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Abstract. In this paper a similarity analysis is made for the forced and free convection
boundary layer flow in a semi-infinite expanse of an electrically conducting viscous incom-
pressible fluid past a semi-infinite non-conducting porous plate with suction. A uniform
magnetic field is applied normal to the plate. A time dependent suction is also introduced.
The governing equations of the problems are then reduced to linear similarity equations,
which are made local by introducing suitable similarity parameters. These local similarity
equations are solved numerically by an adapting shooting method which uses the Nachtsheim-
swigert interaction technique. Effects of various parameters on the velocity and temperature
fields across the boundary layer are investigated. Numerical results for the velocity and
temperature distributions are shown graphically.
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1. Introduction

Magneto-hydrodynamics (MHD) is the branch of continuum mechanics which deals
with the flow of electrically conducting fluids in electric and magnetic fields. Many
natural phenomena and engineering problems are worth being subjected to an MHD
analysis. Magneto-hydrodynamic equations are ordinary electromagnetic and hydro-
dynamic equations modified to take into account the interaction between the motion
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of the fluid and the electromagnetic field. The formulation of the electromagnetic
theory in a mathematical form is known as Maxwell’s equation.

The effect of the gravity field is always present in forced flow heat transfer as a
result of the buoyancy forces connected with the temperature differences. Usually
they are of a small order of magnitude so that the external forces may be neglected.

There has recently been a considerable interest in the effect of body forces on
forced convection phenomena. The effect of the gravity field is always present in
forced flow heat transfer as a result of the buoyancy forces caused by temperature
differences. Usually they are small and can be neglected. In certain engineering
problems, however, they cannot be left out of consideration. It is important to realize
that the heat transfer in mixed convection can be significantly different from that
both in pure natural convection and in pure forced convection.

The study of forced and free convection flow and heat transfer for electrically
conducting fluids past a semi-infinite porous plate under the influence of a magnetic
field has attracted the interest of many investigators in view of its applications in
many engineering problems such as geophysics, astrophysics, boundary layer control
in the field of aerodynamics (Soundalgekar et al. 1977 [1]). The physical model and
geometrical coordinates are shown in Figure 1.
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Figure 1. The physical model

In many practical fields, we found significant temperature differences between the
surface of the hot body and the free stream. These temperature differences cause
density gradients in the fluid medium and in presence of gravitational forced free
convection effects become important. by applying transverse magnetic field Agrawal
et al. [2] found that the rate of heat transfer from the plate to the fluid decreases as
the suction velocity increases and the skin friction decreases with increasing Hartman
number. Georgantopulos et al. [3], Raptis et al. [4, 5], Soundalgekar and Takher
[1] and many others elucidated the various aspects of MHD free convection flows
with suction. Some of the earlier works were done by Sparrow et al. [6], Lloyad
and Sparrow [7], Wilks [8], Chen et al. [9], Tingwei et al. [10], and Raju et al.
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[11]. In addition to the above, studies about convective flows in a porous medium
have attracted considerable interest owing to their applications in geophysical and
geothermal problems. Theoretical studies of such a flow under free convection were
done among others by Bestmen [12, 13], Raptis [4, 5] and Perdikis [14]. Sattar [15]
obtained an analytic solution of the free and forced convection flow through a porous
medium near the leading edge by a perturbation method adopted by Singh and Dikshit
[16]. Soundalgekar et al. [17], Perdiks [14], Sattar [18] made analytical studies on the
combined forced and free convection flow in a porous medium. In these studies it has
been generally recognized that γ = Gr/R2

e (where Gr is the Grashof number and Re is
the Reynolds number) is the governing parameter for a vertical plate. In the present
work, therefore the effect of the large suction on the MHD forced and free convection
flow past a vertical porous plate is studied. Solutions to the problem posed are found
numerically for the whole range of the buoyancy parameter γ that is considered to be
the driving force of the whole range of the combined forced and free convection.

2. Governing equations of the flow and mathematical analysis

Consider the forced and free convection flow of an incompressible viscous and electri-
cally conducting fluid past a heated semi-infinite vertical porous plate.

The fluid is permeated by a strong magnetic field ~B = [0, B0(x), 0]. T∞, U∞ are
the temperature and velocity of the uniform flow, respectively. The induced magnetic
field is assumed to be negligible. This assumption is justified by the fact that the
magnetic Reynolds number is very small. Further, since no external electric field is
applied, the effect of polarization of the ionized fluid is negligible and it may also be
assumed that the electric field ~E = 0. Regarding the convection as a result of the
effects of thermal diffusion, the equations of motion without Hall effects can be put
into the following forms:

The continuity equation:
∂u

∂x
+

∂v

∂y
= 0 . (1)

The momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
+ gβ (T − T∞) +

σ0B
2
0(x)
ρ

(U∞ − u) . (2)

The energy equation:

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

∂2T

∂y2
. (3)

The boundary conditions for the present problem are as follows

u = 0, v = v0(x), T = Tw, if y = 0 ;
u = U∞, v = 0, T = T∞, if y →∞ ,

(4)

where v0(x) is the velocity of suction and U∞ is the free steam velocity.
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Equations (1)-(3) constitute the basic equations which govern the physical problem
considered here. Our next task is to make an approach that will lead to the solutions
of these equations provided that the boundary conditions are given by equations (4).

