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Abstract. This work deals with the thermoelastic problem of a functionally graded cylin-
drically anisotropic rotating disk with arbitrary thickness profile subjected to combined
axisymmetric thermal and mechanical loads. The material properties are arbitrary func-
tions of the radial coordinate and temperature. A coupled system of ordinary differential
equations is derived and the boundary value problem is transformed to an initial value prob-
lem, the unknown functions are the stress function and the components of the displacement
field. This method uses a state vector formalism to present an effective way to calculate the
stress field within monoclinic, orthotropic or isotropic radially graded disks in plane stress
state. An analytical solution is presented for the case when the orthotropic material param-
eters and the thickness profile are specific power-law functions of the radial coordinate and
the temperature field is arbitrary. The developed numerical method is applied to simpler
steady-state thermoelastic problems of functionally graded spherical pressure vessels, where
the material properties are arbitrary functions of the temperature field and of the radial
coordinate. The developed methods are compared and results obtained from finite element
simulations.
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1. Introduction

Functionally graded materials (FGM) are advanced materials in which the composi-
tion gradually changes, resulting in a corresponding change in the material properties
according to the function of the structural component, usually in one direction. The
gradient interface between the constituent materials produces a smooth transition
from one material to the next, which provides great favourable mechanical behaviour
and thermal protection. Due to its excellent material properties, the concept of FGM
has become more popular in recent years.

Many studies deal with the mechanics of functionally graded materials from var-
ious aspects. Numerous books give solutions to linearly elastic problems for non-
homogeneous bodies such as [1–3]. Several papers presented analytical, semi-analytical
and numerical solutions for thermomechanical problems of hollow spheres, cylinders,
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beams and disks. Noda et. al. [4, 5] studied one-dimensional steady-state thermal
stress problems for isotropic functionally graded hollow circular cylinders and spheres
using the perturbation method, multilayered approach and Green functions. Chen
and Lin [6] carried out an elastic analysis for thick cylinders and spherical pressure
vessels made of functionally graded materials when the material parameters vary ex-
ponentially along the radial coordinate. Nayak et al. [7] and Bayat et al. [8] developed
analytical solutions to obtain the radial, tangential and effective stresses within thick
spherical pressure vessels made of FGMs subjected to axisymmetric mechanical and
thermal loading. The material properties of the vessel depended on the radial coordi-
nate as a power-law function but the Poisson’s ratio had constant value. In a paper
by Pen and Li [9] a steady-state thermoelastic problem of isotropic radially graded
disks with arbitrary radial non-homogeneity was considered. The numerical solution
was reduced to a solution of a Fredholm integral equation. A work by Stampouloglou
and Theotokoglou [10] gave the exact solutions for a radially non-homogeneous hollow
circular cylinder and disk with exponential and power-law based shear modulus and
constant Poisson’s ratio. The method used the nonhomogeneous compatibility equa-
tions of strain and the equilibrium equations of the thermoelastic problem in order to
determine the reduced displacement and stresses in a functionally graded component.
Jabbary et al. [11] and [12] dealt with the thermoelastic analysis of a functionally
graded rotating thick shell with variable thickness subjected to thermo-mechanical
loading by using higher-order shear deformation theory. The mechanical properties,
except for the Poisson’s ratio, are assumed to vary arbitrarily along the investigated
spatial coordinate.

Paper [13] presented the displacement and stress fields in a radially graded hollow
circular disk subjected to constant angular acceleration, Poisson’s ratio and thermal
loading. Here a semi-analytical approach was utilized. Boğa and Yildirim [14] solved
these problems with the method of complementary functions and investigated para-
bolic thickness profiles. For isotropic functionally graded hollow circular disks with
arbitrary material properties along the radial direction, Gönczi and Ecsedi [15] pre-
sented a numerical method to solve the steady-state thermoelastic problem. Similarly
to these papers, there are a number of works dealing with isotropic, radially graded
structural components, such as [16–19]. Studies [20, 21] by Zheng et al. determined
the displacement and stress fields in a radially graded isotropic and fibre-reinforced
rotating disks. The governing equations for displacement and normal stresses are
solved using the finite difference method. A work by Eraslan et al. [22] presented an-
alytical solutions of an orthotropic disk with a power-law function based profile. The
basic equations are transformed into a standard hypergeometric differential equation
by means of a suitable transformation, then an analytical solution is obtained in terms
of hypergeometric functions.

