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Abstract. The main objective of the present paper is to clarify the effect of the axial
load on the eigenfrequencies of axially loaded and pinned-pinned stepped beams made of
heterogeneous material. To this end, we shall consider how the Green functions of the cor-
responding coupled boundary value problems can be determined. After finding these Green
Functions, the vibration problems of the unloaded and loaded stepped beams are reduced
to eigenvalue problems governed by homogeneous Fredholm integral equations. These are
solved numerically.
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1. INTRODUCTION

Beams can be found in many machines or structures as their vital elements. For
that reason their mechanical behavior has been the subject of studies for a long time
[1H3].

One of the major topics of interest is their vibrations [4H6]. When it comes to
stepped beams, the continuous-mass transfer matrix method is extended in [7] to
incorporate further effects such as rotatory inertia. The beams can have multiple
steps and can carry an arbitrary number of lumped mass elements. De Rosa et al.
[8] consider stepped beams assuming the Euler-Bernoulli hypothesis. The beams rest
on an elastic foundation, whose stiffness can change at the steps. The frequency
equation is solved numerically. Stepped beams with lumped masses made of axially
functionally graded material are investigated in [9] using the lumped mass transfer
matrix method. In article [10], the applied method is Adomian Decomposition, which
proves to be effective for this kind of issue.

The Green function was first used in 1828 [11] for electrostatic issues. Since then,
it has gained ground |12, [13]. Several three-point boundary value issues defined by
third-order nonlinear differential equations are discussed in [14] with Green functions.
The findings of [15] were extended for degenerated ordinary differential equation sys-
tems in [16} [17] for beam vibrations. The topic of stepped beam vibrations with a
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Green function technique is addressed in [1§], although for fixed-fixed support con-
ditions. Paper |1§] is devoted to coupled eigenvalue problems for which it presents
a definition of the Green function determined for fixed-fixed stepped beams with the
aim of clarifying their vibration problems, including the issue of what happens if the
beam is subjected to axial forces.

The paper is organized into six sections. Sections 2 and 3 present the definition
of the coupled boundary value problems and the definition of the Green functions
that belong to them. The properties of these Green functions are detailed in Section
4. The definition plays an important role in the determination of the Green func-
tions since it is constructive and allows calculation of the Green functions. Section 5
considers what form the coupled eigenvalue problems take. The issue of the stepped
beams is tackled in Sections 6 and 7, which together with Section 8 constitute the
main part of the present paper. They contain the calculation of the Green functions
for the unloaded stepped beams and the axially loaded stepped beams as well. As
regards their vibration problems, the corresponding eigenvalue problems are reduced
to Fredholm integral equations that are solved numerically. Section 8 presents the
numerical solutions for the vibration problem when the beam is axially loaded. The
last section contains the concluding remarks.

2. COUPLED BOUNDARY VALUE PROBLEMS

We shall consider a pair of inhomogeneous ordinary differential equations (ODEs)
Lilyi(z)] = ri(z), i1=1,2 (1a)
where the differential operators L;[y;(z)] of order 2k are defined by the relations

2Kk n
=3 puilx) ui" (@), ") (.)m™, i=1,2.  (1b)
n=0

dxm

Note that the order of these ODEs are the same.

Let b be an inner point in the interval € [0, £ = 1] for which it holds that 0 < b < ¢,
b=/01,¢—b=1/{y and {1 + {5 = ¢ = 1. It is assumed that x > 1 is a natural number.
The functions (pn1(z) and ri(z)) {rne(z) and ro(z)} are continuous if (x € [0,b))
{z € (b,¢ =1]} and paui(z) # 0.

It is assumed that ODEs are associated with the following boundary and con-
tinuity conditions:

UO’I‘ y1 Zamly(n 1) ) O, 7":1,2,...,,‘{ (23)
Ubr[y1,42) = Ubrl (1] — Upra[y2] =

= Z (Bur " ®) = Bura " V(1) =0, r=1,2,...,26  (2b)

Urrly2] Z’Ymayg _1) =0, r=1,2,...,K (2¢)
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where a1, Bnrr, Brrrr, and yp.rr are real constants.

ODEs with boundary and continuity conditions determine a coupled bound-
ary value problem, since the solutions y; (), y2(x) should satisfy continuity conditions
D).

Let us denote the linearly independent particular solutions of ODEs by Ymi ()
(m=1,2,...,2k). With y,,;(x), the general solutions y;(z) are of the form

yi(@) = Y Amiym (@), it @€ [0,b]; (3a)
m=1

y2(2) = D Amayma(2), it @€ [be=1]; (3b)
(=1

where A,,; and A,,» are undetermined integration constants.

The integration constants Ay; and Ay can be obtained from the boundary and
continuity conditions:

2K
ZAWIUOT[yml] 207 r= 1527"'5H (43‘)
m=1
2Kk
Z (-AmlUbrl[yml] - Am2Ubr2[ym2]) = 07 r= 1; 27 o 52"{‘ (4b)
m=1
2Kk
ZAMQUIT[me] :07 r = 1,2,...,/41. (40)
(=1

If we know the Green function G(z, &) that belongs to the coupled boundary value
problem , , then we seek the solution in the following form:

=1
vy = [ oo, (50)
where
~Ju(z) if z€[0,0) (g if £€[0,0),
y(@) = {yg(:@ it repeoy M4 TE= {rg(g) teepr—1y. OV

3. GREEN’S FUNCTIONS OF COUPLED BOUNDARY VALUE PROBLEMS

Let G(xz, ) be the Green function that belongs to the coupled boundary value problem
(1), . It is defined by the following formula and properties [18].
Formula:

Gll(l‘ag) if I,f S [O7b}7
) Ga(z,§) if x€[b /] and § € [0,
C@.8) = Gra(ré) if ze0bandc (bl (6)
G22(xa§> if 1'75 € [b7£]a
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Properties:
1. Let £ be an arbitrarily fixed coordinate in [0, b]
(i) The function G11(z,§) is a continuous function of z and ¢ in the triangles 0 < z <
E<band 0<E<x <b-—see Figure In addition it is 2k times differentiable with
respect to x and the derivatives

anall(x,g)
oz
are also continuous functions of x and £ in the triangles 0 < z < & < b and
0<E<x <D,

