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Abstract. The Kirchhoff rod is a widely used model in describing configurations of DNA
chains. In the simplest case of such research the molecule-chain is represented by a twisted-
bent rod. In this paper we will present an application of this rod model for describing the
shapes of the DNA chain in a special configuration. Here, two finite segments of the rod are
in contact with each other. The contact region is closed on each end by terminal loops. These
configurations can be represented by four parameters. The equilibrium path is computed in
the four-dimensional space of the parameters using the path-following simplex method. The
paper shows the system of equations applied during the path-following, equilibrium path
from a generalized solution, and some numerical results with different rod lengths. At last
we show how our results should be connected to configurations of former research.
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1. Introduction

Let us consider an initially straight rod a with circular cross-section of radius r. The
rod is long, i.e. L >> r, where L is the length of the rod. The rod is made of a
homogenous, linearly elastic material with the modulus of elasticity E and the shear
modulus of elasticity G. Bending stiffness is characterized by the constant A = EIx,
where Ix = r4π

4 , and the twist stiffness by C = GIp, where Ip = r4π
2 . The rod is

supposed to be inextensible and unshearable. First, the rod is bent to a ring with
a pair of moments acting on the end-sections. Then the end-sections are twisted in
the opposite direction, while they stay in contact. By a small twist rate the ring
holds its planar shape. Above a critical value of twist, the ring loses its stability,
and the rod takes a spatial shape. The critical value of twist rate was first estimated
by Zajac [1]. Dichmann et al. [2] presents critical values even for overlapping rings.
Another, symmetry-based examination of all configurations of self-penetrable rods
was presented by Domokos [3]. If the rod is impenetrable, self-contact can arise. The
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contact may destroy some symmetry properties of the solutions. The self-contact
can arise in contact points, or along a contact-line. Coleman et al. [4] determined
equilibrium paths of the rod with self-contact, with detailed analysis of the stability of
solutions. In addition to the classification of different contact configurations, Swigon
et al. [5] derived the differential equation of the generalized helix, which occurs in
the case of self-contact along a line, and its analytical solution. An extension of their
work was made by Thompson et al. [6], where the generalized helix is loaded by a
wrench.

In the above mentioned research the elastic rod is treated as a continuous mechani-
cal model of DNA molecules, where the rod axis is equivalent to the duplex axis of the
DNA. This modelling is validated through similarity between computed rod shapes
and real DNA configurations taken from electron-microscope photos.

In this paper we want to give an extension to the former results. The first con-
figuration on the first non-trivial equilibrium path of the impenetrable rod has one
point of contact. In a contact point a concentrated contact force arises. This con-
figuration is denoted by A1, where A means the first non-trivial path, while 1 is the
number of contact point(s). The following shapes on this path have 2 and 3 contact
points, these are denoted by A2 and A3. Further increasing of the twist leads to
the A4 configuration. The A4 configuration differs from the previous configurations
in a contact line between the inner contact points. In the contact line a distributed
contact force arises. However, a contact line contains an infinite number of contact
points. We refer to a point as a contact point only if there a concentrated (finite)
force arises. Further increasing of the twist rate leads to a longer contact line, while
the free segment between the outer and inner contact points decreases, so does the
length of the terminal loop. We suspect that at extreme high twist the free segment
disappears. Then we will have a configuration with two contact points, but, unlike
the A2 configuration, there will be a contact line between the contact points. So, we
will refer to this configuration as A2+. Our goal is to find the equilibrium path of this
configuration. We do not deal with the stability of the solutions.

Figure 1. (a) Sketch of the analyzed configuration with the global
reference system. (b) Intensity of the assumed distributed (q(s)) and
concentrated (Q) contact forces along the contact line
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The axis of an A2+ configuration is sketched in the Figure 1a. The configuration
is symmetric to the contact line, we refer to this axis by z. We set its 0 to the middle
of the contact line. So, the rod axis crosses the plane z = 0 in two points. Through
these points goes axis x, which is also an axis of symmetry. The third axis of our
reference system will be axis y. The coordinate system [xyz] is a right-handed one,
therefore axis y points out of the plane in Figure 1a.