A work by Tarn [23] derived exact solutions for the temperature field and ther-
moelastic stresses for inhomogeneous hollow and solid cylinders when some of the
material parameters followed a power law distribution; furthermore, the cylinder was
subjected to axial force. Sladek et. al. [24] presented a meshless method based on
the local Petrov–Galerkin approach which was developed for the stress analysis of
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two-dimensional, anisotropic, linearly elastic and viscoelastic solids with continuously
varying material properties. The analysed domain was divided into small circular
subdomains. In paper [25] the nonlinear steady-state heat conduction equation is
solved using an iterative power-series method to obtain the temperature field, then
the three-dimensional thermoelasticity equations are solved by a power-series solution
procedure to determine the displacements and stresses in anisotropic radially graded
hollow cylinders. A method is presented where the cylinder is divided into multiple
sub-cylinders and the Taylor series is utilized. Chen et. al. [26] dealt with the ax-
isymmetric problems of transversely isotropic elastic materials based on displacement
functions, which were the functions of the thickness coordinate.

In Chang et al. [27] the basic equations of thermoelasticity were formulated into a
state equation and a state space formalism for generalized anisotropic thermoelasticity
accounting for thermomechanical coupling and thermal relaxation was developed. To
obtain the solution for weak thermomechanical coupling the method of perturbation
with multiple scales was used and the propagation of plane harmonic thermoelastic
waves in an anisotropic medium was studied.

Ceniga [28] dealt with an analytical model of thermal stresses originating during the
cooling process of an anisotropic solid continuum with uniaxial or triaxial anisotropy.
The investigated continuum consisted of anisotropic spherical particles periodically
distributed in an anisotropic infinite matrix. Beom [29] presented a formalism for the
general solutions of in-plane thermoelastic fields that satisfy the equilibrium equa-
tion. An orthotropy rescaling technique is developed to determine the dependence of
thermoelastic fields on the dimensionless orthotropy parameter. The complete ther-
moelastic fields for the original problem can be evaluated from the solutions of the
transformed problem by linear transformation with orthotropy rescaling. Yildirim
[30] presents a complementary function method to deal with the thermomechanical
problem of orthotropic disks. Allam et. al. [31] presents semi-analytical methods to
tackle special material distributions. Papers [32, 33] used discretized domains and a
variational approach to tackle the problems of orthotropic disks. Besides disks and
spherical bodies, functionally graded beams are often used in various engineering ap-
plications; papers such as [34, 35] tackle the mechanical analysis and buckling of such
beams.

This paper deals with the steady-state thermoelastic problem of a radially graded
anisotropic rotating disk and radially graded pressure vessels subjected to axisym-
metric thermal and mechanical loads. As we have seen in the presented literature,
the models of the axisymmetric disk and sphere problems contain some kinds of re-
strictions when it comes to — for example – the functions of the material properties,
the thickness of the disk, or neglecting the temperature dependency. Our aim is to
formulate a more general approach where all of the material properties are arbitrary
functions of the radial coordinate r and temperature T , and a further aim is to present
an effective way to calculate the stress field. The considered cylindrically anisotropic
disk can be seen in Figure 1, where the material of the disk is a radially graded
monoclinic material, while Figure 2 shows a sketch of the isotropic hollow spherical
body.
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Figure 1. Sketch of a segment of the considered disk with the me-
chanical and thermal loads

Figure 2. Sketch of a segment of the considered sphere with the me-
chanical and thermal loads

The thickness of the disk is denoted by h(r), and it is an arbitrary function of the
radial coordinate r, where R1 ⩽ r ⩽ R2, ω is the constant angular velocity. The
thermal loading is an arbitrary temperature field T (r) obtained from the solution
of the steady-state heat conduction equation. The uniformly distributed mechanical
loading exerted on the inner boundary surface is denoted by p1, while p2 is the pressure
acting on the outer curved boundary surface. For these problems the thermoelastic
equations of plane-stress state will be used. A new numerical approach is presented
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which is based on a coupled system of first-order ordinary differential equations, where
the unknown functions are the radial displacement and the stress function.

Anisotropy refers to the directional dependence of material properties. Due to the
symmetry, the stiffness tensor C contains 21 independent elastic constants.