:G(lz)(x’g)’ n:1)2772‘% (73)

b =1
Figure 1. Triangular domains

The function G11(z,€) and its derivatives
n "G (x,§)
Ggl)(xag) = # s
should be continuous for z = ¢:
lim GV (¢ +2,6) - G (€ —2.0)] =

= [6€+0.6-GPE-0,9] =0 n=012...20-2 (7c)

n=12...,2k—2 (7b)

the derivative Ggin_l)(m, &) should, however, have a jump if z = &:

lim (G2 (¢ +2,6) - G2 V(e 2.0)] =

e—0
_ G(2n—1) 10,6) — G(2n—1) 0, _ o
G 0.9 - aFVE 0.0 = ()
(ii) In contrast, the function Ga;(x,&) and its derivatives
Gé?)(fv,i):%, n=12...,2x (e)

are all continuous functions for any x in [b, ¢]
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2. Let £ be fixed in [b, £].
(i) The function G12(z,€) and its derivatives

13
G§’§Nm,§):%§f’f), n=1,2,...,2 (8a)
are all continuous functions for any z in [0, b].
(ii) The function Gaz(x, &) is a continuous function of = and £ in the triangles b < z <
E<land b< ¢ <z </l-—seeagain Figure|ll In addition it is 2k times differentiable

with respect to z and the derivatives
anG22 ((E, 5)
ozxn
are also continuous functions of x and ¢ in the triangles b <z < ¢ </land b < ¢ <
x </
The function Gaa(z,€) and its derivatives

n O"Goa(x, &
Gé2) (xaé-) = ;;El ) )

are also continuous for any = = £ in [b, £]:

=GR (@), n=12..2 (sb)

n=12...,2k—2 (8¢)

tim €+ 2.6~ (e —e.0)] =
:{Gég)(@roaf)—Gé'é)(ﬁ—O,&)} =0, n=0,1,2,...26—2; (8d)

the derivative ng_l)(m, &) should, however, have a jump if z = &:

tim [G5 V(e +2,6) - G Ve —e,0)] =

= [e5 V0.0 - 6E Ve -0.9)] =

1
P2r2(§) - (89)

3. Let a be an arbitrary but finite non-zero constant. For a fixed £ € [0,¢] the
product G(z, )« as a function of x (x # £) should satisfy the homogeneous differential
equations
Ly [G(:E,f)()é] =0, if ze€ [O,b}, 9
Ly [G(z,8)a] =0, if =zelbd. ©)
4. The product G(z,&)a as a function of x should satisfy the boundary conditions
and the continuity conditions

2K

ZanrlG("_l)(O)zo, r=1,...,k

n=1

2K

> (Burt G (0= 0) = Bup GU V(0 4+0)) =0, r=1,...26  (10)
n=1

2K

ZvnrgG("_l)(f)zo. r=1,...,k

n=1
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The above boundary and continuity conditions should be satisfied by the functions
pairs

{Gll(xa 5)7 GQl(:Ev g)} )

{G12($7 6)7 G22('T7 5)} 9

as well.

REMARK 1. It can be proved by following the line of thought of a similar proof pre-
sented in [17] that the Green function defined above satisfies not only differential
equation but boundary and continuity conditions as well.

REMARK 2. The definition of the Green function is a constructive one since it makes
possible to calculate the elements of the Green function.

REMARK 3. Consider the inhomogeneous coupled boundary value problem defined by
differential equations with the boundary and continuity conditions . Let us
assume that we know the corresponding Green function. Then the solution is given

by the integral .

4. PROPERTIES OF THE GREEN FUNCTION

4.1. Self-Adjointness. Assume that the functions

up(z) if x €0,
Mm:{@@)ﬁxé&ﬂ (11a)

and

f vi(x) if z€][0,0]
“@—{éu)ﬁmema' (11b)

satisfy the boundary and continuity conditions and are continuously differentiable
2r times. Then they are called comparison functions. It is obvious that the solu-
tions y1(z) and y2(x) of the coupled boundary value problem and are also
comparative functions. Formula

b £
(u,v), = /0 up () Ly[vy (z)] dz + /b ug(z) Lalva ()] dz (12)

taken on the set of the comparison functions u(zx), v(z) is a product defined on the
differential operators Ly and Ls.

The coupled boundary value problem and is said to be self-adjoint if the
product is commutative, i.e., it holds that
(u,0), = (v,u), - (13)
Condition is called the condition of self-adjointness.

It can be proved (see [18]) that the Green function of coupled and self-adjoint
boundary value problems is a symmetric function of £ and x:

G(z,8) = G(&x) (14)
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5. COUPLED EIGENVALUE PROBLEMS

Consider differential equations
Kily] = AM;[ys],  1=1,2 (15a)
where y1(z), = € [0,0] and ya2(z), = € [b,€]; (0 < b < £ = 1) are again the unknown

functions while A is an unknown parameter (the eigenvalue sought). Differential
operators K; [y;] and M; [y;] are defined by the equations

Kyl = Y0 [ @) S o e,

L o (15b)
M [y = (-1)" [gm( Y™ (x )] . k>u>1

n=0

in which the real function (f,,;(z)) [gn:(x)] is assumed to be differentiable continuously
(k) [p] times and
fri(x) #0 if € [0,0] (15¢)
gui(z) #0  if x € [b,(]. (15d)
The order of the differential operator on the left side of (15a]) — this is 2k — is greater
than 2u: the latter is the order of the differential operator on the right side.
We shall assume that ODEs are associated with the homogeneous boundary
and continuity conditions given by equations .
Let u(z) and v(z) z € [0, €] be two comparative functions for the eigenvalue problem

([15), @) — see (11). If we perform successive partial integration we get the following
formulae for the products (u, v), and (u,v),,:

Kk n—1 (n—1-r) b—0
= [ S0 [ o]
n=0 r=0
Sie el ]
{ZZ DO (@) [ a1 ()] } +
n=0 r=0 b+0

