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Abstract. This paper deals with a new bar element with varying cross-sectional area which
can be used for geometric non-linear analysis. Shape functions of the bar element include
transfer functions and transfer constants, which respect variation of cross-sectional area.
Main FE equations are assembled using non-incremental non-linearized method. The von
Mises two bar structure with varying cross-sectional area was analyzed. The results obtained
with our new element were compared with ANSYS bar element results.
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1. Introduction

Even though the solution of geometric non-linear problems is possible, a great deal of
time and effort is spent on improving effectiveness and accuracy of non-linear analyses.
Commonly used FEM programs use incremental methods, where the Green-Lagrange
strain tensor is linearized in total as well as in updated formulation [1]. Furthermore
constitutive law is often linearized - relationship between increment of stress tensor
and increment of strain tensor.

A new non-incremental Lagrange formulation without linearization has recently
been published in [2]. Non-incremental equations are simpler and contain full non-
linear stiffness matrices.

In our paper, we use these non-incremental equations to derive a full non-linear
stiffness matrix and a full non-linear tangent matrix for a bar element with variation
of the cross-sectional area. Variation of the cross-sectional area is defined as poly-
nomial. New shape functions are used - shape functions which reflect variation of
cross-sectional area exactly [3].
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2. The basic equations set up in a local co-ordinate system

The Green-Lagrange strain tensor of finite deformation in Lagrange formulation can
be written as

Eij =
1
2
(ui,j + uj,i + uk,iuk,j) = eij + ηij , (1)

where eij is the linear part of the Green-Lagrange strain tensor and ηij is its non-
linear part. ui represents the i-th component of displacement and ui,j is the gradient
of displacement ui.

The constitutive law can be written as

Sij = CijklEkl , (2)

where Cijkl is the tensor of elastic constants and Sij is II. Piola-Kirchhoff stress tensor.

The principle of virtual work can be written as

δW int = δW ext , (3)

where δW int and δW ext are the internal and external virtual works. The internal
virtual work assumes the form

δW int =
∫

V 0
Sij δEij dV . (4)

For the external virtual work we can write

δW ext =
∫

A0
Fi δui dA + F̂k δqk (5)

where Fi is the i-th surface load and δui is the appropriate virtual displacement, F̂k

is discrete load at a node and δqk is the virtual displacement at the same node. The
integration is done through the initial volume V 0 and the initial area A0.

Applying equations (4) and (5) to (3) and considering the displacement as

ui = φik qk , (6)

where φik are shape functions and qk is nodal displacement, we obtain the classical
FEM equation

K(q) q = F . (7)

Matrix K(q) is a full non-linear stiffness matrix, q is the vector of local displacements
and F is the vector of external local loads.

The full non-linear stiffness matrix has a linear and a non-linear part

K(q) = KL + KNL(q) = KL + KNL1(q) + KNL2(q) + KNL3(q) . (8)
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The nm-th members of the single matrices can be written in the forms

KL
nm =

1
4

∫

V 0
Cijkl(φkm,l + φlm,k)(φin,j + φjn,i) dV , (9a)

KNL1
nm =

1
4

∫

V 0
Cijklφpm,kφpr,l(φin,j + φjn,i)qr dV , (9b)

KNL2
nm =

1
2

∫

V 0
Cijklφpr,iφpn,j(φkm,l + φlm,k)qr dV , (9c)

KNL3
nm =

1
2

∫

V 0
Cijklφpm,kφpv,lφrq,iφrn,jqvqq dV , (9d)

where φpm,k is the first derivative of shape function φpm with respect to the k-th
coordinate. Other derivatives in the previous equations have a similar meaning.

3. Stiffness matrices of bar element with variation of cross-section

3.1. Introductory remarks. The matrices, which were derived above, are valid for
all types of elements whose displacements are described by equation (6). That means
that we can use these equations also for a bar element with variation of cross-sectional
area.
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Figure 1. Local nodal displacements and forces in single iterations

In the classical FE codes (e.g. ANSYS), linear interpolation is used for shape
functions. But such functions do not respect variation of the element’s cross-sectional
area and in a very coarse mesh they are responsible for an increase in inaccuracy.
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This behavior of bar elements with variation of cross-section with classical linear
shape function is also included in linear theory [4].