Every configuration can be represented by the space curve of the rod axis. This
curve will be given by the co-ordinates in the system [xyz], as a function of the arc
length s. The point s = 0 should be where the rod axis crosses the plane z = 0 at
a positive value of x. The rod is directed in such a way that a small increase in the
arc-length parameter leads to a point in the positive eighth of the reference system.
(This happens if we twist the rod in clockwise direction.) In the contact region the
rod axis describes a generalized helix. The rise angle (α(s)) of this helix depends on
s, and is defined as the angle between the tangent of the rod axis and a plane normal
to z. In the examined configuration it is sufficient to examine the segment from s = 0
to s = L/4. The last point is the top of the closing loop on the right side.

We divide the examined part of the A2+ configuration into two different parts. The
first is the helix, where the rod is in contact with another part of the rod. On the
contact line arises the distributed contact force q(s), which points from axis z to the
rod axis. The last cross-section of contact is at the arc-length sP . The second part is
the terminal loop. In the loop there are no external forces acting on the rod. At the
common boundary of these two parts a concentrated contact force (Q) arises (Figure
1b.).

In Section 2 we will show the differential equations used for finding a rod shape,
then, in Section 3 we will present the equation system to be solved for the equilibrium
path. In Section 4 the applied numerical methods of computation will be introduced.
Numerical results and their conclusions will be presented in Section 5.

2. Differential equations applied

2.1. Differential equation of the generalized helix. The differential equation of
the generalized helix is derived from the geometrical, equilibrium and constitutive
equations of the rod. The whole derivation can be found in [5], [6] and [7], inter-
ested readers are directed to those works. Here we only present the start-up and the
definitions of the terms used.

The turn of the rod around the contact line is measured through the function ϕ(s),
as it is shown in Figure 2a. So the co-ordinates of the rod axis at the arc-length s
are:

r(s) =




r · cosϕ(s)
r · sin ϕ(s)

z(s)


 .

Figure 2b helps us to write the first and second derivatives of r(s). The length of the
latter is the curvature of the curve.
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Figure 2. Geometry of generalized helix. View of an elementary seg-
ment (a) from axis z (b) from a radial direction

The simplest way of writing the six differential equations of equilibrium is to use
a cylindrical reference system. We have only three equations of material behavior,
because the effect of normal and shear forces is neglected. The first one is the rela-
tionship between the twist ω and the torque MT :

ω =
MT

C
, (2.1)

the second one describes the relationship between the curvature κ and the bending
moment MB

κ =
MB

A
, (2.2)

and the third one states that the moment vector M is orthogonal to the principal
normal vector r

′′
:

M · r′′ = 0, (2.3)
where ′ denotes differentiation with respect to s.

From these equations one can derive the differential equation of the generalized
helix:

0 = α
′′′

+ α
′ 2r2α

′′
sin 2α + 8 cos6 α− 12 cos4 α + 6 cos2 α

r2 cos 2α
. (2.4)

This differential equation can be written in a second order form, where the constant
torque appears as a free parameter:

α′′ =
MT · cos 2α

A · r − sin 2α · cos2 α

r2
. (2.5)

2.2. System of differential equations of a free segment. In the case of a free
segment the first step of the computation of the shape (namely the function r(s)) is
to compute the inner forces and moments. There are no external forces acting on the
rod, so the equilibria of a segment of arbitrary length causes the resultant of the inner
forces to be constant along the segment. This resultant will be reduced to the origin
of the reference system, and the force and moment components will be denoted by
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vectors P0 and M0. The effect of normal and shear forces is neglected, so we need
the moments in the cross-sections only. Their vector can be computed by the form:

M(s) = M0 + P0 × r(s). (2.6)

It is a well-known fact that the torque and the specific twist are constant in the
initially straight rod of homogenous cross-section. So the twist of a segment can be
computed from the specific twist and the length. The bending part of the moment
vector causes a change in the tangent of the rod, which can be computed from:

r
′′
(s) =

1
A

M(s)× r
′
(s). (2.7)