+Z/ (") (@) ful)ol™( dx+2/ u (@) fo(@)e (@) do =

(16a)
and
w n—1 (n—1—r)76=0
= [ @ faent@]) )
n=0 r=0 0
S 1) (7)) () rn—l—r)]‘
+L§_%T_O @) [gma(e) o @ »
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+Z/ W (@) g ()0l ( dx+2/u2 D)gnz(@)l (z) dz =
= My (u,v) +Z/ (") T)gn1(w d:v—i—Z/ 2)Gna(x )()(x)dx.

n=0
(16b)

The expressions Ko(u,v) and My(u,v) are defined by the right sides of equations .
They are referred to as boundary and continuity expressions. If

Ko(u,v) = Ko(v,u) and My (u,v) = My(v,u) (17)

then the coupled eigenvalue problem determined by equations , is obviously
self-adjoint. The coupled eigenvalue problem is called simple if

Mifyl = goi1(@)ya(x)  and  Ma[y] = goz(2)y2(2). (18)

Assume that the eigenvalue problem considered is simple. Assume further that the
Green function that belongs to the coupled differential equations

Kilyi(x)] =ri(z), i=1,2 (19)

associated with boundary condition and continuity conditions is known. Then it
holds that

L
D)= [ G Omleu©de. (20)
0
where
_ yl(x) 1f£€[07b)1 _ 91(1') lffE[OJ)),
y(@) { ya(z) it €€ (b, ] and  go(z) { ggg(x) if € € (b, (]

is the eigenfunction y(z) that belong to the eigenvalue A while the structure of G(z, &)
is given by @ In this way the coupled eigenvalue problem is reduced to an eigenvalue
problem governed by a homogeneous Fredholm integral equation. Assume that the
original eigenvalue problem is self-adjoint and positive definite, i.e. it holds, among
others, that go(§) > 0 (£ € [0,¢]). Under these conditions the previous Fredholm
integral equation can be rewritten into the form

/
() = A / K (2, €)V(€) de, (21)

where

V(@) = Vgo(x)y(z),  K(z,§) = go(x)G(x,£)v/g0(¢) (22)

in which Y(z) is a new unknown function and the kernel K(x, €) is symmetric.

6. STEPPED BEAMS

6.1. Governing equations for heterogeneous stepped beam problems. Figure
shows a pinned-pinned heterogeneous stepped beam (PPStp beam). The axial force
N (N > 0) is compressive in this figure. The transverse coordinates are g, 2, while
the longitudinal is & = é . The coordinate plane ZZ is a symmetry plane of the beam.
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Z 1’{71 w2

Do —
Al’ |ey1 " AZ, |ey2

L1=b LZ
L1+L2=L

A

Figure 2. Heterogeneous stepped beam

The cross-sectional areas A;, (i = 1,2) are constants. The beam is assumed to
have heterogeneous cross sections, which means that the modulus of elasticity F
satisfies the condition E(g, %) = E(—9, 2). In this case we speak about cross-sectional
heterogeneity. The length of the beam is L, the discontinuity in the cross sections
is at b. We should mention that the E-weighted first moment [19] Qg is zero in this
coordinate system:

Q= / SE(g,£)dA = 0. (23)
A
The E-weighted moments of inertia [19] are defined by the equations
Iy, = | E(§,2)2*dA, I, = | E(3, 2)2*dA. (24)
A As

The beam is subjected to distributed forces f,1(#), & € [0, L1), fy2(2), & € [(L1, L]
acting on the center line . The vertical displacements on the center line are denoted
by 12)1, T e [O,Ll) and 12)2, T E [O,Ll)
In what follows we shall introduce the following dimensionless quantities:
¢=#/L, €£=¢/L,  wi=u; L(i=1,2),
x

b=b/L, (=7

(a) Equilibrium problems of PPStp beams with cross-sectional heterogeneity are gov-
erned by the following differential equations [19):

25
_1, (25)
z=L

Ki(wi(@)) = Ly = fu@),  fu=Lfu, we{ 0 Hi=]

i (b,0) ifi=2
d (26)

i _ (k) _
Ep il T (k=1,...,4)
ODEs 1 are associated with the following boundary and continuity conditions:

w (0)=0, w(0)=0; wa(6) =0, wi?()=0. (27a)
wy (b — 0) = wy(b + 0) wM (b= 0)=wl(®+0) (27b)

Ly wP (b —0) = Ly,ws? (0 +0)  Lyw®P(0—-0) = L,wd0+0)  (27¢)
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ODEs 1 with boundary and continuity conditions constitute a coupled bound-
ary value problem.

With the Green function that belongs to the coupled boundary value problem
(26)1, solution for the dimensionless deflection w(x) (w(x) = wy(x) if z € [0, b];
w(x) = wa(x) if © € [b,€]) is given by the following equation:

4 .
wo) = [ cwonemwe  ro={ 8 TEEhd e

(b) Vibration problems of PPStp beams. As regards the free vibrations of PPStp
beams it holds that

[ pa AL (z) i £€(0,8], _ 1 it €< [0,0],

ﬂa{péébw%&@ ﬁge&ﬂ.f&iﬁfﬁ@@) %%% if €€ b,
A al411

(29)

in which w;(z) is the dimensionless amplitude, p,; is the average density on A;,
while w stands for the circular frequency of the vibrations. With these notations the
differential equations

Ki(wi(z)) = Iey1w§4) = pa A1 LW wi(z),
—_——

A (30)
pa2A2
palAl
are satisfied by w;(z). Differential equations with the boundary and continuity
conditions (27)) determine a coupled eigenvalue problem for which A is the eigenvalue.

Recalling (28), we may conclude that this eigenvalue problem is governed by the
homogeneous Fredholm integral equation

Ko(w:(2)) = Lywl? = A ws ()

¢ 1 | if €€ 0,b],
wi@) = A [ Glagu(E ads e, O ()

6.2. Calculation of the Green function.

6.2.1. Particular solutions. The linearly independent particular solutions of the dif-
ferential equation K;(w;(x)) = 0 are very simple functions:

wi=wip =1, wy=wp=z, wy=wp=1z", wp=wp=z". (32)
6.2.2. Calculations of the Green function if £ € (0,b). We shall assume that

4

G11(2,8) = > (ami(€) + bmr(©))wim(z), 2 <&

m=1

z €0, ) (33a)

k|

Gll(xvg) = (aml(é-) - bm[(g))wlm(x)a T > 5;

m=1
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G21 l‘ f Z Cm[ wgm ) T e [b, E] (33b)

where the coefficients a,,1(§), bml(f) and ¢,,1(€) are unknown functions. This selec-
tion ensures the fulfillment of the following properties of the definition: 1. (ii) and 3.