Figure 1 shows a bar element in a local co-ordinate system with local forces and
local displacements in single iterations. The vectors of local displacements and forces
have the forms

q =
[

q1 q2

]T

(10)

F =
[

Fq1 Fq2

]T

(11)

The variation of cross-sectional area A0(x) is defined as

A0(x) = A0
1ηA(x) = A0

1

(
1 +

p∑

k=1

ηAkxk
)

(12)

where A0
1 is cross sectional area at node 1 and polynomial ηA(x) describes variation

of the cross-sectional area (ηAk are the coefficients of the polynomial ηA(x)).

3.2. Shape functions for bar element with variation of cross-sectional area.
New shape functions for a bar element with variation of cross-sectional area are de-
rived from the direct stiffness method and the whole procedure is published in [3].
The new shape functions contain the transfer functions and transfer constants, which
characterize the solution of the linear differential equation with non-constant para-
meters [5] and depend on polynomial ηA(x). For displacement in location x in the
local co-ordinate system, we can write

u(x) = u1 − d′N2(x)
d′N2

u1 +
d′N2(x)

d′N2

u2 , (13)

where u1 and u2 are displacements in node 1 and 2, respectively, d′N2(x) is transfer
function and d′N2 is transfer constant (transfer constant is transfer function for x = L
and L is length of element).

From equation (13) we can write for shape functions

φ11 = 1− d′N2(x)
d′N2

φ12 =
d′N2(x)

d′N2

(14)

and their derivatives

φ11,1 = −d′′N2(x)
d′N2

φ12,1 =
d′′N2(x)

d′N2

(15)

3.3. Full non-linear stiffness matrix. Members of single matrices of a full non-
linear stiffness matrix for a bar element with variation of cross-sectional area also
have the forms (9a), (9b), (9c) and (9d). Shape functions and their derivations are
defined by (14) and (15). For bar elements with linear elastic deformation the tensor
of elastic constants Cijkl is characterized by the Young modulus of elasticity E and
dV can be written as A0dx, where A0 is undeformed cross-sectional area, which is
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defined by equation (12). Considering all these equations, we can write for members
of KL

KL
mn = A0

1E

∫

L0
ηA(x)φ1m,1φ1n,1dx . (16)

After the integration [3] for the whole matrix KL we can write

KL =
A0

1E

d′N2


 1 −1

−1 1


 . (17)

For member of KNL1 we obtained

KNL1
nm =

1
4
A0

1E

∫

L0
ηA(x)φ1m,1 (φ11,1q1 + φ12,1q2) 2φ1n,1dx (18)

and for the whole matrix KNL1

KNL1(q) =
1
2

A0
1E

(d′N2)3


 1 −1

−1 1


 (q2 − q1) d̄′N2 . (19)

Similarly we can derive KNL2 and KNL3

KNL2(q) =
A0

1E

(d′N2)3


 1 −1

−1 1


 (q2 − q1) d̄′N2 (20)

KNL3(q) =
1
2

A0
1E

(d′N2)4


 1 −1

−1 1


 (q2 − q1)

2 ¯̄d′N2 (21)

The final full non-linear stiffness matrix (8) can be written using (17), (19), (20) and
(21) as

K(q) = (kL + kNL)


 1 −1

−1 1


 , (22)

where

kL =
A0

1E

d′N2

, (23)

kNL = kL

[
3
2
(q2 − q1)

d̄′N2

(d′N2)2
+

1
2
(q2 − q1)2

¯̄d′N2

(d′N2)3

]
. (24)

As can be seen from the previous equations, the full non-linear stiffness matrix of a
bar element with variation of the cross-sectional area contains transfer constant d′N2

and two new modified transfer constants d̄′N2 and ¯̄d′N2. Numerical computation of
transfer constant d′N2 is described in the Appendix, the modified transfer constants
d̄′N2 and ¯̄d′N2 are the same transfer constants as d′N2, but the polynomial ηA(x) is
changed to (ηA(x))2 and (ηA(x))3, respectively.
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3.4. Full non-linear tangent matrix. The system of equations (7) with stiffness
matrix in form (22) is non-linear, which is usually solved using the Newton-Raphson
method. This iteration method makes use of derivatives of single functions of a system
whose solution is being found, and that is why the full tangent stiffness matrix is
required to be built.