3. Closing conditions of rod

3.1. Equation system of closing. We use the symmetry of the rod in our compu-
tation, so we examine only a quarter of the whole rod. The shape of a rod can be
specified by four parameters. Three of these parameters are connected to the helix,
the fourth parameter belongs to the contact point. In the point s = 0 the initial value
of the rise angle (α0) and its first and second derivatives (α

′
0 and α”

0) determine the
shape of the helix. The symmetry causes α

′
0 = 0, so here we have only α0 and α”

0 as
free initial values. The third parameter of the helix is its length, denoted by sP . The
fourth parameter is the concentrated contact force Q at the end of the helix. The
function of the inner forces in the helix can be computed from the three parameters
α0, α”

0 and sP , their radial force component is modified at the end point by Q.

Any set of the above parameters allows the computation of a rod shape. First
the helix-form must be computed as an initial value problem from s = 0 up to
s = sP . Then the radial component of the inner forces must be modified by Q, and
the system of differential equations of the closing loop must be solved until s = L/4.
The parameters lead to a closed rod, if this point is the top of the loop, namely the
rod crosses axis z in this point orthogonally. This can be mathematically formulated
with three equations: x(L/4) = 0, y(L/4) = 0 and z

′
(L/4) = 0.

(Note: The helix has a third-order differential equation, so the whole helix can be
defined by four values, the length of the helix and three initial values. The same helix
could be defined by other values, for example by the length, the rise angle in the end
points, and the first derivative in the start-point. Naturally, the latter must be equal
to zero, as before.)

3.2. Possible shapes. On the basis of the previous subsection, four parameters de-
fine a rod shape. We call this rod shape a mathematically possible solution, if the
three equations for closing are satisfied.

Physically acceptable solutions are those mathematically possible solutions for
which the following conditions are fulfilled:

• the rod does not cross itself,
• no tension arises in contacts.
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The first condition is satisfied, if the largest curvature is smaller than the reciprocate
of the radius of the rod, and the rise angle of the helix causes no self-intersection
(which in [8] occurs at α = 45◦). The second condition means, that Q and the
minima of q cannot be negative.

4. Numerical method of solution

The first step of the solution is to find the mathematically possible shapes, then
the physically unacceptable solutions will be filtered out. The units of lengths and
forces are chosen to have r = 1 and A = 1.

4.1. The Path-Following Simplex Algorithm. In order to determine the math-
ematically possible shapes, we have to find the common zero places of n − 1 = 3
functions, depending on n = 4 parameters. The number of functions and parameters
suggests that the solution set is a one dimensional set in the space of parameters.
This type of problems can be easily solved by the Path-Following Simplex Algorithm
[9]. We set a simplex in the space of the parameters with one side over a known
solution. Then we compute the values of the error-functions (the left sides of the
closing equations, i.e. x(L/4), y(L/4) and z

′
(L/4)) in the vertices of the simplex

and interpolate them. So, each function will have a solution set of n− 1 dimensional
hyperplane. The common crossing line of these planes will be a line. This way we
linearize the solution. The linearization gives a good approximation of the solution
inside the simplex. The linearized solution crosses two simplex sides. One side is
where the known result lies, the other one is a new solution point. We mirror the
simplex on this side, then we have a new simplex with a solution on one of its sides.
Now we can linearize the solution inside this simplex, just as we did with the previous
one, but now we have to compute the error-functions in only one vertex, because the
mirroring does not change the position of the mirroring side. The persistent use of
the above steps leads to a whole solution (or, at least its good approximation by a
piecewise linear curve).

The path following requires a starting point. Domokos and Szeberényi [10] present
a method, where the path following is combined with scanning the parameter space.
We can also fix the value of one parameter, then, an iterative method provides one
solution point of the equation system. The drawback of this method is that a change
in the length of the rod causes change in the initial solution.