Fulfillment of Property 1. (i) leads to the following equation system:
1 ¢ e & b1 0
0 1 2¢ 3¢ bor | 0
00 2 6 bay | 0 (34)
00 0 6 bay T 3.,
from where
b1 52
ba1 1 -3¢
= . 35
bs1 121.,, 3¢ (35)
bai -

Property 4 of the definition requires that the boundary and continuity conditions
should all be satisfied. Therefore equations yield the following equation system:
Boundary conditions at = 0:

4 4
Z amlwml(o) = - Z bmlwm1(0)7 (363’)
m=1 m=1

4 4
3 amwi (0) = = 3 bpaw (0). (36b)
m=1 m=1

Continuity conditions at x = b:

4 4 4

Z A1 Wi (D) — Z CrmiWm2(b) = Z bm1wm1 (b) , (36¢)
m=1 m=1 m=1

Z amlwm1 Z cmzw(l) Z bmlwm1 (36d)

1.
Z i (0) - 72 Z_ Emiwiy(b) = Z_j bmiwia (b) (36¢)
,m=1 m=1

[0

4
(3 Pyz
E amlwml g szwmz § bmzwml . (36f)
— eyl
m=1 m 1

[0

Boundary conditions at z = £:

4
D emiwma(0) =0, (36g)
m=1
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Z Cm1wey(0) = 0. (36h)

After substituting wy,1, wme, and b,,1, equation system assumes the following
matrix form:

(1000 0 0 0 0 ] /[an] [ —£3 i
001 0 0O O O 0 as1 -3¢
0b0 ¥ —1 —b —b*> —0° as1 263 — 362b 4 6£b% — b3
010302 0 —1 —2b —3b? asn |1 —362 4 126b — 3b? (37)
00060 0 0 —2 —6ad c11 121y, 12¢ — 6b
0006 0 0 0 -6« Co1 —6
000 O 1 Y4 52 63 C31 0

(000 0 0 1 2¢ 302 ] [ ear ] i 0 ]

Making use of the closed form solutions for a1, b1 and ¢y (m=1,...,4), we get

Gii(z,€) and Gai(z,€) from equations (33):

1
121,

€Y1

Gu(iﬂaf)

{(- £+

+ [022 ( (- b) + a (125[)(6—[)) +2§2€+4b3 *3562)) n (352)} -

+(—3§i3§)x2+(—1( —28) £ (- ))xB}, (38a)

2€(-=)

z) 2 2 _ g2 3 2 42 3
To1, oz (200 =307 — 2%+ 207 4 a (307 — = 207)) . (38h)

Go1(z, &) =

6.2.3. Calculation of the Green function if £ € (b,£): In this case it is assumed that

Gia(x,€) = Z Cm2(§)Wm1(x x € [0,b]; (39a)

4
G22($7§) = Z (am2(£) + bm2(£)>wm2(m)? z<§

m

=

z € [b,0); (39b)

=

Goz(z,€) = (am2(§) = bm2(§))wma(z), r>¢§

m

Il
—

in which the coefficients a,,2(&), bima(§), and ¢2(§) are again the unknowns.
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Recalling the calculation steps that resulted in solution , we obtain that

b12 52

pr— 4
bes | 120, | 3¢ (40)
bao -1

The boundary conditions at * = 0, x = ¢ and the continuity conditions at x = b —
the calculations are based on equations but the details are omitted — lead to the
following equation system:

(100 v 0-b0 —b%] [ais] [ &3 +3b62 — 3b%¢ + b3 ]
0126 3620 —10—3b%| | ax 3¢2 — 6b¢ + 3b?
002a6ab0 0 0 —6b aso a (6b — 6¢)

000 o 00O0 —1 as2 | _ 1 « (41)
000 0100 O c12 121.,, 0

000 0001 O C2o 0

10 0000 0 C32 €3 —30€% + 30%¢ — 13

(002 6000 0 ||ca| I 6¢ — 60

Utilizing the closed form solutions for a.,,1, bm1, and ¢,,1, the following formulae are
obtained for G11(x, &) and Ga1(x, &) from equations :

2z (¢ — ,
Giz2(2,8) = % (2602 — 300> — 20+ 20 + o (300 — 2b° — 2%0)),  (42a)
€y2
3 3 3 3 53
Gao(z,€) = TTA, (4b3¢ — 063 — Ab® + 4ab® (0 — €)) £ "

1217

€yY2

735 35 2 1 -1 3
+ - (- 2) + 42h
+ (12]ey2 1216y2> v ( 121,,,¢ -2+ 5 eyz) = (420)

REMARK 4. Recalling and applying then formula to differential equations , we
may conclude that Ko(u,v) = 0in . This means that the coupled boundary value
problem defined by and is self-adjoint. Consequently the Green function
should be symmetric, i.e., it holds that

G(l‘, f) = G(§7 1‘)

It is clear from a comparison of (38b|) and (42a) that Gia(x,&) = Ga1(&,2). It
can also be checked by paper-and-pencil calculations that G11(z,£) = G11(§,z) and

Gaa(z,§) = Gaa(&, ).

REMARK 5. The unit of the Green function is 1/Nmm?.