σ = Cε+ βT (1a)
σ1

σ2

σ3

τ13
τ23
τ12

 =


C̄11 C̄12 C̄13 C̄14 C̄15 C̄16

C̄22 C̄23 C̄24 C̄25 C̄26

C̄33 C̄34 C̄35 C̄36

C̄44 C̄45 C̄46

sym. C̄55 C̄56

C̄66




ε1
ε2
ε3
γ23
γ13
γ12

+


β̄1

β̄2

β̄3

β̄4

β̄5

β̄6

T (1b)

where β = −S · α, S is the material compliance tensor, αi (i = 1...6) are the co-
efficients of linear thermal expansion, and σ and ε denote the stress strain vectors,
respectively. The different types of material anisotropy are determined by the exis-
tence of symmetries in the internal structure of the material. This reduces the number
of independent stiffness coefficients (monoclinic materials have 13, orthotropic mate-
rials have 9, transversely isotropic materials have 5 and isotropic materials have 2
independent parameters) and thermal parameters βi. In the investigated problems
monoclinic materials will be considered. This means that there is one material sym-
metry plane and for example Ci4 = C4i = 0, Ci5 = C5i = 0, Cj6 = C6j = 0, (i = 1, 2, 3
and j = 4, 5)

2. Numerical method for disks

We consider a rotating radially graded cylindrically anisotropic disk as shown in Fig-
ure 1, and a cylindrical coordinate system Orφz will be used. The strain-displacement
relations for disks are [1]:

εr(r) =
du(r)

dr
, εφ(r) =

u(r)

r
, γrφ(r) =

dv(r)

dr
− v(r)

r
, (2)

where u = u(r) is the radial displacement, v(r) is the tangential displacement, γrφ(r)
denotes the shear strain and εr(r), εφ(r) are the normal strains in the radial and
circumferential directions, respectively. In the case of a plane-stress state the stress-
strain relationships can be expressed with the following reduced material constants
of monoclinic materials:

C11 = C̄11 − C̄13

C̄33
C̄13; C12 = C̄12 − C̄23

C̄33
C̄13; C16 = C̄16 − C̄36

C̄33
C̄13; β1 = β̄1 − β̄3

C̄33
C̄13;

C21 = C̄21 − C̄31

C̄33
C̄23; C22 = C̄22 − C̄23

C̄33
C̄23; C26 = C̄26 − C̄36

C̄33
C̄23; β2 = β̄2 − β̄3

C̄33
C̄23;

C61 = C̄61 − C̄31

C̄33
C̄63; C62 = C̄62 − C̄32

C̄33
C̄63; C66 = C̄66 − C̄36

C̄33
C̄63; β6 = β̄6 − β̄3

C̄33
C̄63.

(3)
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as

σr(r) = C11(T, r)εr(r) + C12(T, r)εφ(r) + C16(T, r)γrφ(r) + β1(T, r)T (r), (4)

σφ(r) = C21(T, r)εr(r) + C22(T, r)εφ(r) + C26(T, r)γrφ(r) + β2(T, r)T (r), (5)

τrφ(r) = C61(T, r)εr(r) + C62(T, r)εφ(r) + C66(T, r)γrφ(r) + β6(T, r)T (r) (6)

where σr and σφ τrφ are normal stresses, τrφ is shearing stress, T (r) = Ta(r) − T0

is the temperature difference function, Ta(r) is the absolute temperature, T0 is the
reference temperature, and Cij (i, j = 1, 2, 6) are stiffness coefficients. The time-
independence of the functions involved separates the analysis of the temperature
field from that of the elastic field, which means that the problem becomes uncoupled.
Therefore the temperature field can be calculated separately from the heat conduction
equations, and becomes an input function for this part of the model, which means that
Cij(T (r), r) = Cij(r) = Cji(r) and βi(T (r), r) = βi(r). Furthermore, the shearing
stress τrφ is zero due to the axisymmetry, boundary conditions and

d

dr
(rhτrφ) + h τrφ = 0, → hτrφ =

F

r2
,→ F = τrφ = 0. (7)

The equilibrium equation in the radial direction has the following form:

d

dr
[rσr(r)h(r)]− h(r)σφ(r) + h(r)ρω2r2 = 0 , (8)

where h(r) is the thickness of the disk and ρ denotes the density, which depends on
the radial coordinate and the temperature field. The general solution in terms of the
stress function V = V (r) is