A different reading of parameters can result an universal solution point. If the
rise angle of the helix is constant (providing α0 = αP ), then the internal forces
and moments are also constant. So they do not depend on the length of the helix,
and the terminal loop is also independent of L. In other words, the value of sP

changes, but L/4− sP remains unattended. So we have to compute the free segment
of length L/4 − sP connecting to a helix of constant rise angle α0 with the inner
forces determined by the helix and the modifier contact force Q. The three variables
mentioned above have to be computed according to the connecting equations.
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The problem can be solved even with two unknown parameters only, if we compute
the free segment until the third equation, namely z

′
(L/4) = 0 comes true. Then we

only have to solve the equation system x = 0, y = 0 for the variables α0 and Q,
while L/4 − sP will be the arc-length, belonging to the solution. The result of this
computation is:

α0 = 0.9733982, L/4− sP = 3.5773973, Q = 0.3212820.

These data determine the starting point of the path following. But this starting
point is only a mathematically possible solution, because on the top of the loop the
rod would have too high a curvature. This would lead to an overlap at the top of the
loop, as can be seen in Figure 3.

Figure 3. The physically non-acceptable terminal loop at universal
starting point

4.2. Finite differences of variable length.

4.2.1. Reason of using FDVL. The generalized helix has a third-order differential
equation. In order to compute the error-functions of the simplex path-following,
one has to solve this differential equation. The analytical solution of the differential
equation is given in the paper by Coleman et al. [11]. This solution contains elliptic
integrals, and has singularity at our desired starting point and is numerically instable
in its neighborhood. That is the reason why we choose a numerical method for solving
the boundary value problem of the helix. The helix is then determined through its
length sp, its rise angles in start and end-points (α0, αP ) and the first derivatives of
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the rise angle (which is equal to 0). The differential equation can be transformed into
a first-order form:

(α
′
)2 =

MT · sin 2α

A · r +
cos4 α

r2
− MT · sin 2α0

A · r − cos4 α0

r2
. (4.1)

This form contains MT as an unknown parameter, and satisfies the α
′
0 = 0 condition.

From the analytical solution of the helix one can show, that the function α(s) changes
monotonous in the interval [0, sP ], so the sign of the first derivatives equals to the
difference of αP − α0. The function does not leave the interval of α0 and αP , as
another consequence of monotony.

4.2.2. Computational form of the finite differences. We divide the interval s = [0, sp]
into Nd sections. The length of the ith section is denoted by ∆si. The analytic
solution shows that the function changes less at small s; a sketch of the function
can be found in the paper by Thompson et al. [6]. It is preferable to choose the
sections so that the changees of the function over the sections are approximately the
same in size. This condition needs longer sections at smaller changes of function and
shorter sections at greater changes of function. Let the lengths of sections ∆si make
a geometrical series. The quotient of two consecutive sections’ length ∆si+1/∆si is
denoted by q ≤ 1, so the last (the Ndth) section’s length is Ω = q(Nd−1) times the
first section’s length. So the sum of all sections, i.e. the length of the helix is:

sP = ΣNd
i=1∆si = ∆s1 · ΣNd

i=1q
i−1,

while the length of first section (∆s1) is:

∆s1 = sp · 1− q

1− qNd
.

We want to compute the function values αi in the end-points of the sections. (This
notation leaves α0 unchanged, as a continuation of the series, while at the end of the
helix αNd

= αP .) There are Nd − 1 unknown αi values in the divider points, and
we do not know MT yet. One can write Nd − 1 equations with the finite differences
(one for each divider point), and one more for the start-point of the helix, using the
symmetry of function α(s).

We write the difference equation of the ith divider point. The truncated Taylor-
series of α at that point is:

α(si + S) = αi + α
′
i · S + α

′′
i ·

S2

2
,

so we can write αi−1 and αi+1:

αi−1 = αi − α
′
i ·∆si + α

′′
i ·

∆s2
i

2
,

αi+1 = αi + α
′
i ·∆si · q + α

′′
i ·

∆s2
i

2
· q2.

These lead to the following expression for α′′i:

αi
′′ =

2
q · (q + 1) ·∆s2

i

(q · αi−1 − (q + 1) · αi + αi+1) ,
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which must be equal to the formula given by (2.5), i.e.