! _Q¢2
’ (121£2 (463 + 2068 — 3262 — A€ + 40P + dbPag — dibPa) + —o ) o+
€Yy2
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REMARK 6. Let us introduce the dimensionless distributed load

2% L3 Azi
foo = 22 = L (43)

€Yi €Yi

and multiply equations 1 by 1/Iy,. The result is

w® = f.i(x). (44)

Note that differential equations with the boundary and continuity conditions
determine now a three-point boundary value problem — therefore the coupling
has been removed. The dimensionless Green function for this three-point boundary
value problem is given by the equation

gn(x,ﬁ) = IeylGll(xvg) if I7§ € [O,b],
) Gai(x,8) = Loy, Gor(2,€) if 2 € [b, /] and £ € [0, 0],
G@.8) =1 Grole ) = Lo Cra(w.€) if o € [0.5] and £ € [b.0], (45)
g22<xa§) = Iey2022($7£) if xaé- S [b?f]

It is worthy of mention that G(x, ) depends on I, and Iy, via a only, The presence
of this parameter reflects the fact that the beam considered is stepped. The solution
for the equilibrium problem is then

_ [ _ [ a9 i g0,
0= [oworeas qo-{ =8 fieh

Though the three-point boundary value problem , is not self-adjoint, the
following symmetry conditions are obviously satisfied:

Gi(z,§) = Gn(&,x) if z,£ €10,0],
gzl(x & _ 912(6 z) if € [b /] and¢e|0,b], (46)

92

ggg(.’l? 6) g22(§a ) if xaé- S [b?‘g]

If we write b, L, # and é for b, £, x and £ in formulate we obtain the Green
function for the case when we use a selected length unit. Then the unit of the Green
function is the cube of the length unit selected.

For the purpose of displaying the behavior of the Green function, Figure [3] depicts
then graph when L = 100 mm, b=750 mm, § =75 mm and o = 0.52200625.
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Figure 3. The Green function of a PPStp beam

REMARK 7. With the eigenvalue problem for A can be rewritten into the
following form

¢ .
_ 1 if €€10,b],
wio)=x [ owow@{ | LT Fae. (47)
where
A palAlL4 2 Pa2A2I€y1
= ==, and == 48
X Ieyl Iey1 palAlleyg ( )

is the new eigenvalue.

6.3. Example 1. Consider the stepped beam shown in Figure We shall assume
that v = 0.95,0.90,0.85,0.80,0.75 if & € (lA), L]. It is also assumed that D; = 50 mm,
while By = Ey = Egeep = 2.0 x 10° N/me. The length L of the beam is 800 mm,
the location of the middle support is given by the parameter b. The surface densities
have the following values: p; = p2 = psteel = 7850 kg/10°mm3. Under the previ-
ous conditions Table [I] shows the characteristic data for the various cross sections.
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Figure 4. Stepped beam with circular cross section

Table 1. Data for the cross sections

Pa = P1 = P2 Ieyl X 10_13 Ieyz X 10_13
v 5 « K
kg/mm kg mmS/S2
0.95 4.997747756 | 0.81450625 | 1.052631579
0.90 4.025779180 | 0.65610000 | 1.234586718
0.85 | 7.850 x 107% | 6.135923152 | 3.202990235 | 0.52200625 | 1.384099617
0.80 2.513274123 | 0.40960000 | 1.562500000
0.75 1.473235149 | 0.31640625 | 1.777777778
Jxiin?

1.02 T

1.0
o = 0.81450625 | |

k = 1.05263158 /- -1

0.94

a = 0.6561000 °%T

x = 1.23458672 °%
0.88

a = 0.52200625 086 T
Kk = 1.38409962 /0.84 1

0.82
o = 0.40960000 |
x = 1.56250000_ 1

a = 0.31640625 0.76

Kk = 2.04081633 /0.74 +

0.72 T

| | | | | | | | | |

| | |

| | | |

0.70 t t t t t t t t t t t t t t t t t t t i
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 5. The first eigenvalue as a function of b; a and k are parameters

The eigenvalue problem 7 is solved numerically by using a solution algo-
rithm based on the boundary element method and published in .
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Figure [5| shows the computational results for ,/x1/4.730042 as a function of the
dimensionless parameter b. Each curve in Figure |5 corresponds to a different value of
the parameter a.

Assume that b = 0.5. If v = 0.8 we have o = 0.4096 and x = 1.5625. It follows
from equation that

YT T\ A X T 8002\ V7850 x 1076 x 252 x 7

=830.1002771 r/sec. (49)

1[I 1 135923152 x 1013
ey <\/ 6.135923152 x 10 >><8.420160122:

If there is no step in the beam
VX1 =72 x 1.0 = 9.869 604 4019.

and

8002

L \/ 6.135923152 x 1013
e 7.850 x 106 x 252 x 7

) x 9.869 6044019 = 972.993 5334 r/sec.

These results are compared with finite element calculations using Ansys. For mesh
generation, a total of 360 uniform hexahedral elements (SOLID185) were used to
discretize the geometry. A good agreement has been found:

Table 2. Comparison to FEM results

Eigenfrequency Our Ansys | Relative
(Hz) solution solution | error

Stepped beam | 8301002771 — 132115 | 131.18 | 0.707%

Unifrom beam | 97299353 — 154 865 | 154.15 | 0.462%

When calculating the relative error our solution was the denominator.

7. AXIALLY LOADED STEPPED BEAMS

7.1. Governing equations. We shall consider three different problems for axially
loaded heterogeneous beams.

(a) Equilibrium problems. If a PPStp beam with cross-sectional heterogeneity is
axially loaded, equilibrium problems are governed by the ODEs

Kio(wi(2)) = Iy, w'® £ Ny L2l = f.1(2), 2 €[0,b);
Kog(wy(2)) = Ly, wS? + NoL2w$? = f.5(2), 2 € b, 1],

where N7 and Ny (N7 > 0, Ny > 0) are the axial forces acting on the beam. Their
signs are (positive) [negative] if the considered axial force is (compressive) [tensile].
ODEs are associated with boundary and continuity conditions . Note that
boundary value problem , is again a coupled boundary value problem.

In the sequel we shall assume that Ny = Ny = N.

(50)
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If we know the Green functions G = G.(z,&) (N is compressive) and G = G¢(x, &) (N
is tensile) solution for the dimensionless deflection w(z) (w(x) = wy(x) if x € [0, b];
w(x) = we(z) if z € [b,£]) is given by integral in which (G(z,§) = Ge(x, §) if the
axial force is compressive) [G(z,£) = Gi(z,€) if the axial force is tensile].

REMARK 8. It can be checked with ease that the coupled boundary value problem

, is self-adjoint.

