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ABSTRACT. The paper is devoted to plane problems of orthotropic bodies in a dual formulation.
After presenting the governing equations in terms of stress functions of order one, we determine
the two fundamental solutions and set up the dual Somigliana relations both for inner and exterior
regions. These include the boundary integral equations of the direct method. A constant stress state
at infinity is part of the formulation established for exterior regions. We also derive an integral
representation of the stresses. The numerical examples presented illustrate the applicability of the
direct boundary integral equations.

1. INTRODUCTION

According to the famous TONTI scheme [1], in the primal system of elasticity the displacement
field is the basic variable while the strains and stresses are the intermediate variables of the first
and second kind. Body forces are referred to as the source variable. Problems in the primal system
are governed by the primal kinematic equations, which relate the strains to the displacements;
HOOKE’s law, which connects the primal intermediate variables of the second kind to those of the
first kind; and the equilibrium or primal balance equations, written in terms of the intermediate
variables of the second kind.

In the dual system of elasticity, stress functions are the basic variables, and stresses and strains
constitute the intermediate variables of the first and second kind. A prescribed incompatibility,
which is in general zero, is the source variable. Problems in the dual system are governed by the
dual kinematic equations, which express the stresses in terms of stress functions; the inverse form
of HOOKE’s law, which relates the dual intermediate variables of the second kind to that of the first
kind; and the compatibility equations (dual balance equations).

In a classical paper, RIZZO and SHIPPY [2] solve plane problems by the direct boundary element
method for which physical quantities (in the primal system the displacements and the stress vector)
are the unknowns on the boundary. These authors assume that the body is orthotropic and focus
on an inner region. The most important relations are presented for anisotropic bodies as well. As
in earlier work by RIZZO [3], the numerical solution is based on a constant approximation of the
displacements and the stress vector over boundary elements.

A number of subsequent papers study the boundary value problems of plane elasticity using
the boundary element method under the assumption that the material is orthotropic or anisotropic.
VABLE and SIKARSKIE apply the indirect method for which the solution is sought in terms of
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appropriately chosen potential functions [4]. SHIAH and TAN transform 2D and 3D anisotropic
field problems in such a way that the Laplace operator becomes the operator of the basic equation,
a procedure known as direct domain mapping [5, 6]. However, these results can only be applied to
problems of elasticity when it is possible to define a displacement potential which satisfies the basic
equation investigated by SHIAH and TAN. HUNG, SAN, LIU and ZEN [7] also study orthotropic
bodies and provide additional references. We emphasize that all these papers [2, 3, 4, 7] as well as
the books [8, 9] and the references they cite use the primal system of plane elasticity.

While many papers study plane problems in the primal system, there are only a few which use
the dual system and treat the real stress functions of order one as the basic variables. One advantage
of using stress functions of order one is that calculating stresses only requires determining first
derivatives, while with stress functions of order two the stresses are obtained in terms of the second
derivatives. First derivatives are more convenient in boundary element applications, although an
additional equation is needed to ensure that the stresses are symmetric. Assuming homogenous and
isotropic materials and using stress functions of order one, SZEIDL investigated the plane problem
with the direct boundary element method in the dual system of elasticity [10, 11].

Our goal in this paper is to extend the results presented in [10, 11] as well as those in the thesis
[12] for homogenous but orthotropic materials. We develop the fundamental solutions and the
Somigliana relations in the dual system of plane elasticity for an orthotropic body provided that
the stress functions of order one are the basic variables. We then set up a direct boundary element
formulation and present an algorithm for numerical solutions. The examples shown illustrate the
applicability of the algorithm.

The paper is organized into eight sections. Section 2 presents the governing equation of the
problem in a dual formulation. The fundamental solutions of order one and two are determined in
Section 3. The dual Somigliana relations for inner and outer regions are derived in Sections 4 and
5. Section 6 deals with the determination of the stresses on the boundary. The last two sections
present two numerical examples and a conclusion.
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2. GOVERNING EQUATIONS

Throughout this paper x1 = x and
x2 = y are rectangular Cartesian co-
ordinates, referred to an origin O. For
vectorial and tensorial quantities indi-
cial notations are used. {Greek}[Latin
subscripts] are assumed to have the
range {(1,2)}[(1,2,3)], summation over
repeated indices is implied, δκλ is the
Kronecker delta, εpqr is the permuta-
tion symbol. If an index in a sum-
mation is repeated more than twice,
we also typeset the summation symbol
to avoid misunderstanding (see for in-
stance equation (17) below).

The inner and outer regions shown
in Figure 1 are denoted by Ai and Ae.
They are bounded by the contour

L0 = Lt1 ∪ Lu2 ∪ Lt3 ∪ Lu4 .

s
L t1Ae

u2 τϰP Pt2 u2=
P t1=Pu5

nπ

u4
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L
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Pt4= Pu4
t3P P= u3

FIGURE 1.

We assume that [displacements]{tractions} are imposed on the arc [Lu = Lu2 ∪ Lu4]{Lt =
Lt1∪Lt3}. We stipulate that the contour has a unit tangent τκ and admits an appropriate parametriza-
tion in terms of its arc length s. The outer unit normal is denoted by nπ . In accordance with the
notations introduced ∂α stands for the derivatives taken with respect to xα. Assuming plane prob-
lems let uκ, eκλ and tκλ be the displacement field and the in plane components of strain and stress,
respectively. The stress functions of order one are denoted by Fρ.

