £ can be taken from equation (122). Consequently the following equation

f Ukzk ds —u(Q,Q)e(Q) = —n(Q) e(Q) [%1511 !70:2512 \ 7?(513} .

o

holds independently of R, and hence for R — oo as well. Recalling the definition of uj we arrive at the
final form of the above equation

]i (T + 723 | Zi2 — 13 | Tl dSJ\c;[ — [0 | 02| i3] = —n(Q) [011 | 02 | i3] (124)
where
1 if Qe A”
1 . o
n(Q) = 5 if Q=Q¢ckL, (125)
0 if Qe A"

This result will allow us to compute the strongly singular integrals in a numerical implementation set up
for exterior regions.

8 Calculations of the stresses on the boundary

After solving the integral equations of the direct method (equation (97) for inner regions, equation (120)
for exterior regions) we know the dual displacement vector u; as well as the dual stresses t;, which can
be given in terms of displacements derivatives with respect to the arc coordinate, on the contour.

The next question is how to determine the stresses on the contour in terms of these quantities.
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Using equations (14b), (14¢) and taking (4b) into account we have

dF,

jif'=:n4tu>+-n2hm : (126)
dH
Fr npFp = N1p13 + Naflo3 . (127)

The above equations are to be supplemented by the definition of the dual stresses (75):
to = T Vmp and t3 = TnYrs3 (128)
The left sides of equations (126), . . . ,(128) are all known as soon as we have solved the integral equations

of the direct method. Since the strains can always be given in terms of stresses via the HOOKE law (7a)
and (7b) the right hand sides contain the unknown force and couple stresses

t11, t12, t21 t22, 12 and  po3 .

If we consider equations (126), ...,(128) in the coordinate system (xyz) by substituting the relations
n; = 7y and n, = —7, into (128) we obtain the system of linear equations
Ba s + iyt
— =n n
ds zlax ylyx
du,
E = na;tzy + nytyy s
du3
E —ngFy — nyfy = Nglgz + Nylbyz ,
b= =+ e = | Gt = b+ by | | et

1ty +t 1ty —1 1 v
ty = —NyYay + NaYyy = Ny [MWQW + 2azy2ym] + e [%tyy - ﬂ(tzx + tyy)} ,

t, = —NyKgz + Npky: = (_ny,u:cz + nx,ufyz)

y+e
which can be solved for the stresses
txz’ ta:y, tyx tyy, Moz and Hyz -

For completeness we rewrite this equation system into a matrix form:

Ny 0 Ny 0 0 0 tr
0 Ng 0 Ny 0 0 tey
0 0 0 0 Ng Ty tye | _
:L;Tyny % z ZTT””: iny 0 0 tyy B
3N ZTT v Ty %nw 0 0 JT.
0 0 0 0 -;igny Wienw Hyz
dug
dus ds
= | @~ aFe Ty | (29
2
ty
t,
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9 Solution algorithm and numerical examples

9.1 The algorithm

To solve the integral equation (120), we divide the contour £, into np. arcs, which are the boundary
elements. The endpoints and midpoint of an element are, in many cases, the nodes on the element —
their number is denoted by ne,, (number of element nodes). The coordinates of an element as well as the
functions u;(M,) and t;(M,) over an element are approximated by quadratic polynomials based on the
nodal points. The order of the polynomial depends on the number of element nodes.

A quadratic approximation over an element might also be based on a different choice for the location
of the nodal points. The approximation is partly discontinuous if the [first] {last} nodal point is inside
the element, the [last] {first} nodal point is an endpoint of the element and there is a third nodal point
between the two.

The nodal points are numbered locally increasing in the positive direction of the arc coordinate s and
the node numbers take the values 1,2 and 3.

The global node numbering differs from the local one. Let (); be the i-th node on the contour
Lot =1,2,..., npy,, Where ng, is the number of the boundary nodes on the contour. These are also
numbered starting form an arbitrary nodal point of the contour and increasing in the positive direction.