(b) Stability problems. If f.1(z) = f.2(x) =0, Ny = No = N and the sign of N is
positive we get

NI?2
Kias(wi(z)) = w§4) +N1w£2) =0, N = 7 € [0,b];
2
Koas(wa(@) = wi? + Now? =0, No=—7—, webll.
€yY2

ODEs (51)) with boundary and continuity conditions constitute a coupled eigen-
value problem for which NV is the eigenvalue sought. This problem is solved in Ap-

pendix [A]
(¢) Vibration problems. If the axially loaded beams vibrate, the amplitudes should
fulfill ODEs

A parAL'w?
Ly, Loy, 7
Pa2AsLiw?

]Eyz

Kigo(wi(x)) = w§4) iN1w§2) =Xxwi, X=

x € [0, b];
(52)

Kopy(we(x)) = wgl) i/\/’gwg) =YKWz, Xk = , x € bl

which are associated with boundary and continuity conditions . ODEs with
boundary and continuity conditions constitute a coupled eigenvalue problem with
X as the eigenvalue.

7.2. Calculation of the Green function for compressive axial force. Let us
introduce the quantities

p1 =M, p2 = VN2 = p1v/a. (53)

With , solutions to the dimensionless displacements in equations — the signs
of N1L2w§2) and N2L2w§2) are positive — are given by

4
wy = Z anwer () = a11 + 21T + azy cospr1x + aqr sinp z, p1 = VNi; (54a)
=1

4
Wy = Z apaWe2(T) = a2 + a2 + agzg COS P + a4s Sin po, p2 = \/Na. (54b)
(=1
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The structure of the Green function is presented by equation @
If £ € (0,b) we shall assume that

4

Geni(z,€) = Z (am1(§) + bm1(€))wim(z), r<g
e z € [0,b] (55a)

Gen(w,§) = Z am1(§) — bm1(€))wim(z), r>¢

m=1 4
Geo1(7,€) = Y emi(Qwam(z).  z € b4 (55b)
m=1

Here, the coefficients a,,u1(§), bmi1(€), and ¢p1(€) are the unknown functions. If we

follow the calculation steps detal ed in Subsection we get the equation systems:

1 f COSp1§ Sinplf b1 0 b1 1%1
01 —pysinpi€ picospié | |b2| | O by | 1 2 (56)
00 —picospi —pisinpi& | [bs| | O |" |bs| 2L, |—22b&
00 pzf sinpi1& —p:f cospi& | | by 21_:“ ba cos?&
L P
and
(10 1 0 0 0 0 0 1T air]
00 1 0 0 0 0 0 asy
1 b cospib sinp;b  —1 —b —cospqb — sin p2b asy
01 —pysinpib picospib 0 —1 posinpsb  —pocospab aar |
00 —picospib —pisinpib 0 0 ap3cospeb apisinpsb cir |
00 pisinpib —plcospib 0 0 —apdsinpsb apscospab Car
00 0 0 1 7 cos pal sin pol c31
100 0 0 0 0 cos pol sinpel | | car |
[ —p1§ +sinpi
sinp&
p1§ — p1b+sinp; (b —§)
_ 1 —p1+prcospy (b—§) (57)
21,0} —p?sinp; (b —§)
—p}cospy (€ —D)
0
0
If £ € (b,4) it is assumed that - :
4
Geoa(2,6) = D (ama(§) + bma())wam(x), @<
e e [b,4 (58a)
Ge2a(7,8) = > (am2(§) — bmar(§))wam(z), r>§
m=1
4
Ger2(7,€) = Y ema(Qwim(z), 2 €[0,b] (58b)

m=1
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where the coefficients am,2(§), bm2(§) and ¢,2(€) are the unknowns. By repeating the
calculation steps presented in Subsection the following equation system can be
obtained for these unknown coefficients:

1§ cospaé sin p2§ by 0 birr P%l
0 1 —pasinpa§ pocospaé bo| | O borr| 1 2 (59)
0 0 —pscospaé —p3sinpal | |bs| | O | |barr| 2L, sinpad
00 pisinpsé —pjcospsé| [ba] [zmyr]  |barr cos pa¢
pa
and
[1b cos pab sin pob 0 =b0 —sinpidb | [air]
01 —posinpsb pacospsb 0 —1 0 —pqcospid asry
0 0 —ap2cospab —apisinpsb 0 0 0 pisinpb asyr
00 apdsinpsb —ap3cospsb 0 0 0 p3cospib asrr |
00 0 0 1 00 0 cirr |
00 0 0 0 01 0 carr
1/ cos paf sin pof 0 0O 0 3171
|00 —cospal —sinpf 0 0 O 0 | | carr |
p2€ — p2b +sinpy (b — &)
pacosps (b—&) —p2
—ap3sinpy (b — €)
_ _% —aps cospy (b — &) (60)
2ley, 5 0
0
—p2§ + pal —sinpy (£ —§)
sinpy (£ =€)

The closed form solutions for aj1(€),...,cs2(€) obtained by solving equations
and are very long formulae and for this reason they are not presented here.

REMARK 9. The Green function G.(z€) is symmetric, i.e., it holds that G.(z,§) =
Gc(&,€). Fulfillment of the symmetry condition is checked by numerical computations
since the paper-and-pencil calculations for checking the symmetry condition are very
time consuming.

REMARK 10. The dimensionless Green functions G.(x, &) can be calculated by using
equation . Ge(x, &) fulfills symmetry conditions (46)).