We shall assume that there are no body forces.
For homogenous and orthotropic material the plane problem of classical elasticity in the dual

system of elasticity is governed by
1. the dual kinematic equations

t11 = F1∂2 , t12 = F2∂2 ,(1a)
t21 = −F1∂1 , t22 = −F2∂1 ,(1b)

which express the stresses in terms of stress functions of order one,
2. the inverse form of HOOKE’s law

e11 = u1∂1 = s11t11 + s12t22 , e22 = u2∂2 = s21t11 + s22t22 ,(2a)

e12 =
1
2

(u1∂2 + u2∂1) =
s66

4
(t12 + t21) ;(2b)

where s11, s12, s21 and s22 stand for the constants of elasticity1,

1The strain energy density u should be strictly positive:

2u = t11 (s11t11 + s12t22) + t22 (s21t11 + s22t22) +
s66

4
(t12 + t21) (t12 + t21) > 0 .
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3. the compatibility conditions

(3) e11∂2 − e12∂1 + ϕ3∂1 = 0 , e21∂2 − e22∂1 + ϕ3∂2 = 0

in which ϕ3 is the rotation field
4. and the symmetry condition

(4) t12 = t21 .

If this equation is fulfilled then either equation (1a)2 or equation (1b)1 can be omitted. Thus
we have nine equations for the nine unknowns F1, F2, t11, t12 = t21, t22, e11, e12 = e21,
e22 and ϕ3.

Field equations (1a,b), (2a,b), (3) and (4) should be associated with appropriate boundary con-
ditions. If the contour is not divided into parts then either tractions or displacements can be im-
posed on it. In the opposite case the contour is assumed to be divided into arcs of even number
on which displacements and tractions are imposed alternately. As mentioned earlier, in Figure 1
{tractions}[displacements] are prescribed on the arc {Lt}[Lu]. Variables with hats stand for the
values prescribed: ûκ, t̂ρ and F̂ρ are the prescribed displacements, tractions (stress vector) and
stress functions, respectively.

For the sake of a formal similarity of the boundary integral equations regarded in primal and
dual formulations we introduce the notation

(5a) tλ = −nκ (εκρ3eρλ − δκλϕ3) s ∈ Lo ,

where on the other hand

(5b) tλ = −duκ

ds
s ∈ Lo .

We refer to tλ as the dual stress vector and to its elements as dual stresses. Observe that the same
letter denotes both the stresses and the dual stresses; we distinguish between them by typeset-
ting the dual stresses in calligraphic. The same notational convention will be used for the dual
displacements defined by equation (10)2.

The dual field equations (1a), . . . ,(4) should be associated with the strain boundary conditions
of the form

(6) tκ = −dûκ

ds
s ∈ Lu ,

(note that one can not prescribe boundary conditions directly on the displacements since they do
not belong to the set of dual variables) and a set of boundary conditions imposed on the stress
functions

(7) Fρ(s)−Fρ(Pti)︸ ︷︷ ︸
C
(ti)

ρ

=
∫ s

Pti

t̂ρ(σ) dσ

︸ ︷︷ ︸
F̂ρ(s)

, s ∈ Lti , i = 1, 3

where the integral with value F̂ρ(s) on the right side is the resultant of the tractions prescribed on
the arc [Pti,s] while C

(ti)
ρ is an undetermined constant of integration.

The supplementary conditions of single valuedness can easily be obtained from equation (6).
These conditions express displacement continuity at the endpoints of the arcs Lti regarded on the
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contour and have the form

(8)
∫

Lti

nκ (εκρ3eρλ − δκλϕ3) ds− ûλ|Pt,i+1
Pti

= 0 (i = 1, 3)

Observe that we have as many undetermined constants of integration as there are supplementary
conditions of single valuedness.

One undetermined constant of integration C
(ti)

ρ can be set to zero without loss of generality, since

the equations (1b,c) contain only the derivatives of the stress functions. It can also be shown that
the supplementary conditions of single valuedness (8) are not independent, i.e., one condition can
always be omitted. A proof for the latter statement assuming isotropic bodies and plane problems
can be found in the thesis [13] by Szeidl.

3. BASIC EQUATION AND FUNDAMENTAL SOLUTIONS

After eliminating the intermediate variables eκλ and tκλ from the compatibility conditions (3) and
the symmetry condition (4) we obtain the basic equation in the form

(9) Dikuk = 0 i = 1, 2, 3

where Dik is a differential operator and uk is the vector of fundamental variables (the stress func-
tions uκ – see below – will be referred to as dual displacements):
(10)

[Dik] =




s11∂2∂2 +
s66

4
∂1∂1 −

(
s12 +

s66

4

)
∂1∂2 −∂1

−
(
s21 +

s66

4

)
∂1∂2 s22∂1∂1 +

s66

4
∂2∂2 −∂2

−∂1 −∂2 0


 , uk = (F1,F2,︸ ︷︷ ︸

uκ

− ϕ3) .

Let Q(ξ1, ξ2) and M (x1, x2) be two points in the plane of strain: the source point and the field
point. We shall assume temporarily that the point Q is fixed. The distance between Q and M is R,
the position vector of M relative to Q is rκ. We refer to the solution of the differential equation

(11)
M

Dikuk + δ(M −Q)ei(Q) = 0 , i = 1, 2, 3

as the fundamental solution. Here δ(M −Q) stands for the Dirac function, eκ(Q) is a prescribed
incompatibility and e3(Q) is a couple perpendicular to the plane of strain. We determine the
fundamental solution following the approach of Kupradze [14], here we only present the main
steps in the derivation.