σr(r) =
1

r

V (r)

h(r)
, (9)

σφ(r) =
dV (r)

dr

1

h(r)
+ ρ(r)ω2r2. (10)

After lengthy manipulations of equations (4)-(10) the following system of ordinary
differential equations can be derived for the displacement field and the stress function
in cylindrically anisotropic radially graded disks:

d

dr


u

V

v

 =


Lf
11 Lf

12 0

Lf
21 Lf

22 0

Lf
31 Lf

32 Lf
33




u

V

v

+


LT
11

LT
12

LT
13

T +


0

−ω2hρr2

0

 , (11)

d

dr
f = Lf f + LTT + Lω, (12)
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where the following notations were introduced:

L01 =
C12C66 − C16C62

C11C66 − C2
16

, Lf
11(r) = −L01

1

r
, Lf

12(r) =
C66

C11C66 − C2
16

1

hr
,

Lf
21(r) =

[
C22 − C21L01 + C26

(
C16

C66
L01 −

C26

C66

)]
h

r
, Lf

22(r) = L01
1

r
,

Lf
31(r) =

(
C16

C66
L01 −

C26

C66

)
1

r
, Lf

32(r) =

(
−C16

C11C66 − C2
16

)
1

hr
, Lf

33(r) =
1

r
,

LT
11(r) = −C66β1 − C16β6

C11C66 − C2
16

, LT
13(r) =

−C16L
T
11

C66
− β6

C66
,

LT
12(r) =

(
β2 + C21L

T
11 + C26L

T
13

)
h,

Cij(r, T (r)), βi(r, T (r)), ρ(r, T (r)); i = 1, 2, 6.

(13)

For isotropic radially graded disks the following expressions are used:

Lf
11(r) =

−ν(r, T )

r
, Lf

12(r) =
1− [ν(r, T )]

2

E(r, T )hr
,

Lf
21(r) = E(r, T )

h

r
, Lf

22(r) = −Lf
11(r),

Lf
31(r) = Lf

32(r) = Lf
33(r) = LT

13(r) = v(r) = 0,

LT
11(r) = α(r, T ) [1 + ν(r, T )] , LT

12(r) = −E(r, T )α(r, T )h,

(14)

where E(r, T (r)) = E(r) is the Young’s modulus, α(r, T (r)) = α(r) is the coefficient
of linear thermal expansion and v(r, T (r)) = v(r) denotes the Poisson ratio. The next
phase is the determination of the initial values for the system of differential equations
(11). The stress boundary conditions of the rotating disk can be expressed in terms
of the stress function as

σr(R1) = −p1, σr(R2) = −p2, (15)

V (R1) = −p1R1h1, V (R2) = −p2R2h2, (16)

where h1 and h2 are the thickness values at the inner and outer cylindrical boundary
surfacesQ. Our aim is to formulate an initial value problem for the coupled system of
differential equations (11). Two numerical solutions [uI(r);VI(r)] and [uII(r), VII(r)]
are needed to determine the initial values of the considered two-point boundary value
problem. The system of equations is reduced to:

d

dr
u = Lf

11u+ Lf
12V + LT

11T,
d

dr
V = Lf

21u+ Lf
22V + LT

21T − ω2hρr2. (17)

For the calculations, the fourth-fifth order Runge-Kutta-Fehlberg method will be used
in our numerical examples. The input values for the system of differential equations
(17) are shown in Table 1. The initial values for the displacements are different
arbitrary values, for the stress functions the stress boundary condition — equation
(16) – is used.



92 D. Gönczi

Table 1. Numerical solution of the thermoelastic problems

Calculations of Input values Input values
the initial values for u(r) for V (r)

Calc. I Eqns. (17) uI(R1) = u1 u1 (arbitrary) VI(R1) = −p1R1h1

Calc. II Eqns. (17) uII(R1) = u2 u2 ̸= u1 VII(R1) = −p1R1h1

Final
Eqns. (11) u3

Calculated
VI(R1) = −p1R1h1Problem with equation (18)

Using the solutions of calculations I and II, the initial value for the displacement
field of the original problem can be computed as

u(R1) = u3 = u1 +
(u2 − u1) [−p2R2h2 − VI(R2)]

VII(R2)− VI(R2)
. (18)