In order to attain a similarity solution to our problem, the following transformations
are applied:

lllη = y

√
U∞
2υx

, u =U∞f ′(η), fw = v0(x)
√

2x

υU∞
,

θ =
T − T∞

TW − T∞
,

(5)

where fw is the transpiration parameter.

We now introduce the following dimensionless local parameters in the above equa-
tion:

Grx =
U∞gβ (Tw − T∞) x2

υv2
0 (x)

, Rex =
U∞x

υ
, fw = v0(x)

√
2x

υU∞
,

γ =
Grx

R2
ex

, M =
σ0B

2
0 (x) 2x

U∞ρ f2
w

.

After performing the transformations we obtain the differential equations

f ′′′ + ff ′′ + f2
wM(1− f ′) = −γf2

wθ , (6)

θ′′ + Prfθ′ = 0 . (7)

Making use of the dimensionless variables (5) the boundary conditions (4) can be
manipulated into form

f = fw, f ′ = 0, θ = 1 if η = 0 ;
f ′ = 1, θ = 0, if η →∞ .

(8)

It is interesting to note that when suction is absent, i.e. fw = 0, equation (6)
reduces to the ordinary Blasius equation. The solutions of the Blasius equation are
referred to as the Blasius solutions. They have also been studied by Schlichting [19].

On the other, hand if γ → 0, Re is large and the forced convection is dominating,
equation (6) corresponds to the ordinary Falkner and Skan equation. In this case
the boundary conditions differ largely from those of the original Falkner and Skan
equation.

3. Numerical scheme and procedure:

Equations (6) and (7) with boundary conditions (8) are solved numerically using
a standard initial value solver, i.e., the shooting method. For the purpose of this
method, we applied the Nacthsheim-Swigert iteration technique (Nachtsheim & Swigert,
1965).

In a shooting method, the missing (unspecified) initial condition at the initial point
of the interval is assumed and the differential equation is integrated numerically as
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an initial value problem to the terminal point. The accuracy of the assumed missing
initial condition is then checked by comparing the calculated value of the dependent
variable at the terminal point with its given value there. If a difference exists, another
value of the missing initial condition must be assumed and the process is repeated.
This process is continued until the agreement between the calculated and the given
condition at the terminal point is within the specified degree of accuracy. For this
type of iterative approach, one naturally inquires whether or not there is a systematic
way of finding each succeeding (assumed) value of the missing initial condition.

The boundary conditions (8) associated with the linear ordinary differential equa-
tions (6) and (7) of the boundary layer type are of the two-point asymptotic class.
Two-point boundary conditions have values of the dependent variable specified at two
different values of the independent variable. Specification of an asymptotic boundary
condition implies the value of velocity approaches to unity and the value of temper-
ature approaches to zero as the outer specified value of the independent variable is
approached. The method of numerically integrating two-point asymptotic boundary
value problem of the boundary layer type, the initial value method, requires that the
problem be recast as an initial value problem. Thus it is necessary to set up as many
boundary conditions at the surface as there are at infinity. The governing differen-
tial equations are then integrated with these assumed surface boundary conditions.
If the required outer boundary condition is satisfied, a solution has beeen achieved.
However, this is not generally the case. Hence a method must be devised to logically
estimate the new surface boundary conditions for the next trial integration. Asymp-
totic boundary value problems such as those governing the boundary layer equations
are further complicated by the fact that the outer boundary condition is specified at
infinity. In the trial integration infinity is numerically approximated by some large
value of the independent variable. There is no a priori general method of estimating
this value. Selection of too small a maximum value for the independent variable may
not allow the solution to asymptotically converge to the required accuracy. Selecting
a large value may result in divergence of the trial integration or in slow convergence of
surface boundary conditions required satisfying the asymptotic outer boundary con-
dition. Selecting too large a value of the independent variable is expensive in terms
of computer time. Nachtsheim-Swigert developed an iteration method, which over-
comes these difficulties. Extension of the Nachtsheim-Swigert iteration shell to above
equation system of differential equations (6) and (7) is straightforward. In equation
(8) there are two asymptotic boundary conditions and hence two unknown surface
conditions f ′ (0) and θ′ (0).