Let Dkl be the cofactor of Dik

(12) DikDkl = det(Dmn) δil .

We seek the fundamental variables uk in the form

(13) uk = Dklχl ,

where χl = χel(Q) and χ is the Galjorkin function. If we substitute (13) into (11) and take (12)
into account we get

(14) det(Dmn)χ + δ(M −Q) = 0

where

(15) det(Dmn) = − [
s11∂

4
2 + (2s21 + s66) ∂2

1∂2
2 + s22∂

4
1

]
.
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For the sake of later calculations we introduce the following quantities

(16a) α2
1,2 = −2s21 + s66

2s11
±

√(
2s21 + s66

2s11

)2

− s22

s11
, β2

κ = −1/ακ

(16b) ρκ = (x1 − ξ1) + βκ(x2 − ξ2) ,

(16c) d1 = −
∣∣∣∣∣∣

1 β̃1 β̃2
1

1 β2 β2
2

1 β̃2 β̃2
2

∣∣∣∣∣∣
, d2 = −

∣∣∣∣∣∣

1 β1 β2
1

1 β̃1 β̃2
1

1 β̃2 β̃2
2

∣∣∣∣∣∣
,

(β̃κ is the complex conjugate of βκ)

K = − 1
I1 + I2

, Iκ = 4π
dκ

bκ + 1
(
b3
κs11 + b2

κ(s21 + s66)− bκs12 − s22

)
,(16d)

b1 =
√

D1 −
√

D , b2 =
√

D1 +
√

D(16e)

D =
(

2s21 + s66

2s11

)2

− s22

s11
, D1 =

2s21 + s66

2s11
(16f)

a33 = s11s22 +
(s66

4

)2

−
(
s21 +

s66

4

)2

.(16g)

Use of the quantities introduced it can be shown that the solution for χ takes the form

(17) χ(M, Q) = KIm
2∑

κ=1

dκρ2
κ ln ρκ .

With the knowledge of the GALERKIN function χ it follows from equation (13) that

(18) uk = Dklχl = Dklχ︸ ︷︷ ︸
Ukl

el = Ukl(M,Q)el(Q) ,

where Ukl(M,Q) is the matrix of the fundamental solution of order one. Omitting the long formal
transformations we find that

[Upq(Q,M)] = Im
2∑

k=1

K×(19)

×




dk (2 ln ρk + 3) β2
k dk (2 ln ρk + 3) βk

2dk

ρk

[−(s21 + s66
2 )β2

k + s22

]

dk (2 ln ρk + 3) βk dk (2 ln ρk + 3) 2dkβk

ρk

[
(s12 + s66

2 )− s11β
2
k

]
2dk

ρk

[−(s21 + s66
2 )β2

k + s22

]
2dkβk

ρk

[
(s21 + s66

2 )− s11β
2
k

] −
{

2a33 − s21s66 − s2
66
2

}
β2

k
dk

ρ2
k


 .

Recalling the dual kinematic equations (1a,b) we obtain that the fundamental solutions for the
stresses t11, t12 = t21 and t22 can be calculated from the following equations:

t11 = F1

M

∂ 2 = u1

M

∂ 2 =
M

∂ 2U1l(M, Q)el(Q) ,(20)

t12 = F2

M

∂ 2 =
M

∂ 2U2l(M, Q)el(Q) = t21 = −F1

M

∂ 1 = −
M

∂ 1U1l(M, Q)el(Q) ,(21)

t22 = −F2

M

∂ 1 = −u2

M

∂ 1 = −
M

∂ 1U2l(M, Q)el(Q) .(22)
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After performing the necessary calculations we have

(23)




t11
t12
t22


 = K Im

2∑

k=1

2dk

ρk




−β3
k β2

k −βk

ρk

[(
s21 +

s66

2

)
β2

k + s22

]

β2
k −βk

1
ρk

[(
s21 +

s66

2

)
β2

k + s22

]

−βk 1
βk

ρk

[(
s12 +

s66

2

)
+ s11β

2
k

]







e1

e2

e3


 .

With the knowledge of the stresses, the strains can be obtained form the HOOKE law (2a,b):



e11

e12

e22


 = K Im

2∑

k=1

2dk

ρk
×(24)

×




−s11β
3
k − s12βk s11β

2
k + s12 −βk

ρk

[
(s12 +

s66

2
)(s11β

2
k − s12) + s11(s22 − s12β

2
k)

]

1
2s66β

2
k − 1

2s66βk
s66

2ρk

[(
s21 +

s66

2

)
β2

k + s22

]

−s21β
3
k − s22βk s21β

2
k + s22 −βk

ρk

[
(s21 +

s66

2
)(s21β

2
k − s22) + s22(s21 − s11β

2
k)

]







e1

e2

e3


 .