The validity of this statement follows from the linearity of the considered thermoelastic
boundary value problem. With the displacement field and the stress function, the
normal stresses and displacement field can be determined with equation (9) and

σφ(r) =
(
Lf
21u+ Lf

22V + LT
21T

)
h−1. (19)

3. Numerical method for spherical pressure vessels

A one-dimensional steady-state thermoelastic problem of an isotropic functionally
graded spherical hollow body is considered. The spherical pressure vessel is subjected
to arbitrary radial coordinate dependent thermal loading T (r) and constant pressures
p1 and p2 at the curved boundary surfaces, as we can see in Figure 2. The material
properties are arbitrary functions of the radial coordinate and temperature. For
this spherically symmetric problem a spherical coordinate system Orφϑis used. The
strain-displacement and stress-strain relations can be expressed as [1]

εr(r) =
du(r)

dr
, εφ(r) = εϑ(r) =

u(r)

r
, (20)

σr(r) =
E(r, T )

[1 + ν(r, T )] [1− 2ν(r, T )]

{
[1− ν(r, T )] εrr) + 2ν(r, T )εφ(r)−

− α(r, T ) [1 + ν(r, T )]T (r)
}
, (21)

σφ(r) = σϑ(r) =
E(r, T )

[1 + ν(r, T )] [1− 2ν(r, T )]

{
ν(r, T )εr(r) + εφ(r)−

− α(r, T ) [1 + ν(r, T )]T (r)
}
. (22)

The equilibrium equation in the radial direction can be written as

dσr

dr
+

2(σr − σφ)

r
= 0, (23)
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therefore the general solution of equation (23) in terms of stress function V (r) assumes
the forms of

σr =
V

r2
, σφ =

1

2r

dV

dr
. (24)

The system of ordinary differential equations can be expressed as

d

dr

 u

V

 =

 − 2ν
(1−ν)

1
r

(1−2ν)(1+ν)
(1−ν)E

1
r2

2E
1−ν

2ν
1−ν

1
r

 u

V

+

 1+ν
1−ν

2E
1−ν r

αT. (25)

We need three initial value calculations to solve this problem, similarly to our previ-
ously presented method. The steps of the solution and the input values can be seen
in Table 2.

u3 = u1 +
u2 − u1

VII(R2)− VI(R2)
(−p2R

2
2 − VI(R2)). (26)

Table 2. Numerical solution of the thermoelastic problems

Calculations of Input values Input values
the initial values for u(r) for V (r)

Calc. I Eq. (25) uI(R1) = u1 u1 (arbitrary) VI(R1) = −p1R
2
1 = V1

Calc. II Eqns. (25) uII(R1) = u2 u2 ̸= u1 VII(R1) = −V1

Final
Eqns. (25) u3

Calculated
V (R1) = V1Problem with equation (26)

After the third calculation, the radial normal stress can be calculated according to
(24) and the tangential normal stress takes the form of

σφ = (1− ν)
−1

[
E
u

r
+ ν

V

r2
+ EαT

]
. (27)

4. Analytical solution for orthotropic disks

An analytical solution will be derived for the case when the material properties of the
cylindrically orthotropic, radially graded rotating disk follow the following power-law
based distribution:

ρ(r) = ρ00

(
r

R1

)m

= ρ0r
m, βi(r) = β0

i0

(
r

R1

)m

= βi0r
m,

Cij(r) = C0
ij0

(
r

R1

)m

= Cij0r
m;

i, j = 1, 2, 6. (28)

The thickness profile of the disk is described as h(r) = h0r
w, the temperature-

dependency of the material properties is neglected in this case, but thermal loading
comes from an arbitrary temperature field T (r). The combination of the basic equa-
tions of thermoelasticity results in the following differential equations for the radial
displacement field u(r):

K1
d2u

dr2
+K2

du

dr
+K3

u

r2
+K4

T

r
+ β10

dT

dr
+K5r = 0, (29)
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where we have introduced the constants

K1 = C110, K2 = C110(m+ w + 1), K3 = C120(m+ w)− C220,

K4 = β10(m+ w + 1)− β20, K5 = ρ0ω
2.