In the computations we apply continuous (or partly discontinuous) quadratic shape functions. The
arc coordinate on the element is mapped onto the interval € [—1, 1] while the shape functions N*(n)
are Lagrange polynomials given in terms of the nodal coordinates n! < n? < n3;n; € [-1,1]i = 1,2, 3:

1
N'(n) = (n—=n*)(n—n"), (130)
(' =)t —n?)
1 1
N?(n) = (n=n*)n—n"), N°(n) = (n—n")(n =)
( (n* =) (n* —n') (n* =n")(n* = n?)
where ' = —1and —1 < % < 1 < 1 if there is a discontinuity at the point = 1 while 7 = 1 and

—1 < n' < n? < 1if a discontinuity occurs at the point = —1.

e
Let 5:?\, 161? and t? be the nodal coordinates, the dual displacements and the dual stresses at the g-th
nodal point of the element e. Then

Nen Nen Nen

=Y NE . B=Y N ad =Y M@ a3
g=1 k=1 k=1

are the approximations of the contour, the dual displacements and the dual stresses on the e—th element.

Using equation (131); and the definition of the shape functions (130) we can set up a closed form
relation between ds and dn:

ds = (] (421 T ((de 2d — J(n)d 132)
5= d7+d7] n=J(n)dn. (

The equation that provides J(7) is not detailed here.
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9.2 The equation system to be solved

Substituting approximations (131) into integral equation (97) and integrating element by element we
obtain

Nen

Q@) =3 [ (. Q) X N7 (0) T ¥
e=1 o qg=1

Nen

=S /L Tl Q) S NI Imdn i, Q=Q.€L,. (133)
e=1 o k=1

Let ' ‘
u &
u; = ujz and t; = fé , =1 ... ny, (134)
u t)
3 3

be the matrices of the dual displacements and stresses at the nodal point j. For the whole contour
equations

u? = [y ud [W¥udad] .. [uf™ up® ugt ] (135)
S—— Y——
uf uj ul,
and
th =488 888 ... | g (136)
—— N——— — —
u? ug ugbn

define the matrices of the dual displacements u and the dual stresses t where 7 denotes the transpose
of a matrix. The value of the function a(j, e) is the local node number that belongs to the global node
number j on element e. To simplify later derivations, we introduce the 3 x 3 submatrices h;; and b;;
defined as

hy = > /ﬁ Tt (Qi, )NV ()T () dn (137)

_eEj e ]

and ) }
bij = Z/L U (Qis )N ()] () dn (138)

_eej ¢ i

in which (a) Q); is the i-t nodal point referred to as collocation point; (b) the summation is over those
boundary elements having the nodal point j as their common nodal point; and (¢c) N a(se) (n) is the a-th
shape function. Introducing the additional notation

Cii = [can(Qi)] (139)
and N
h;; + c;; ha i=j
h“ _ AZZ (22 140
Y { h;;, ha i #j (140)
and then assuming that (), = (J;, we can rewrite equation (133) as
up ty
ug to .
[hi hip - hy,, | =[bix bia - bin, || T |, =1, m, (141)
unbn tnbn
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Unification of the above equations yields

hq; hio hi,, u; b1 b1 bin, ty
hy; hos <o hay,, u2 _ ba; bao <o+ ban,, to 7 (142)
Bowt Bz o B | | 0 | | Bt Bz o bu, | |t
which can be cast into a more compact form as
Hu=Bt. (143)

In the above equation either uy, or tj is known from the boundary conditions. Consequently we have as
many equations as there are unknowns. After determining the unknown nodal values both 1; (M) and
t;(M,) can be regarded as known functions on the contour £,.

Field variables at inner points are then obtained from equations (93) and (106a,...,), (107a,b).

Determination of the stresses on the boundary part £,, requires the solution of equations (129).

Determination of the diagonal submatrices hy;, 7 = 1, ..., ny, requires the computation of strongly
singular integrals. However we can avoid computing strongly singular integrals if we follow the follow-
ing procedure.