The dual stress vector is defined by equation (5a). We can compute the dual stress vector from
the fundamental solution of order one to obtain

(25) tκ = −duκ

ds
= el(Q)Tlκ(

o

M, Q) ,

where Tlκ is referred to as fundamental solution of order two. The formal calculations are based
on equation (5a,b) which can be rewritten in a matrix form:

(26) − d

ds

[
u1

u2

]
=

[
n2 −n1 0
0 n2 −n1

] 


e11

e12

e22


 +

[
n1

n2

]
ϕ3

We remark that these calculations require the use of equation (24) and el(Q)Ul3(Mo, Q) – the
latter provides ϕ3. Omitting the details, we obtain for Tlκ:
(27a)

T11(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{
n2

(−s11β
3
κ − s12βκ

)− n1

2
s66β

2
κ − n1

[
s22 +

(
s21 +

s66

2

)
β2

κ

]}
,

(27b)

T21(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{
n2

(
s11β

2
κ + s12

)
+

n1

2
s66βκ − n1βκ

[(
s12 +

s66

2

)
+ s11β

2
κ

]}
,

(27c)

T12(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{n2

2
s66β

2
κ + n1

(
s21β

3
κ + s22βκ

)− n2

[
s22 +

(
s21 +

s66

2

)
β2

κ

]}
,

(27d)

T22(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{
−n2

2
s66βκ − n1

(
s21β

2
κ + s22

)− n2βκ

[(
s12 +

s66

2

)
+ s11β

2
κ

]}
,
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(27e)

T31(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{
−n2βκ

ρκ

[
(s12 +

s66

2
)(s11β

2
κ − s12) + s11(s22 − s12β

2
κ)

]
−

−n1s66

2ρκ

[(
s21 +

s66

2

)
β2

κ + s22

]
+ n1

β2
κ

ρκ

[
a33 − s21s66

2
− s2

66

4

]}
,

(27f) T32(Mo, Q) = KIm
2∑

κ=1

2dκ

ρκ

{
n2s66

2ρκ

[
(s21 +

s66

2
)β2

κ + s22

]
+

+
n1βκ

ρκ

[(
(s21 +

s66

2
)(s21β

2
κ − s22)

)
+ s22(s21 − s11β

2
κ)

]
+ n2

β2
κ

ρκ

[
a33 − s21s66

2
− s2

66

4

]}
.

It can also be shown by long hand made calculations that every column of the fundamental
solutions Ukl and Tkλ satisfy the basic equations if Q 6= M .

4. DUAL SOMIGLIANA FORMULAE FOR INNER REGIONS

The functions Fψ, tκλ, eκλ and ϕ3 are called an elastic state of the region Ai if they satisfy
the corresponding field equations. Let

Fψ, tκλ, eκλ, ϕ3 and
∗
Fψ,

∗
tκλ,

∗
eκλ,

∗
ϕ3

be two elastic states of the region Ai. Integrating by parts, one can show that the relation

(28)
∫

Ai

Fλ

[
εκρ3

∗
eκλ∂ρ +

∗
ϕ3∂λ

]

︸ ︷︷ ︸
uλ(Dλl

∗
ul)

dA−
∫

Ai

ϕ3

( ∗
Fψ∂ψ

)

︸ ︷︷ ︸
−u3D3l

∗
ul

dA−

−
∫

Ai

[εκρ3eκλ∂ρ + ϕ3∂λ]
∗
FλdA +

∫

Ai

(Fψ∂ψ)
∗
ϕ3dA =

=
∮

Lo

Fλ nπ

[
επκ3

∗
eκλ − δπλ

∗
ϕ3

]

︸ ︷︷ ︸
uλ

∗
tλ

ds−
∮

Lo

nπ [επκ3eκλ − δπλϕ3]
∗
Fλds

is an identity, referred to as the dual Somigliana identity. We can also write this identity in a more
concise form

(29)
∫

A

[
ur

(
Drl

∗
ul

)
− ∗

ur (Drlul)
]

dA =
∮

Lo

[
uλ

∗
tλ − ∗

uλtλ

]
ds .

Henceforward let ul(M) be an elastic state of the region Ai. Suppose that the other elastic state,
denoted by *, is the one which belongs to the fundamental solutions:

∗
ul(M) = ek(Q)Ukl(M, Q)

The latter is singular at the point Q. Consequently depending on the position of the point Q relative
to the region Ai we distinguish three cases – two of them are shown in Figure 2.
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FIGURE 2.

1. If Q ∈ Ai, then the neighborhood of Q with radius Rε, which is denoted by Aε and is
assumed to lie wholly in Ai, is removed from Ai and we apply the dual Somigliana identity
to the double connected domain A′ = Ai \Aε. Note that the contour Lε of Aε and the arc
L′ε, which is assumed to be the part of the contour Lε lying within Ai coincide with each
other.

2. If Q =
o

Q ∈ ∂A = Lo, then the part Ai ∩ Aε of the neighborhood Aε of Q is removed
from Ai and we apply the dual Somigliana identity to the simply connected region A′ =
Ai \ (Ai ∩ Aε). In this case, the contour of the simply connected region just obtained
consists of two arcs, the arc L′o left from Lo after the removal of Aε and the arc L′ε, i.e., the
part of Lε that lies within Ai.

3. If Q /∈ (Ai ∪ Lo) we apply the dual Somigliana identity to the original region Ai.

Since both
∗
uk and uk are elastic states the surface integrals in (29) are identically equal to zero.

We now consider each of these three cases, focusing on the main steps of the argument.
1. If Q ∈ Ai it follows from equation (29)

∮

Lo

[
uλ(

o

M)
∗
tλ(

o

M)− ∗
uλ(

o

M)tλ(
o

M)
]

ds o
M

+
∮

Lε

[
uλ(

o

M)
∗
tλ(

o

M)− ∗
uλ(

o

M)tλ(
o

M)
]

ds o
M

(30)

= ek(Q)
{∮

Lo

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)
]

ds o
M

+
∮

Lε

[Tkλ(
o

M,Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)] ds o
M

}
= 0 .