REMARK 11. Assume that b = 0.5, £ = 0.75 and a = 0.52200625. Then the critical
value of the dimensionless compressive force ps is equal to 3.55896485 — see Figure
Under these conditions, Figure |§| depicts the Green function G(z,£).
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Figure 6. The Green function of a PPStp beam subjected to a com-
pressive force

7.3. Calculation of the Green function for tensile axial force. Recalling equa-

tions , solutions to the dimensionless displacements — the signs of N1L2w§2) and

N2L2w§2) is negative — are given by

4
wyp = Z apwe () = a1 + ag1 + azy coshp1x + ayq sinhpyx, (61a)
=1
4
Wo = Z Cl[Q’LUgg(JZ) = a12 + a9 + ass cosh pox + a4 sinh pox. (61b)
=1

The structure of the Green function is the same as earlier - see equations (@
If £ € (0,b) it is assumed that

Gui(z,§) = (am1(&) + bm1(§))wim (), x <

NE

m=1

z € [0,b]; (62a)

~

Gui(z,§) = (am1(&) = bn1(§))wim (), x>

1

3
I

4
Gio1(z,§) = Z em1 (&) wam (x), x € [b,{] (62b)
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where the coefficients a;,1(£), bm1(€) and ¢,1(§) are again the unknown functions.
Application of the calculation steps detailed in Subsection [6.2.2] yields

_£
1 & coshpi§é  sinhpi€ b1 0 b1 lpf
0 1 pysinhpi€ picoshp€ b _ 0 by _ 1 P2 (63)
0 0 p?coshp € p?sinhp€ b3 0 |’ | b3 21y, 51“23”15
00 pi’ Sinhp1§ pi’ COShplf b4 —% b4 coshsplf
Py i
and
10 1 0 0 0 0 0 1T air]
00 1 0 0 0 0 0 asy
1 b coshpib sinhpib —1 —b —coshpsb — sinh pob asy
0 1 pysinhpib pycoshpib 0 —1 —posinhpeb  —pg coshpob asr |
0 0 p?coshpib p2coshpib 0 0 —apscoshpab —ap3sinhpab ar |
0 0 p$sinhpib pfcoshpib 0 0 —apssinhpsb —ap3 cosh pab Car
00 0 0 1 ¢ cosh po/ sinh po/ C31
100 0 0 0 0 cosh pof sinhpal | | car
I p1§ — sinhpi§
—sinh p1&
—p1€ + p1b —sinhpy (b — &)
_ 1 p1 — p1coshpy (b—¢) (64)
21y, 03 —p?sinhpy (b—§)
—p3 coshpy (b— &)
0
- O -
If £ € (b, () we shall assume that:
4
Giza(z,§) = Z (am2(§) + bm2(§) )wam (z), r<§
e z € b/ (65a)
Gia(z,§) = (am2(&) = bmar(§))wam (), x>
m=1
4
Gua(2,8) = Y ema(Qwim(x). € [0,0] (65b)
m=1

Recalling the the calculation steps presented in Subsection [6.2.3] we obtain the fol-
lowing equation systems

1 & coshpef  sinhpog by 0 birr _11’%

0 1 posinhpe€ pscoshpo€ by | 0 borr |1 2

0 0 p3coshpaé p2sinhpoé by | 0 | barr | T 21, sml;?’pzﬁ

00 p% sinh p2& p% cosh pa& by - 2[1” barr o COSflsng
p3

(66)
and
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1 b coshpsb sinh pob 0 —b 0 —sinhpd airr
0 1 posinhpsb  pscoshpesb 0 —1 0 —py coshpb asyt
0 0 ap3coshpab apisinhpsdb 0 0 0 —p?sinhpib asyr
0 0 ap3sinhpeb —ap3coshpb 0 0 0 —pj coshpib asrr |
00 0 0 1 00 0 cir |
00 0 0 0 01 0 Carr
1 ¢ coshpyl sinh pof 0 0O 0 317
100 cosh po/ sinh pol 0 0 O 0 | | carr |
p2§ — p2b +sinhpy (b — &)
p2coshps (b — &) — p2
ap3 sinh py (b — §)
1 ap3 coshps (b — €)
= 28 0 (67)
0
—p2& 4 p2l — sinhpy (£ — &)
| —sinhpy (£ €)

The closed form solutions for the unknown functions ai1(€), ..., cs2(€) obtained by
solving equations and @ are again very long formulae and for this reason they
are not presented here.

REMARK 12. The Green function G;(z€) is symmetric, i.e., it satisfies the symmetry
condition G¢(x, &) = G¢(€,€). Fulfillment of the symmetry condition was verified by
numerical computations.

1000 x Ge(x, &)
17

2 v W
Ars ey Ay ey,

101+ |

9t b=

8+

P2 = 0. 4p20rit

P2 = 0. 8p20rit

10x

0 + + + + + + + + + + + + + + + + + +
0.00 005 010 0.5 020 025 030 035 040 045 0.50 055 060 065 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E=0.75

Figure 7. The Green function of a PPStp beam subjected to a tensile force
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REMARK 13. The dimensionless Green functions G;(x, ) can be calculated by utilizing
equation . Gi(z, &) fulfills the symmetry conditions .

Figure m shows the dimensionless Green function G;(z,§) utilizing the data given in
Remark [IT]

REMARK 14. It is clear from [Figure [6] {Figure [7]} that the deflections are [greater]
{smaller} if ps is [greater] {greater}. The fulfillment of these relationships is a natural
requirement for the Green functions considered.

8. AXIAL LOAD AND EIGENFREQUENCIES OF STEPPED BEAMS

8.1. Governing equations for the eigenvalue problem. In this section it is our
main objective to clarify the effect of the axial load on the eigenfrequencies of PPStp
beams. Making use of the dimensionless Green functions the eigenvalue problems to
be solved are governed by the homogeneous Fredholm integral equations for the case
of a compressive force

) .
wio)=x [ Gwou@{ L EE b, (68)
and for the case of a tensile force
0 .
wie)=x [ Gteou©{ | il fae (69)

Here y, i.e., the eigenvalue sought, and x are given by equation . In the sequel
we shall seek numerical solutions for the above problems utilizing the data related to
the stepped beams that are considered in Subsection [6.3

In the following, we shall need the value of the smallest critical force for the men-
tioned stepped beams. The solution to the corresponding eigenvalue problem is given
in Appendix [A] - see Figure

8.2. Example 2. Two problems are solved numerically. For the first problem it is
assumed that v = 0.90; then o = 0.65610000, and « = 1.234586718. For the second
problem v = 0.80, a = 0.40960000, and x = 1.562500000. These data are taken from
Table [I} The first eigenfrequency and the critical force can be calculated by utilizing
the data presented in Tables [3] and [d] - see Figures [f] and [§] for a comparison. Tables
[B] and [] contain some further data that are also utilized in the computations.