Let Q; be the collocation point and typeset [the elements of the matrix h;;]{the matrix h;; in full} in
the following way:

g hi1 hia hig "
h and ho1  haa  hos , =1, np, k1=1,23 (144)
h31 hss hs3

o o o
First assume that 71 = F5 = 0 and K = 1. It follows from Remark 20 — see page 20 for details — that
no stresses and strains belong to the dual displacements

w(M, Qi) = [0]0[1]

obtained from equation (99). Substituting the above dual displacements into equation (141) we have

j=nen [ 11 hiz hiz 17 [0 0
> | har hay hos 0]1=10
=1 | h31 hzz hs3 1 0
and hence
B J=Npn B
== . (145)
s

o

o o
Second assume that 1 = 1 and F3 = H = 0. Again, the logic of Remark 20 implies that no stresses
and strains belong to the dual displacements

w(M, Qi) = [1]0]re]

obtained from equation (99). Substitution of the above dual displacements into equation (141) yields

= [ i1 iz bz 17T 177 To
> | har hay hos 0| =10
j=1 | h31 hsz hs3 T2 0
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from where
J=Nbn ' J=Nbn J=Nbn  J=Nbn
k= Z hily = higsrs — Z hisrs = — Z hiy = Z hily(rh — 1)) (146)
J#l J#Z ini J#l

o

o o
Third we assume that 71 = H = 0 and F» = 1. Then repeating the logic leading to (146) we get

j:nbn j:nbn
W ij i (0 J
hy = — g his — g hps(ry —r1) (147)
=1 j=1
J#i J#i

Using equations (145), (146) and (147) we can avoid computing strongly singular integrals.
For an outer region, we have to add a further term to the equation system to be solved. Define the
matrix 4 as

67 = [ a6 | ] (148
S—— —— —
ﬁ{ ﬁg ﬁz:b'n
where the matrix G1; has the dual displacements 11, taken at the points Q; (j = 1, ..., nyy,) as its elements.

With this notation the equation system to be solved for the unknown nodal values assumes the form
Hu=u+Bt. (149)

The next question is how to compute the strongly singular integrals for exterior regions. Our procedure
is as follows: (a) determine h;}; under the assumption that the region under consideration is the interior
region A™; (b) then apply the formula

o= R+ 0w (150)
forA— forA+

The proof is based on equation (124). The details are, however, omitted here.

9.3 Examples

We have solved two external boundary value problems. First we consider the coordinate plane with a
circular hole (Figure 5.b.); second the coordinate plane with a rigid inclusion (Figure 5.c.).

V
A
hole
o
I
p = txx(0) J
D

P = tx() P = ta()

Rigid
incluson o
-— D

P = to(®) P = t()

@ — )

—

—

Figure 5:
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We remark that there exists an analytical solution for the stress concentration problem around the hole in
an infinite plate of isotropic material if the stress state at infinity is ¢,, = p = constant = 100 n/mm?,
loy = tye = tyy = Haz = Hy. = 0, i.e., the plate is in tension [27, 28, 29]. The stress concentration
factor K for the above problem can be calculated from the following equations:

txx(x:(]’y:ro) 3+ F 9 TZ 2r, K()(’I”O/ll) -1
K = — F=81—-v)N* |4+ -2 — 151
trz(00) 1+ F’ (1-v) * 12 * li Ki(ro/lr) (D
N=025 N=0.10 v =0.00

rolll

Figure 6:

K N=025 N=0.10 v =0.30

| rofly

Figure 7:

We have carried out the computation under the assumption that

nw=>5 N/mm?2, r, = 0.36 mm, v = 0.0 (see Figure 6) or v = 0.3 (see Figure 7).
Figures 6 and 7 show the exact values for various couple numbers N (solid lines) as well as the values
computed. The latter are denoted by diamonds and circles. These fit well the graphs of the exact values.

Results for the rigid inclusion have been computed using the same data as for the circular hole,
however there are no computational results for v = 0.0. Figure 8 shows the normal stress o, = o,
against the polar angel § € [0, 7/2]. The black line represents the classical solution. This curve fits very
well the results computed for N = 0.01. The graphs for N = 0.50, N = 0.75 and for N = 0.99 (couple
stress theory) are also depicted in Figure 8.
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Figures 9 and 10 show the shear stress 7,5 = 7;.9 and the hoop stress o, = oy. The agreement with
the classical solution for NV = 0.01 is again very good.