Since equation (30) holds for arbitrary ek(Q) we have

(31)
∮

Lo

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

+

+
∮

Lε

[Tkλ(M, Q)uλ(M)− Ukλ(M, Q)tλ(M)] dsM = 0 .

To obtain the final form of the above equation, we need to use the integrals detailed
below:
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• In spite of the singularity of the fundamental solution of order two we can prove that

(32) lim
Rε→0

∮

Lε

Tκλ(M,Q) [uλ(M)− uλ(Q)] dsM = 0 .

• We can also show by performing formal transformations that

(33) lim
Rε→0

∮

Lε

Uκλ(M,Q)tλ(M) dsM = 0 .

• It can be proved by relatively long hand made calculations that

(34) lim
Rε→0

∮

Lε

U3λ(M, Q)tλ(M) dsM = ϕ3|Q = −u3|Q .

Making use of the integrals (32), (33) and (34) from equation (31) we obtain

(35)
∮

Lo

· · ·+ lim
Rε−→0

∮

Lε

· · · =

= uk(Q)−
∮

Lo

Ukλ(
o

M, Q)tλ(
o

M) ds o
M

+
∮

Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M

= 0

which is, in fact, the first dual SOMIGLIANA formula:

(36) uk(Q) =
∮

Lo

Ukλ(
o

M, Q)tλ(
o

M) ds o
M
−

∮

Lo

Tkλ(
o

M, Q)uλ(
o

M) ds o
M

.

2. If Q =
o

Q our starting point is the formula
∫

L′o

[
Tκλ(

o

M,
o

Q)uλ(
o

M)− Uκλ(
o

M,
o

Q)tλ(
o

M)
]

ds o
M

+(37)

+
∫

L′ε

[
Tκλ(M,

o

Q)uλ(M)− Uκλ(M,
o

Q)tλ(M)
]

dsM = 0 .

Using the limit

(38) lim
Rε→0

∫

L′ε
Tκλ(M,

o

Q) dsM = cκλ(
o

Q) ,

where cκλ(
o

Q) = δκλ/2 if the contour is smooth at
o

Q and repeating the line of thought
resulting in equation (36), we arrive at the second dual Somigliana formula, i.e. the integral
equation of the direct method:

(39) cκλ(
o

Q)uλ(
o

Q) =
∮

Lo

Uκλ(
o

M,
o

Q)tλ(
o

M) ds o
M
−

∮

Lo

Tκλ(
o

M,
o

Q)uλ(
o

M) ds o
M

.

3. If Q /∈ (A∪Lo) it is not too difficult to check that the third dual Somogliana formula takes
the form:

(40) 0 =
∮

Lo

Uκλ(
o

M,Q)tλ(
o

M) ds o
M
−

∮

Lo

Tκλ(
o

M,Q)uλ(
o

M) ds o
M

.
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Upon substitution of the first dual SOMIGLIANA formula (36) into the dual kinematic equations
(1a,b) and taking into account that Fκ = uκ we get the stresses sm = (t11, t12, t22) in the form

(41) sm(Q) =
∮

Lo

Smλ(
o

M, Q)tλ(
o

M) ds o
M
−

∮

Lo

Dmλ(
o

M, Q)uλ(
o

M) ds o
M

, Q ∈ Ai

where the matrices of Smλ and Dmλ are

(42) [Smλ] = −2K Im
2∑

k=1

dk

ρk



−β3

k β2
k

β2
k −βk

−βk 1


 ,

and

[Dmλ] = K Im
2∑

k=1

2dk

ρ2
k

×



D11 D12

D21 D22

D31 D32


 ,

in which

D11 = n2

(−s11β
4
k − s12β

2
k

)− n1

2
s66β

3
k − n1

[
s22βk +

(
s21 +

s66

2

)
β3

k

]
,

D21 =
n2

2
s66β

3
k + n1

(
s21β

4
k + s22β

2
k

)
+ n2

[
s22βk +

(
s21 +

s66

2

)
β3

k

]
,

D12 = n2

(
s11β

3
k + s12βk

)
+

n1

2
s66β

2
k − n1β

2
k

[(
s12 +

s66

2

)
+ s11β

2
k

]
,

D22 = −n2

2
s66β

2
k − n1

(
s21β

3
k + s22βk

)− n2β
2
k

[(
s12 +

s66

2

)
+ s11β

2
k

]
,

D13 = −n2

(
s11β

2
k + s12

)− n1

2
s66βk + n1βk

[(
s12 +

s66

2

)
+ s11β

2
k

]
,

D23 =
n2

2
s66βk + n1

(
s21β

2
k + s22

)
+ n2βk

[(
s12 +

s66

2

)
+ s11β

2
k

]
.

5. DUAL SOMIGLIANA FORMULAE FOR EXTERIOR REGIONS

Figure 3 depicts a triple connected region A′e bounded by the contours Lo, Lε and the circle
LR with radius eR and center O. Here Lε is the contour of the neighborhood Aε of Q with radius
Rε while eR is sufficiently large so that the region bounded by LR covers both L0, and Lε. If
eR →∞ and Rε → 0 then clearly A′e → Ae.
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A

eR
ne

A

O x1x2

Q
R

’

Lo L LR




e

FIGURE 3.
We shall make the following assumptions:

1. The stresses are constant at infinity. Their values are denoted by

(43) t11(∞), t12(∞) = t21(∞) and t22(∞) .

2. The rigid body rotation vanishes at infinity:

(44) ϕ3(∞) = 0 .