In the formal way, the tangent stiffness matrix can be derived as

KT (q) =
∂F
∂q

=
∂K(q)

∂q
q + K(q) =

∂KNL(q)
∂q

q + KNL(q) + KL

= KL + KNLT (q)
(25)

Using equations (22), (23), (24) and (25) we can write the full non-linear stiffness
matrix for a bar element with variation of cross-sectional area as

KT (q) = (kL + kNLT )


 1 −1

−1 1


 , (26)

where kL is defined by equation (23) and

kNLT = kL

[
3(q2 − q1)

d̄′N2

(d′N2)2
+

3
2
(q2 − q1)2

¯̄d′N2

(d′N2)3

]
(27)

For the evaluation of the efficiency of the iteration procedure, we use the Euclidean
norm of residual forces, which is compared with the norm of external nodal forces
multiplied by a very small coefficient ε.

4. Implementation

The whole process of a bar element with variation of cross-sectional area for geomet-
ric non-linear problems was prepared in Fortran language. Solution for the transfer
functions were taken from our program RAM3D [7], which was designed for linear
problems and handled the beam element with variation of cross-sectional character-
istics.

For the evaluation of the efficiency of the iteration procedure, we use the Euclidean
norm of residual forces, which is compared with the norm of external nodal forces
multiplied by the coefficient ε. More details about internal forces, residual forces,
norms of residual forces and iteration process are published in [3].

5. Numerical experiments

The convenience of our new bar element with variation of cross-sectional area for
geometric non-linear problems is illustrated in the next example. Figure 2 shows a
simple arch structure assembled of two bar elements with variation of cross-sectional
area - a well-known snap-through problem.

The material properties of the bars are defined by the Young modulus of elasticity
E = 2.1× 1011 Pa. The geometry is given by the parameters L0 = 1 m and α = 15o.
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Figure 2. Snap-through problem

We considered four types of cross-sectional area A(x) - from linear polynomial to
fourth order polynomial. These have the following forms

type A
A(x) = 0.005− 0.0047x ,

type B
A(x) = 0.005− 0.0094x + 0.0047x2 ,

type C
A(x) = 0.005− 0, 0141x + 0.0141x2 − 0.0047x3 ,

type D

A(x) = 0.005− 0.0188x + 0.0282x2 − 0.0188x3 + 0.0047x4 .

All cross-sectional areas are shown in Figure 3.
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Figure 3. All types of cross-sectioal areas A(x) considered

The goal is to find dependence between displacement ub and load Fb.

The solution was obtained by our program NelinPrut, in which the new bar element
is implemented, and comparative results were obtained from program ANSYS.
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In our NelinPrut program, each bar was represented by one element only, but the
variation of cross-sectional area was described exactly. In program ANSYS, there are
two suitable elements - the classical bar element LINK1 or the beam element with
variation of cross-sectional characteristics BEAM54. But the bar element LINK1 is
developed for constant cross-sectional area and that is why we should compute some
average area according to [6] (see Figure 3). In LINK1 we use also one element only.
Element BEAM54 is more suitable, because it is developed for varying cross-sections
and because we could refine mesh. But this element does not describe variation of
the cross-section exactly, either.

ANSYS results

NelinPrut results

NelinPrut - bar element

ANSYS - BEAM54 - 100 elements

ANSYS - LINK1
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Figure 4. Snap-through problem: dependence between ub and Fb for
type D

Figure 4 shows results for cross-sectional area type D. In this Figure, there are
3 equilibrium paths. The equilibrium paths of the new bar element and BEAM54
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with 100 elements are very similar but the equilibrium path of LINK1 is different.
Differences between our results and BEAM54 and LINK1 results are caused by lin-
earization of the Green-Lagrange strain tensor and also by variation of cross-sectional
area. While our new bar element has shape functions which respect variation of
cross-sectional area, BEAM54 and LINK1 use classical shape functions, which do not
respect variation of cross-section. BEAM54 results are more accurate than LINK1
results because BEAM54 allows refinement: there are 100 elements and then variation
of cross-sectional area is described more suitable than in LINK1.