(30)

The solution of (29) is

u(r) = C1r
g1 + C2r

g2 − rg1

g3

∫
IT1(r) dr+

rg2

g3

∫
IT2(r) dr, (31)

where C1 and C2 are integration constants, moreover

IT1(r) = K4r
−g1T (r) +K5r

g4 + β10r
g5
dT (r)

dr
,

IT2(r) = K4r
−g2T (r) +K5r

g5 + β10r
g7
dT (r)

dr
,

(32)

g1,2 =
K1 −K2 ± g3

2K1
, g3 =

√
(K2 −K1)

2 − 4K3K1 ,

g6,4 =
3K1 +K2 ± g3

2K1
, g7,5 =

K1 +K2 ± g3
2K1

.

(33)

Substituting these results into equations (2), (4)-(6) we obtain the functions of the
radial normal stress σr and tangential normal – or hoop – stress σφ:

σr(r) = C1Sr;1(r) + C2Sr;2(r) + Sr;3(r) + Sr;4(r), (34)

σφ(r) = C1Sφ;1(r) + C2Sφ;2(r) + Sφ;3(r) + Sφ;4(r). (35)

The following notations are used in equations (34) and (35):

Sr;1(r) = rm+g1−1(g1C110 + C120),

Sr;2(r) = rm+g2−1(g2C110 + C120),

Sr;3(r) = rm
[
(g2C110 + C120)

rg2−1

g3

∫
IT2(r) dr−

− (g1C110 + C120)
rg1−1

g3

∫
IT1(r) dr

]
,

Sr;4(r) = rm
[
C110

(
rg2

g3
IT2(r)−

rg1

g3
IT1(r)

)
+ β10T (r)

]
,

(36)

and
Sφ;1(r) = rm+g1−1(g1C120 + C220),

Sφ;2(r) = rm+g2−1(g2C120 + C220),

Sφ;3(r) = rm
[
(g2C120 + C220)

rg2−1

g3

∫
IT2(r) dr−

− (g1C120 + C220)
rg1−1

g3

∫
IT1(r) dr

]
,

Sφ;4(r) = rm
[
C120

(
rg2

g3
IT2(r)−

rg1

g3
IT1(r)

)
+ β20T (r)

]
.

(37)
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The constants of integrations can be calculated from the stress boundary conditions
(15) as

C1=
Sr;2(R1) [p2+Sr;3(R2)+Sr;4(R2)]−Sr;2(R2) [p1 + Sr;3(R1)+Sr;4(R1)]

Sr;2(R2)Sr;1(R1)−Sr;2(R1)Sr;1(R2)
, (38)

C2=
Sr;1(R2) [p1+Sr;3(R1)+Sr;4(R1)]−Sr;1(R1) [p2+Sr;3(R2)+Sr;4(R2)]

Sr;2(R2)Sr;1(R1)−Sr;2(R1)Sr;1(R2)
. (39)

In this case the circumferential displacement is zero v(r) = 0

Temperature field. For the determination of the temperature field we will consider
the case when there are no internal heat sources, the constant temperature values of
the cylindrical boundary surfaces t1 and t2 are given, moreover there are symmetric,
radial coordinate dependent thermal boundary conditions of the third kind on the
lower and upper boundary surfaces. This convective heat exchange is given by the
temperature of the surrounding medium tenv(r) and the heat exchange coefficient
ϑ(r). According to Fourier’s law of heat conduction, the heat flow can be expressed
as

qr = −λ11
∂T

∂r
− λ12

1

r

∂T

∂φ
, qφ = −λ12

∂T

∂r
− λ22

1

r

∂T

∂φ
, (40)

where λ11, λ12 and λ22 are the coefficients of thermal conductance of the anisotropic
material. In this axisymmetric case the temperature field T (r) is the function of the
radial coordinate. A multilayered approach will be used to determine the temperature
field of the radially graded anisotropic disk with radial coordinate-dependent thermal
conductivity. The concentric layers or subdomains have constant but different thick-
nesses and thermal conductivities λ11 = λ, the number of the layers is n, for the i-th
layer the heat conduction equation takes the forms of [36]:

∇ (tq) + hT (r) = 0,
d2Ti

dr2
+

1

r

dTi

dr
− pi

2(Ti(r)− tenv, i) = 0, (41)

where we have introduced the notation pi as

Rmi =
Ri +Ri+1

2
, λi = λ(Rmi), hi = h(Rmi), ϑi = ϑ(Rmi), etc. (42)

The temperature values t1 and tn + 1 are given at the inner and outer radii of the
disk, and the solution of the differential equation is