Let ul(M) and
∗
ul(M) be sufficiently smooth elastic states (dual displacements and rotation) on

Ae. The corresponding dual stresses on the contour are denoted by

tλ and
∗
tλ

respectively. Equation

(45)
∫

A′e

[
ur(M)

(
M

Drl
∗
ul(M)

)
− ∗

ur(M)
(

M

Drlul(M)
)]

dAM =

=
∮

Lo

[
uλ(

o

M)
∗
tλ(

o

M)− ∗
uλ(

o

M)tλ(
o

M)
]

ds o
M

+
∮

Lε

[
uλ(

o

M)
∗
tλ(

o

M)− ∗
uλ(

o

M)tλ(
o

M)
]

ds o
M

+
∮

LR

[
uλ(

o

M)
∗
tλ(

o

M)− ∗
uλ(

o

M)tλ(
o

M)
]

ds o
M

is the dual SOMIGLIANA identity (29) when it is applied to the triple connected region A′e. Ob-
serve that M over a letter denotes that the corresponding derivatives are taken with respect to the
coordinates of M .
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Let again
∗
ul(Q) = ek(Q)Ukκ(M, Q), which is a non singular elastic state of the plane in A′e.

We regard ul(M) as a different elastic state in the region Ae. Further we assume that ul(M) has
the far field pattern (asymptotic behavior)

(46a) uλ(M) = ũλ(M) = cλ(∞) + εκρ3xρtλκ(∞) ,

(46b) u3(M) = ũ3(M) = −ϕ3(∞) = 0 .

when xβ or equivalently M tends to infinity. Here cλ(∞) is an arbitrary constant which can be set
to zero.

Substituting the above quantities into the SOMIGLIANA identity (45) and taking into account
that the surface integrals vanish we have

(47) ek(Q)
{∮

Lo

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

+

+
∮

Lε

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

+

+
∮

LR

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

}
= 0

since
∗
tκ(

o

M) = el(Q)Tlκ(
o

M,Q) .

It is clear that one can omit ek(Q). Recalling the limit (35) we get

(48) uk(Q) = lim
eR−→∞

∮

LR

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

+

+
∮

Lo

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

.

In order to establish the first dual SOMIGLIANA formula for the exterior region Ae we need to
find the limit of the first integral on the right hand side.

In the following, our main objective is to prove that

(49) Ik = lim
eR−→∞

∮

LR

[
Tkλ(

o

M, Q)uλ(
o

M)− Ukλ(
o

M,Q)tλ(
o

M)
]

ds o
M

= ũk(Q) .

The proof uses the first dual SOMIGLIANA formula valid for inner regions and requires simple
tools only.

Let us consider the simple connected region AR bounded by the circle LR with radius eR and
center at O. We shall assume that the point Q is an inner one.

It is clear that the dual displacements ũκ(M) and rotation field ũ3(M) defined by equations
(46a,b) are an elastic state of AR with no body forces. The corresponding dual stresses on the

contour are denoted by t̃κ(
o

M). It is also obvious that for any elastic state of the region AR one can
apply the first dual SOMIGLIANA formula. Since ũk(M) is an elastic state of the orthotropic inner
region AR we have

(50) ũk(Q) =
∮

LR

[
Tkλ(

o

M, Q)ũλ(
o

M)− Ukλ(
o

M,Q)̃tλ(
o

M)
]

ds o
M

.
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If in addition we take into account the limits

(51) lim
eR−→∞

uλ(
o

M) = ũλ(
o

M) and lim
eR−→∞

tλ(
o

M) = t̃λ(
o

M) ,

then we find that the limit of the integral in question in equation (49) is really

(52) lim
eR−→∞

∮

LR

[
Tkλ(

o

M,Q)uλ(
o

M)− Ukλ(
o

M, Q)tλ(
o

M)
]

ds o
M

= ũk(Q) .

Consequently, the first dual SOMIGLIANA formula – modified to include a constant stress state
at infinity – immediately follows from equations (48) and (49):

(53) uk(Q) = ũk(Q) +
∮

Lo

Ukλ(
o

M, Q)tλ(
o

M) ds o
M
−

∮

Lo

Tkλ(
o

M,Q)uλ(
o

M) ds o
M

.

If Q =
o

M is on Lo, nothing changes concerning the limit of the integral taken on LR. Conse-
quently

(54) cκλ(
o

Q)uλ(
o

Q) = ũk(
o

Q) +
∮

Lo

Uκλ(
o

M,
o

Q)tλ(
o

M) ds o
M
−

∮

Lo

Tκλ(
o

M,
o

Q)uλ(
o

M) ds o
M

.

where cκρ = δκρ/2 if the contour is smooth at
o

Q. This integral equation is that of the direct method
(or the second dual SOMIGLIANA formula) for exterior regions.

If Q is inside the contour Lo, i,e., in the region Ai, then it is easy to show that

(55) 0 = ũk(Q) +
∮

Lo

Ukλ(
o

M,Q)tλ(
o

M) ds o
M
−

∮

Lo

Tkλ(
o

M, Q)uλ(
o

M) ds o
M

.

which is the third SOMIGLIANA formula for exterior regions.
Recalling formula (41) for the stresses, it is easy to check that

(56)

sm(Q) = sm(∞) +
∮

Lo

Smλ(
o

M, Q)tλ(
o

M) ds o
M
−

∮

Lo

Dmλ(
o

M, Q)uλ(
o

M) ds o
M

. Q ∈ Ae

6. CALCULATIONS OF THE STRESSES ON THE BOUNDARY

After solving the integral equations of the direct
method (equation (39) for inner regions, equa-
tion (54) for exterior regions) we know the dual
displacement vector uκ (the stress functions) and
the dual stress vector tκ (displacement derivatives
with respect to the arc coordinate s) on the con-
tour. The next question is how to determine the
stresses on the contour in terms of these quanti-
ties.