ANSYS-BEAM54
Variation NelinPrut 100 elements

Type ub [mm] IT ub [mm] IT
A 6.6510 7 6.6171 8
B 12.872 8 12.750 10
C 17.958 9 17.744 11
D 21.872 10 21.574 12

Table 1. Snap-through problem: displacement ub and number of iter-
ations IT for load Fb = 0, 3×106 N for single types of cross-sectional
areas A

ANSYS-BEAM54
Variation NelinPrut 100 elements

Type ub [mm] IT ub [mm] IT
A 13.927 9 13.777 10
B 28.490 12 27.854 13
C 42.165 15 40.811 17
D 54.635 19 52.290 21

Table 2. Snap-through problem: displacement ub and number of iter-
ations IT for load Fb = 0, 6×106 N for single types of cross-sectional
areas A

Tables 1 and 2 show displacement ub as function of Fb for all four types of cross-
section variation for the new bar element and BEAM54. Table 1 shows results for
load Fb = 0, 3×106 N and Table 2 for load Fb = 0, 6×106 N. As can be seen from the
Tables, the difference between our and ANSYS results grows with increasing load,
where the linearization of the Green-Lagrange strain tensor has more influence on
result accuracy. The numbers of iterations IT are nearly equal.

Influence of mesh refinement is shown in Figure 5. We can see that for cross-
sectional area type D – this is the most complicated variation –, ANSYS results
for BEAM54 are not exactly the same as our new bar element results, neither for
refinement. The difference is caused by linearization of the strain tensor mentioned
above.
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ANSYS - BEAM54
Nelem ub [mm] IT

1 5.0394 5
2 15.648 7
4 19.808 9
6 20.754 9
8 21.106 10
10 21.273 10
20 21.500 10
50 21.565 11
100 21.574 12

NelinPrut
Nelem ub [mm] IT

1 21.872 10

Table 3. Snap-through problem: displacement ub and the number of
iterations IT for load 0Fb = 0.3× 106 N for type D as mesh density
function
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ANSYS - BEAM54
Nelem ub [mm] IT

1 10.383 6
2 35.157 11
4 46.778 15
6 49.677 16
8 50.786 17
10 51.320 18
20 52.051 18
50 52.260 21
100 52.290 21

NelinPrut
Nelem ub [mm] IT

1 54.635 19

Table 4. Snap-through problem: displacement ub and number of it-
erations IT for load Fb = 0, 6 × 106 N for type D as mesh density
function

Furthermore Tables 3 and 4 show a difference between our results and ANSYS
results in the increasing number of BEAM54 elements in ANSYS.

6. Conclusion

The bar element with variation of cross-sectional area presented was derived without
any linearization of the Green-Lagrange strain tensor or constitutive law. The method
of solution is non-incremental.

As can be seen from the results, the linearization of the terms mentioned has
influence on result accuracy also in refinement of mesh, because the main equations,
which are used as equilibrium equations, are still linearized: the difference between
our results for one bar element and 100 BEAM54 elements of ANSYS. Shape functions
also have an influence on results: difference between our results for one bar element
with the new shape functions and one bar LINK1 element of ANSYS, but this influence
can be eliminated by refinement.

Numerical experiments confirm the applicability of the new bar element with vari-
ation of cross-sectional area with new shape functions for non-linear problems and it
could be an alternative to the classical bar element with linear shape functions.

We remark that the paper was presented at the 9th International Conference on
Numerical Methods in Continuum Mechanics, Zilina, Slovakia, 9-12 September 2003
and its shorter version was published in the Conference CD Proceedings.
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APPENDIX

Determination of the transfer functions and transfer constants occurring in the stiff-
ness matrix and shape functions is based on the following expression

d′′Nj+2(x) =
aj(x)
ηA(x)

,

where the function aj(x) = xj

j! for j ≥ 0 , and for j ≤ 0, a0 = 1, aj = 0. Closed
solutions for the 1st and 2nd integrals of the function d′′Nj+2(x) are known only for
lower degree polynomials ηA(x). For their numerical solution, which is more general,
a recurrance rule was derived

d
(n)
Nj (x) = aj−n(x)−

m∑

k=1

ηAk
(j − 2 + k)!

(j − 2)!
d
(n)
Nj+k(x) for j ≥ 2 , n = 0 a 1 .

After some manipulation we get

d
(n)
Nj (x) = aj−n(x)

∞∑
t=0

βt,0(x) ,

where βt,0(x) is expressed by

βt,0(x) = −
m∑

k=1

[
ηAkβt,k(x)

−1∏

r=−k

(s− 1 + r)

]

with parameters

s = 1 + t e =
x

s− n
βt,k = eβt−1,k−1 for k = 1, ...m

and initial values

β0,0 = 1 β0,k = 0 for k = 1, ...m .