MT · cos 2αi − sin 2αi · cos2 αi = (4.2)

=
2

q · (q + 1) ·∆s2
i

· (q · αi−1 − (q + 1) · αi + αi+1) . (4.3)

This equation can be written for Nd− 1 points. In the ‘zeroth’ point a fictitious −1st
point helps to write the following equation:

MT · cos 2α0 − sin 2α0 · cos2 α0 =
2

∆s2
1

· (α1 − α0). (4.4)

The helix is computed by the solution of equations (4.2) and (4.4). The Nd equations
are solved with an iterative method.

4.2.3. Iterative solution of the equation system of finite differences. The function val-
ues in the divider points can be set initially in order to make a second order parabola.
Initial values of αi-s will be

αi = α0 +

(
Σi

j=1∆sj

sp

)2

(αP − α0),

and the initial value of MT is computed from Eq. (4.4). In every iteration step we
change

• αi-s by the formula

αnew
i =

q · αi−1 + αi+1

q + 1
− (MT · cos 2αi − sin 2αi · cos 2αi) · q ·∆s2

i

2
, (4.5)

i = 1, ..., Nd−1, which was expressed from Eq. (4.2) (where on the right side
we use the modified value of αi−1, but the old values of αi and αi+1),

• MT from Eq. (4.4).

If the greatest change of αi-s is smaller than a prescribed limit ∆α, we stop the
iteration.

α
′
(s), α

′′
(s) and the internal forces can be computed at the end-point of the helix

from the accepted values of αi-s.

5. Numerical results

5.1. Equilibrium paths and configurations. We choose the length of the rod to
L = 244, and C = 2/3, in order to reach comparable results with previous results in
[4]. The helix was divided into 250 sections, the quotient of the largest and smallest
section was 30, i.e. q = 30−1/249 ≈ 0.9864334. Figure 4. shows two dimensional
projections of the mathematically possible solutions. On the upper vertical axes the
rise angles are in the middle of the helix, on the lower axes are the lengths of the
half-loop. The horizontal axes represent the rise angle at the end-point of the helix
on the left side, and the contact force on the right side.
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Figure 4. Two dimensional projections of the equilibrium path of the
rod with A = 1, L = 244r.

We mark four points in each diagram. Point A is the starting point of the path
following procedure. The smallest curvature is 1 in point B, and the minimum of
the distributed contact force is 0 in point D. Physically acceptable shapes belongs to
points of segment BD. One example for that is point C.

Figure 5a-d represents four rod shapes from the equilibrium path, namely the
configurations in points A, B, C and D, respectively. The series of the presented
shapes can be reached through an unloading process during which the twist rate
decreases from B to D. (It decreases even from A, but those are physically non-
acceptable solutions, hence they are out of our interest.) But the smaller twists are
still very high, as the following short computation will show.

We calculate the characteristic values of the space curve of the configuration of
Figure 5c. In this configuration the torque equals MT = −0.533444, the rise angle
of the helix in its mid-point is α0 = 1.021554 and the arc-length of the helix is
sP = 56.269746. The characteristic values are the twist (Tw), the writhe (Wr) and
the link (Lk). Their meanings for a space curve and a rod can be found in the works
by White [12] and Fuller [13]. The twist can be computed from the torque, and, as
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Figure 5. Equilibrium shapes of the rod, corresponding to the points
A,B,C, D of the eq. path

already mentioned, it is constant along the rod, so it can be computed via

Tw =
MT

C

L

2π
. (5.1)

C depends on the material of the rod, and until now it has not had any influence on
the computation. The earlier mentioned C results Tw = −31.08.

The writhe is computed with an approximate method presented by Thompson et
al. in [6]. We assume that the bulk of writhe is in the helix, and neglect the writhe
that would be computed from the loop. We can also neglect the small change of the
rise angle, so we compute the writhe on a helix of constant rise angle α0 via:

Wr =
2sP cos2 α0

π
= −9.77 . (5.2)

The link number is the measure of the twist of the end sections against each other:

Lk = Tw + Wr = −40.85 . (5.3)

Comparing these results with the graphs of Coleman et al. in [11] one can prove the
intuition that our analyzed shapes arise at a very high twist.