The calculations leading to the equation system
that results in the stresses sought will be carried
out in the coordinate system (x, y). In this section
we shall not apply indicial notations including the
summation convention.

t

tx

ty

y

x

n
ny

nxAi
s

FIGURE 4.
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It is clear from Figure 4 that

(57)
dx

ds
= tx = −ny and

dy

ds
= ty = nx

If we recall formulae (1a,b) which give the stresses in terms of stress functions we can write
(indices 1 and 2 correspond to x and y, respectively):

(58a)
dFx

ds
=

∂Fx

∂x

dx

ds
+

∂Fx

∂y

dy

ds
= nxσxx + nyτxy ,

(58b)
dFy

ds
=

∂Fy

∂x

dx

ds
+

∂Fy

∂y

dy

ds
= nxτxy + nyσyy .

On the basis the definition of the dual stresses (5b) we have

−tx =
dux

ds
=

dux

dx

dx

ds
+

dux

dy

dy

ds
= exx

dx

ds
+

dux

dy

dy

ds
(59)

−ty =
duy

ds
=

duy

dx

dx

ds
+

duy

dy

dy

ds
=

duy

dx

dx

ds
+ eyy

dy

ds
.(60)

Multiplying by tx = −ny and ty = nx throughout and combining the equations obtained from
(59) and (60) we arrive at

(61) nytx − nxty = exx

(
dx

ds

)2

+ eyy

(
dy

ds

)2

+
dy

ds

dx

ds

2exy︷ ︸︸ ︷(
∂ux

∂y
+

∂uy

∂x

)

from which making use of the HOOKE law and the geometrical relations (57) we obtain

(62) nytx − nxty =
(
ny

2s11 + nx
2s21

)
σx − nxny

s66

2
τxy +

(
ny

2s12 + nx
2s22

)
σy .

Equations (58a,b) and (62) can be arranged in a matrix form

(63)




nx ny 0
0 nx ny

n2
ys11 + n2

xs21 −nxny
s66
2 n2

ys12 + n2
xs22







σxx

τxy

σyy


 =

=




dFx/ds
dFy/ds

nytx − nxty




Since the outer normal n, the stress functions Fx, Fy and the dual stresses tx, ty are all known on
the contour as soon as we have solved the integral equation of the direct method, solution of the
above linear equations will result in the stress components sought.

7. EXAMPLES

A program has been written in Fortran 90 in order to solve the integral equations (39) and (54) of
the direct method on inner and exterior regions numerically. We have applied quadratic boundary
elements. Let nbe and nbn be the number of boundary elements and that of the boundary nodes.
Further let

(64) uj =
[

uj
1

uj
2

]
and tj =

[
tj1
tj2

]
j = 1, . . . , nbn
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be the matrices of the dual displacements and dual stresses at node j on the boundary.
Following the well known procedure valid for the primal formulation – see for instance [9] –

solution of the dual integral equation (39) can be reduced to the solution of the linear equations

(65)




h11 h12 · · · h1nbn

h21 h22 · · · h2nbn

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
hnbn1 hnbn2 · · · hnbnnbn







u1

u2

· · ·
unbn


 =

=




b11 b12 · · · b1nbn

b21 b22 · · · b2nbn

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
bnbn1 bnbn2 · · · bnbnnbn







t1

t2

· · ·
tnbn




where the 2× 2 submatrices hij and bij are computed from the integrals

ĥij =


∑

e∈j

∫

Le

Tκλ(Qi, η)Na(j,e)(η)J(η) dη


 , hij =

{
ĥii + cii, if i = j

ĥij , if i 6= j
(66)

bij =


∑

e∈j

∫

Le

Uκλ(Qi, η)Na(j,e)(η)J(η) dη


(67)

in which (a) the summation is to be carried out for those boundary elements having the nodal point
j as their common nodal point (b) i identifies the fixed nodal point Qi referred to as collocation
point (c) Na(j,e)(η) is the a-th shape function for which a(j, e) is the local number of the global
nodal point j on element e (d) cii is the matrix of cκλ(Qi) in equation (38) (e) J(η) is the Jacobian.
Equation system (65) can be rewritten as

(68) Hu = Bt .

We remark that determination of the diagonal elements hii, i = 1, . . . , nbn requires the computa-
tion of strongly singular integrals.

If the region under consideration is an exterior one then in accordance with integral equation
(54) the right hand side of equation (68) is to be supplemented by the term

(69) ũT = [ ũ1
1 ũ1

2︸ ︷︷ ︸
ũT

1

| ũ2
1 ũ2

2︸ ︷︷ ︸
ũT

2

| . . . | ũnbn
1 ũnbn

2︸ ︷︷ ︸
ũT

nbn

]

and takes the form

(70) Hu = ũ + Bt .

If the dual displacements (the stress functions) are constant the stresses and the strains vanish.
If in addition we assume that the rotaion ϕ3 vanishes – this does not violate generality – then the
dual stresses also vanish. Consequently

(71)
2nbn∑

j=1

Hij = 0 or which the same Hii = −
2nbn∑

j=1
(i 6=j)

Hij i = 1, 2, . . . , 2nbn



A DUAL DIRECT BEM FORMULATION FOR ORTHOTROPIC BODIES 17

where Hij is an element of the matrix H. Making use of the equation above we can avoid the
computation of strongly singular integrals for interior boundary value problems.