10 Concluding remarks

The present paper has dealt with the following issues:

1. Assuming isotropic and homogenous material we have presented the field equations and boundary
conditions for the first plane problem of micropolar elasticity in a dual formulation. We have also
clarified the supplementary conditions of single valuedness that strains should meet for a class of
mixed boundary value problems both for simply and multiply connected regions.

2. By applying Galorkin functions and following the procedure presented in Kupradze’s book [30]
and elsewhere, we have derived the dual fundamental solutions of order one and two for the first
plane problem of micropolar elasticity.!

3. We have set up the dual SOMIGLIANA relations both for inner and for exterior regions. A constant
stress state at infinity is a part of our formulation for exterior regions. We also developed an integral
representation for the stresses.

4. We developed a solution algorithm, coded it in Fortran 90, and used it to numerically solve simple
boundary value problems in order to demonstrate the applicability of the solution algorithm.

We remark that the supplementary conditions of single valuedness should be incorporated into the
algorithm if (a) the number of arcs on which tractions are prescribed is more than one or (b) if in addition
to this the region under consideration is multiply connected. Work on these issues is in progress.
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A Some matrices in the formulae for the stresses at internal points
If we compare equations (67), (68) and (69) then we obtain

a1 1 rgr1Te
Sa(V:Q) = g5 s {3 (3mr2 —owam 42752 -
rgrir rgrir
~ ak? (5ﬁ1r2 + dgary — 40 2) D(kR) + akQ%kKl(kR)} , (152a)

a 1 1 7rorg
S31(M,Q) = 572 (21nR + 1 + 2RQ> , (152b)

a 1 1 T3r2T2
5ﬂ2<M’Q>‘WR2{2(‘W+2 )

2 rgrar
— ak (2(5ﬂ27’2 +rg — 4 22
!This procedure is attributed to HORMANDER [23, 1964] by the boundary element community. To our knowledge however
it is A. I. LURIE who applied this technique first to determine the fundamental solutions for the 3D problems of classical
elasticity [22, 1937]

)D(kR) + akQ%kKl(kR)} . (1520)
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a Tro
M = ———"
832( 7Q) 27Tk‘2 2R2 ;
a 1 1 r3riT
Sn(M.Q) = gomga {5 (Tt 2R -
— ak? e 2TOTITL
ak (25517“1 1y — 4 )D(kR) + ak? kKl(k:R)} :
a ToT1
M = —
833( 7Q) 2 k2 2R2 y
a 1 1 r3roT]
Spa(M, Q) = "o 2R\ 2 <5257“1 — 6172 + 2 f72 ) -
2 TﬁTgY’l 27”[57”27’1
— ak (52ﬁr1 + dpre — 4 ) D(kR) + ak? L2k (kR)
_ a 1 1 171
S34(M, Q) = 572 |:2111R+ 1t 2R2]
and
a 1 1 r3_gT
M.O) — 1B+ | 5. 1 - 3-p72
a 1 1 T9
M31(M) Q) — _271']{;2 |:T2 <2 IHR+ 4> — am] 5

a

Mpa(M,Q) = G}

2R?

a 1 1 ™
M32(M, Q) = W |:T'1 <2h’lR+ 4> - am:| .

If we recall that

and compare equations (63), (67) and (106) then we can conclude that

SINM,Q) = =Sn(M,Q), S13(M,Q) =83(M,Q),

SQ)\(M’ Q) = _S)\Q(Ma Q) ) 523(M7 Q) = 832(Ma Q) )

SB)\(M7 Q) = _S)\3(Ma Q) ) 533(M7 Q) = 833(Ma Q) ’

Sin(M,Q) = =5x(M, Q) , Si3(M,Q) = S34(M, Q)

and

Minx(M, Q) = Mx(M,Q), Ms(M,Q)=-Mz(M,Q),

MQ/\(Ma Q) = _M)\Q(M> Q) ) M23(M7 Q) = _M32(M1 Q) :

(-)®@ {63_3,1 (;mR + i) + 6

(152d)

(152¢)

(152f)

(152g)

(152h)

(153a)

(153b)

(153c)

(153d)

(154a)

(154b)
(154¢)

(154d)

(155a)

(155b)
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