Ti(r) =
(ti − tenvi)K0(piRi+1)− (ti+1 − tenvi)K0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
I0(pir)+

+
(−ti − tenvi)I0(piRi+1) + (ti+1 − tenvi)I0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
K0(pir) + tenv(r), (43)



96 D. Gönczi

where I0(x) and K0(x) are the modified Bessel functions of the first and second kind
and of order zero. The surface temperatures of the adjacent layers are equal, the heat
flow of the i-th layer qi is constant, therefore we get the following equations for the
disk:

ti+1 = Ti(Ri+1) = Ti+1(Ri+1), hiqi(Ri+1) = hi+1qi+1(Ri+1) i = 1, ..., n−1, (44)

qi(r) = −λipi
(ti − tenvi)K0(piRi+1)− (ti+1 − tenvi)K0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
I1(pir)−

− λipi
(−ti − tenvi)I0(piRi+1) + (ti+1 − tenvi)I0(piRi)

K0(piRi+1)I0(piRi)−K0(piRi)I0(piRi+1)
K1(pir)

i = 1, ..., n− 1 (45)

The unknown ti temperature values can be calculated from (45). When there is
no heat exchange on the upper and lower boundary surfaces and the temperature
dependency is negligible, then the temperature distribution is:

T (r) = t1 +
t2 − t1

R2∫
R1

1

ρλ(ρ)
dρ

r∫
R1

1

ρλ(ρ)
dρ. (46)

Similarly, when there are no internal heat sources and the temperature dependency
of λ(r) is negligible, the temperature field within spherical bodies can be expressed
as:

T (r) = t1 +
t2 − t1

R2∫
R1

1

ρ2λ(ρ)
dρ

r∫
R1

1

ρ2λ(ρ)
dρ. (47)

5. Numerical examples

There are multiple ways to calculate the effective material properties in temperature-
dependent FGMs. For the numerical examples the following parameters will be used
to describe the temperature dependency [37, 38]:

Ep(T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3), (48)

where Ep denotes a material property, Pi (i = −1...3) are material dependent coeffi-
cients of temperature (usually T [K]), furthermore for radially graded two-component
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disks and spheres the following expressions of effective material properties will be
utilized:

Epf (r, T ) = [Ep1(T )− Ep2(T )] [Z(r)]
m
+ Ep2(T ),

Z(r) =
r −R1

R2 −R1
, or Z(r) =

r

R1
,

(49)

where m is the volume fraction of the FGM and indices 1 and 2 denote the constituent
materials in classic FGMs, steel, and ceramic materials.

Example 1. For the first numerical example, a thick radially graded steel–silicon
nitride spherical pressure vessel with the following parameters is considered:

Table 3. Material parameters for the metal-ceramic FGM

Material Metal (stainless steel)

property (Ep) Pm0 Pm1(10
−3) Pm2(10

−7) Pm3(10
−10)

λ(W/mK) 15.39 −1.264 20.92 −7.223

α(1/k) 12.33 · 106 0.8086 0.0 0.0

E(Pa) 2.01 · 1010 0.3079 −6.534 0.0

V (−) 0.3262 −0.1 3.797 0.0

Material Ceramic (silicon nitride)

property (Ep) Pc0 Pc1(10
−3) Pc2(10

−7) Pc3(10
−10)

λ(W/mK) 12.723 −1.032 5.466 −7.876

α(1/k) 3.873 · 106 0.9095 0.0 0.0

E(Pa) 3.484 · 1010 −0.307 2.16 −8.946

V (−) 0.24 0.0 0.0 0.0

R1 = 0.5 m, R2 = 0.59 m, tinner = 250 K

touter = 20 K, p1 = 200 MPa, p2 = 10 MPa, m = {0.2, 1, 4}
Three cases are investigated with three different volume fractions m. The temper-

ature field in this case can be approximated as[39]:

T (r,m = 0.2) = 1.479 · 105r2 − 3.27 · 105r + 2.701 · 105 − 99427r−1 + 13879.7r−2 [K] ,

T (r,m = 1) = 94650.7r2 − 2.15321r + 183778− 70336.8r−1 + 10285.8r−2 [K] ,

T (r,m = 4) = 58516r2 − 1.1778 · 105r + 88658− 30213.3r−1 + 4069.9r−2 [K] .