For an exterior region, the strongly singular integrals can be determined using an equation
similar to equation (71), which we present here without proof:

(72) Hii = −
2nbn∑

j=1
(i 6=j)

Hij + 1 i = 1, 2, . . . , 2nbn .

We have solved one simple internal test problem and two external boundary value problems.
First we consider a beam in pure bending (Figure 5), second the coordinate plane with a circular
hole (Figure 6.b.); third the coordinate plane with a rigid inclusion (Figure 6.c.). The material is
birch for which s11 = 8.497 × 10−5, s12 = s21 = −6.11 × 10−2, s22 = 1.6999 × 10−4 and
s66 = 1.456× 10−3 [mm2/N ].

L
=

24 m
m

96 mm

p =100 MPa
y

x1

2

3

4

5

6

7
8

9

10

p = -100 MPa

O

FIGURE 5.
The first problem has a closed form solution for the stresses:

σxx = 200y/L , σyy = 0; , τxy = 0 .

The contour is divided into twenty elements of equal length as shown in Figure 6. Table 1 presents
the results computed which are in close agreement with the accurate values.

Pure bending: stresses at the inner - and contour points
The point Stresses [MPa]
Selected σxx τxy σyy

1 (6;3) 25.00023 0.000707695 -0.000186628
2 (30;9) 74.99414 0.000184937 -0.000164188
3 (42;3) 24.99820 -0.000128817 -0.000083552

4 (54;12) 100.02202 0.000000000 0.000000000
5 (90;3) 25.00023 0.000707695 -0.000186628
6 (18;-3) -24.99898 -0.000708675 0.000120160
7 (30;-12) -100.02220 0.000000000 0.000000000
8 (54;-9) -74.99372 -0.000055471 0.000156285
9 (66;-3) -24.99844 0.000398726 0.000092128

10 (78;-12) -100.02223 0.000000000 0.000000000

TABLE 1. Results for the pure bending of a beam
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For the exterior boundary value problems we shall assume that

τxy(∞) = σyy(∞) = 0 and σxx(∞) = p = constant

For completeness Figure 6.a. shows the region to use if we solve the integral equation of the direct
method in its traditional form – see equation (36) –, i.e. if the exterior region is replaced by a
bounded one. y

xOrop=σxx( )oo
A
D

e(a)
p=σxx( )ooro

(b)
p=σxx( )ooy

xOrop=σxx( )oo
A
D

e
p=σxx( )oo

Rigid incluson (c)
hole

FIGURE 6.

Lekhtniski’s book [15] contains closed form solutions for the stresses on the boundary, as well
as numerical values which can be found in Table 17 on page 197. In this paper we show the results
as computed by solving the integral equation and the results taken from [15] – see Tables 2 and 3.
We used a polar coordinate system, and the tables contain the quotients σθ/p for the plane with
circular hole and σr/p, τrθ/p and σθ/p for the plane with the rigid circular inclusion.

Circular hole
Polar angle σθ/p

Lekhnitski
[15]

0◦ −0.70744 −0.707
15◦ −0.33928 −0.340
30◦ 0.06951 0.069
45◦ 0.40451 0.404
60◦ 0.96605 0.966
75◦ 2.57736 2.577
90◦ 5.45409 5.453

TABLE 2. Results for the circular hole
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Rigid kernel
Polar angle σr/p τrθ/p σθ/p

Lekhnitski Lekhnitski Lekhnitski
[15] [15] [15]

0◦ 1.2363 1.237 0.0000 0.000 0.0444 0.044
15◦ 1.1558 1.156 −0.2999 −0.299 0.0936 0.093
30◦ 0.9364 0.937 −0.5188 −0.519 0.2701 0.270
45◦ 0.6370 0.698 −0.5986 −0.599 0.5158 0.516
60◦ 0.3377 0.338 −0.5181 −0.519 0.6990 0.699
75◦ 0.1188 0.119 −0.2987 −0.299 0.5627 0.564
90◦ 0.0389 0.039 0.0000 0.000 0.0028 0.003

TABLE 3. Results for the rigid inclusion

We remark that the value typeset in blue is mistaken in book [15].

8. CONCLUDING REMARKS

The present paper has dealt with the following issues:

1. We have presented the equations of plane elasticity for an orthotropic body in terms of
stress functions of order one. We have also clarified what are the supplementary conditions
of single valuedness for a class of mixed boundary value problems in the dual system of
plane elasticity.

2. By applying Galorkin functions and following the procedure presented among others in
book [14] by Kupradze we have derived the dual fundamental solutions of order one and
two for plane problems of orthotropic bodies.

3. We have set up the dual SOMIGLIANA relations both for inner regions and for exterior ones.
A constant stress state at infinity is a part of the formulation we have developed for exterior
regions. The integral representation of the stresses has also been established.

4. Three simple boundary value problems (one for an interior region, the other two for the
same exterior region) have been solved numerically in order to demonstrate the applicabil-
ity of the solution algorithm.

We remark that the supplementary conditions of single valuedness should be incorporated into
the algorithm if (a) the number of arcs on which tractions are prescribed is more than one or (b) if
in addition to this the region under consideration is multiply connected. Work on these issues is in
progress.
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