4. Results and discussion

In this paper we have attempted to solve the combined free and forced convection flow
in a semi-infinite vertical porous plate with suction. Locally similar solutions of this
problem have been obtained by introducing a similarity parameter taken to be a time
dependent scale. The suction velocity is taken to be a function of time. Under these
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conditions the solutions to the problem are finally obtained by employing a numerical
technique.

 Figure 2. Dimensionless velocity for different values of γ and Pr =
0.71, fw = 0.5, M = 2.0

 Figure 3. Dimensionless velocity for different values of fw and Pr =
0.71, γ = 1.0, M = 2.0

For the purpose of discussing the numerical solutions, the effects of various para-
meters on the flow behavior have been determined for different values of the buoyancy
parameter γ, suction/ injection parameter fw, Prandtl number Pr and magnetic para-
meter M . Since there are four parameters of interest in the present problem, which can
be varied, we have focused attention on the values γ = 0.0, 0.5, 1.0, 3.0, 5.0, 10.0;
fw = 0.0, 0.5, 1.0, 1.5, 2.0; Pr = 0.71, 1.0, 7.0 and M = 2, 4, 6.
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In Figure 2, the effects of the driving parameter γ on the velocity profiles are shown.
It is obvious from this Figure that the velocity increases with the increasing values of γ,
which signifies that the velocity is higher in the case of pure free convection than

 Figure 4. Dimensionless velocity for different values of M and Pr =
0.71, γ = 1.0, fw = 0.5

 Figure 5. Dimensionless velocity for different values of Pr and M =
2.0, γ = 1.0, fw = 0.5

for pure forced convection. Moreover, in the case of pure free convection, the velocity
is found to overshoot.

In the case of mixed convection (γ = 1) a rise in fw (suction) causes a rise in the
velocity as shown in Figure 3. As is shown in the Figure, if suction increases, there
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is a decrease in the boundary layer growth, which indicates that suction destabilizes
the boundary layer.

Figure 6. Dimensionless temperature for different values of γ and
M = 2.0, Pr = 0.71, fw = 0.5

Figure 7. Dimensionless temperature for different values of fw and
M = 2.0, Pr = 0.71, γ = 1.0

The effects of the magnetic parameter on the velocity profiles are displayed in
Figure 4, which shows that the velocity increases with the increase of the magnetic
parameter.

In Figure 5 the effects of the Prandtl number on the velocity profiles are shown. It
can be seen from this Figure that the velocity profiles decrease due to the increasing
values of the Prandtl number.
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In Figure 6, the effects of the buoyancy parameter γ on the temperature profiles
are shown. From this Figure it can be seen that the temperature decreases with the
increase of γ.

Figure 8. Dimensionless temperature for different values of M and
Pr = 0.71, γ = 1.0, fw = 0.5

Figure 9. Dimensionless temperature for different values of Pr and
γ = 1.0, fw = 0.5, M = 2.0

In Figure 7, the effects of the suction parameter on the temperature profiles are
shown. From this Figure it can be seen that the temperature decreases with the
increase of the suction parameter.
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In Figure 8, the effects of the magnetic parameter on the temperature profiles are
shown. From this Figure it can be seen that the temperature decreases with the
increase of magnetic parameter.

The effects of the Prandtl number on the temperature are depicted in Figure 9.
From this Figure it can be noted that the temperature profiles decrease with the
increase in the Prandtl number. These effects are the same as those for velocity
profiles.

5. Conclusion

We have examined the governing equations for an unsteady incompressible fluid past
a semi-infinite vertical porous plate embedded in a porous medium and subjected
to the presence of a transverse magnetic field. Numerical results are presented to
illustrate the details of the various parameters. The values of driving parameter γ
as shown above, however, correspond to three regimes, namely the predominantly
forced convection regime, the mixed convection regime and the predominantly free
convection regime. For γ=0,the gravity induced free convection is absent and the flow
is completely forced over the surface. For low values of γ (0 < γ < 1), the forced
convection dominates and the local similarity solutions are the same as those in the
case of forced convection only, which was studied by Narain and Uberoi [20]. The
large values of γ À 1) are interesting from a physical point of view. For this purpose,
value of γ = 5 can be essentially treated as the free convection representation.

Appendix A. Nomenclature

x, y, z cartesian coordinates g gravitational acceleration
t time Gr Grashof number
fw transpiration parameter Cp specific heat
u, v fluid velocities Rex Reynolds number
V0 velocity of suction T temperature
µ kinematics viscosity γ buoyancy parameter
η similarity variable Tw plate temperature
υ coefficient of kinematics viscosity T∞ free steam temperature
θ dimensionless temperature T0 reference temperature
ρ fluid density κ heat diffusivity coefficient−→
B magnetic field U∞ free steam velocity

β coefficient of volume expansion η = y
√

U∞
2υx similarity variable

−→
E electric field θ = T−T∞

Tw−T∞
dimensionless temperature
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