The calculations were checked by results obtained by finite element simulations with
Abaqus. The 3D model was built from 32 homogeneous layers, and coupled temperature-
displacement elements were used. They were in good agreement, although the FE
solution oscillated significantly at the inner and outer radii of the sphere, which led
to greater error. Figure 3 shows the radial displacements and Figure 4 contains the
diagrams of the radial normal stresses (lower half between −200 and 10 MPa) and
the tangential normal stresses, illustrated with thicker lines.
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Figure 3. The radial displacements u(r) of the spherical bodies

r, 

Pa

Figure 4. The radial and tangential normal stresses within the spher-
ical pressure vessels

Example 2. In the second numerical example a functionally graded orthotropic
disk is considered and the results of the analytical solution and the numerical method
are compared to each other. The following numerical data were used:

C0
110 = 0.44GPa, C0

120 = 0.32GPa, C0
220 = 16.266GPa,

ρ00 = 4000
kg

m3
, β0

10 = −12476
N

m2K
, β0

20 = −32500
N

m2K
,

a = 0.02m, b = 0.1m, h(r) = 10−3r−0.2 [m] ,
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p1 = 40MPa, p2 = 5MPa, ω= 100
1

s
, t1 = 120 K, t2 = 20K

λ(r) =
20

a0.2
r0.2

[
W

mK

]
, ϑ(r) =

70

a0.2
r0.2

[
W

m2K

]
, tenv(r) = 95− 3000r1.8 [K] , n = 12.

The results can be seen in Figures 5 and 6. The numerical and analytical results
are in good agreement. The average relative error is around 0.01 percent with the
Runge-Kutta-Fehlberg method.

Figure 5. Results of the numerical and analytical methods for the
radial displacement fields

r, 

Pa

Figure 6. Results of the numerical and analytical methods for the
normal stresses

Example 3. For the last example a monoclinic material is considered where the
material properties are specific functions of the radial coordinate and the temperature.
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Figure 7. Curves of the radial and tangential displacements

r, 

Pa

Figure 8. Curves of the radial and tangential normal stresses

The material parameters, geometry and loading are:

Z(r, T ) =

(
1 +

0.22T

100

)(
r

R1

)m

, C11 = 26.43Z(r, T )GPa,

C12 = 13, 57Z(r, T ), GPa, C22 = 35.7Z(r, T )GPa
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C16 = 2.495Z(r, T )GPa, C26 = 3.163Z(r, T )GPa

C66 = 8.49Z(r, T )GPa, ρ = 4000Z(r, T )
kg

m3
,

β1 = −8.03 · 105Z(r, T )
N

m2K
, β2 = −5.234 · 105Z(r, T )

N

m2K
,

β6 = −3.026 · 105Z(r, T )
N

m2K
,

R1 = 0.1m, R2 = 0.4m, p1 = 80MPa, p2 = 0MPa

ω = 100
1

s
, T (r) = −99− 130 ln(r), m = 2,

h1(r) = −0.266r + 0.01266, h2(r) = 0.0115− 0.0033e2r, h3(r) = 0.033r−0.4.

Three different profiles are investigated with the same volume. The displacement
coordinates u, v and the normal stresses are illustrated in Figures 7 and 8. The calcu-
lations were checked by results obtained by Abaqus. The disk was modeled with 3D
coupled temperature-displacement elements and the body was built from 32 homo-
geneous temperature-dependent bonded layers. The results are in good agreement,
although the tangential normal stresses from the FE method oscillated at the ends of
the disk due to the multilayered approach.

With the developed method, the optimal profile for a specific load set can be
calculated effectively when used in conjunction with optimization codes.

6. Conclusions

A numerical method was presented to obtain the solution of steady-state thermoelastic
problems for radially graded spherical pressure vessels and rotating cylindrically mon-
oclinic disks. A new numerical approach was presented which is based on a coupled
system of first-order ordinary differential equations with the displacement and the
stress function as unknowns. The original axisymmetric two-point boundary value
problem was transformed to an initial value problem based on the basic equations
of thermoelasticity and plane-stress state in order to calculate the displacement and
stress field. The material properties of spherical bodies and anisotropic disks are arbi-
trary functions of the radial coordinate and the temperature. The developed methods
were checked by an analytical solution of an orthotropic disk where the material dis-
tribution follows a power-law function. The results were compared to each other and
to results obtained by finite element simulations and they are in good agreement.
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