5.2. Connection to former results. The characteristic values of the configuration
D can be computed in the same way, as we did in the previous subsection. Then
we had the link number Lk = −34.05. In this configuration the minimum of distrib-
uted contact force equals zero. Further decreasing of the twist results in the need
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Figure 6. Change of distributed contact forces (a) in D state, (b) in
a physically non-acceptable state after decreasing the twist, (c) in a
possible new configuration (A4)

of tensional forces between the strands of the helix. Since this is not a physically
acceptable configuration, no A2+ configuration exists with a lower link number than
configuration D.

We present some theoretical considerations on what kind of configuration may arise
if we decrease the twist in state D. The twist of the end-sections against each other is
measured with the link number. Decreasing the twist means decreasing the link, i.e.
the rod has to change to a new configuration, but this new configuration has nearly
the same link number.

The character of the intensity of the distributed contact force is sketched on Figure
6. Configuration D with vanishing contact force at its end is in Figure 6a., while
Figure 6b. shows the necessary distribution, when the twist is decreased and we
use the same equations. In physically acceptable solutions no negative contact force
arises, so a part of the rod will shove off its contacting part. We suspect that the
contact ends in the hatched region, and at the end of the remaining contact a second
concentrated force arises instead of the contact forces of the hatched region. This
force is denoted by R in Figure 6c. That means that the follower configuration in
the un-twisting process could have a line contact, closed by the concentrated contact
force R, then a skip-fly segment, followed by the force Q′′, then it is closed by the
terminal loop. In short, this will be an A4 configuration with link number −34.05.

As we presented the analyzed A2+ configuration arises only at very high twist
values. In this state a secondary buckled shape is also possible. In the resulting
configuration the double helix wraps around itself. This would be the third helical
form, as the rod itself is the model of the double-helix of the DNA, it creates the gen-
eralized helix we have presented, and the generalized helix produces a more complex
helix with a very complicated contact situation.
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Figure 7. The rise angle in the middle (a) and at the end (b) of the
helix in terms of the function of rod length. The upper and lower
linse represent states D and B, respectively.

5.3. Effect of change in the rod length. We analyzed the effect of rod length.
Figure 7 shows two graphs of results. Both graphs present a change of the rise angle
as a function of the rod length, Figure 7a at the middle of helix, while Figure 7b at
the end. The physically unacceptable universal starting point of path following has a
constant value of 0.9733982. From there all angles are increasing until state B, which
is the lower graph in both figures. The maximum of attainable angles arises in state
D, which are shown by the upper lines.

The rod length was changed between 40 and 280. It can be seen that the interval
of physically acceptable states increases with increasing rod length. We can see from
the graphs that for long rods the angles vary only by a small value and it seems that
all four curves have a horizontal asymptote. This is valid for relatively long rods,
where the twisted part is long enough to result in very small derivatives even in case
of larger difference between the rise angle in the middle and at the end of the helix.
Moreover, the longer the rod is, the longer part of it lies in the helix, in accordance
with the assumption made by the approximate computation of the writhe.

In the case L = 4 · 3.5773973 = 14.3095892 the length of the contact line would
be equal to 0. The un-twisting process should decrease this length, but it cannot be
negative, so this is a theoretical lower end of the diagrams. This configuration could
also be treated as an A1 configuration of a short rod. However, this configuration is
physically non-acceptable, as its curvature is greater than 1/r; an unloading process
of the rod can reach possible shapes of the rod, but this is beyond the scope of this
paper.

5.4. Conclusions. We presented the numerical computation of a twisted elastic ring
in a configuration with self-contact along a line, where no skip-fly segment arises
between the contact line and the terminal loop. The equilibrium path of the rod
shape was computed with the Path-Following Simplex Algorithm in the space of the
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parameters defining the rod shape. An universal starting point, independent of the rod
length was given to the path-following. Using an approximate method for computing
the twist and writhe of the spatial curve, we proved that the assumed configuration
arises at very high twist rates beyond the interests of former research work.
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