Table 3. Values of x1

Vxa(b)/7?
v | b=02 b=04 | b=05 | b=06 b=0.8

0.9 | 0.90273411 | 0.92130879 | 0.93858272 | 0.95892739 | 0.99240078
0.8 | 0.80179239 | 0.82483041 | 0.85314059 | 0.89300215 | 0.97673594
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Table 4. Critical force

\/NQCrit(b)
v ]| b=02 b=04 | b=05 | b=06 b=0.8

0.9 | 3.16728280 | 3.30994880 | 3.43419178 | 3.58174237 | 3.82743853
0.8 | 3.18497550 | 3.43128449 | 3.66658411 | 3.98927283 | 4.72167938

Let us denote the first eigenfrequency for [compression] {tension} by [wi.] {wi¢}-
The first eigenfrequency of the unloaded beam is w;.

Tables contain the computed results for Problem 1, for Problem 2. In
both cases the values of b are 0.2, 0.4, 0.5, 0.6, and 0.8. The first column in each
table is a list of the values the quotient N3 /Na-i; has, the second and fourth columns
contain those values of wi. and wy; which belong to N3 /ANaeit. The third and fifth
columns show the differences between two consecutive values of wq. and wy;. If these
differences are constants then the functions wic(Na/Nagrit) and wiy(Na/Naeris) are
in principle linear functions.

Each table is followed by two equations. The first is a quadratic approximation of
the function wi.(Na/Naerit), the second is a quadratic approximation of the function
w1e(Na/Naerit). See equations f for details. The quadratic approximations
fit to the values of these functions an accuracy of four to five digits.

8.2.1. Solutions to Problem 1.

Table 5. Computational results for v = 0.9 and b = 0.2

'J/:g]/\kgz”t w?, /w? loaa | Differences | w?, /w2 | .| Differences
0.000 0.99985049 1.00014949
0.100 0.90001388 0.09983661 1.09998352 0.09983402
0.200 0.80002506 0.09998882 1.19996457 0.09998105
0.300 0.70003341 0.09999164 1.29994325 0.09997868
0.400 0.60003881 0.09999461 1.39991964 0.09997640
0.500 0.50004109 0.09999771 1.49989385 0.09997421
0.600 0.40004012 0.10000098 1.59986595 0.09997210
0.700 0.30003571 0.10000441 1.69983602 0.09997007
0.800 0.20002769 0.10000802 1.79980415 0.09996812
0.900 0.10001586 0.10001183 1.89977039 0.09996624
1.000 0.00000000 0.10001586 1.99973481 0.09996443

The quadratic approximations fit to the data presented in Table [5| with four-digit
accuracy.

2 2
e _ 3331337633 x 107 AQ/Q — 0.000/625 68572 4 0.999 945 609,
W1 no load Nchit NQCTz’t
(70a)
2 2
“It 6307884335 x 1052 10.099 631 737322 +1.000 053 866. (70b)

2 2 ]
W7 no load 2crit NQcmt
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Table 6. Computational results for v = 0.9 and b =0.4

'J/:g]/\['/igz”t wi /w? o ioaa | Differences | w?,/w? | Differences
0.000 0.99986338 1.00013660
0.100 0.90020466 0.09965872 1.09975821 0.09962161
0.200 0.80037027 0.09983439 1.19948114 0.09972293
0.300 0.70049473 0.09987554 1.29917048 0.09968934
0.400 0.60057578 0.09991895 1.39882781 0.09965733
0.500 0.50061099 0.09996479 1.49845461 0.09962680
0.600 0.40059775 0.10001324 1.59805228 0.09959767
0.700 0.30053323 0.10006452 1.69762213 0.09956984
0.800 0.20041436 0.10011887 1.79716537 0.09954324
0.900 0.10023782 0.10017654 1.89668315 0.09951779
1.000 0.00000000 0.10023782 1.99617657 0.09949342

w%c -3 N22 N2
—5——— = —2.596 816 904 x 10 N 0.997 328 4065N + 0.999932 6019,
W7 no load 2crit 2crit ( )
Tla
2 2
w . N N-
A = 1.310482273 x 107° 52— + 0.997 432 2238 ——— 4 1.000 058 716.
W1 no load 2crit N2C7"it (7 b)
1
Table 7. Computational results for v = 0.9 and b = 0.5
N/Nerit = s s
Né/-/i/'z:rit w%e/wf o load | Differences w%t/wf no loaq | Differences
0.000 0.99987327 1.00012673
0.100 0.90032899 0.09954428 1.09961298 0.09948625
0.200 0.80059649 0.09973249 1.19917114 0.09955816
0.300 0.70079878 0.09979771 1.29867743 0.09950629
0.400 0.60093180 0.09986698 1.39813462 0.09945719
0.500 0.50099116 0.09994064 1.49754526 0.09941064
0.600 0.40097208 0.10001908 1.59691174 0.09936648
0.700 0.30086936 0.10010271 1.69623628 0.09932454
0.800 0.20067734 0.10019202 1.79552097 0.09928468
0.900 0.10038982 0.10028753 1.89476772 0.09924676
1.000 0.00000000 0.10038982 1.99397837 0.09921065
w%c -3 22 N2
—5——— = —4.104840 441 x 10 5— — 0.995790 1871 + 0.999920 6831,
W1 no load Nchit Nocrit ( )
72a
2 2
w N: N:
1 = —2.080081369% 103 ~=2— +0.9959923923 ——2— 1+ 1.000 062431. (72b)

2 D) -
W7 no load 2crit NQcmt



Green functions with applications to stepped beams 131

Table 8. Computational results for v = 0.9 and b = 0.6

j\vféj/vﬁ;;ctmt wi /w? _o.q | Differences | w?,/w? | | Differences
0.000 0.99988350 1.00011651
0.100 0.90032837 0.09955513 1.09961538 0.09949887
0.200 0.80059672 0.09973165 1.19917793 0.09956255
0.300 0.70080097 0.09979575 1.29869081 0.09951288
0.400 0.60093665 0.09986431 1.39815694 0.09946613
0.500 0.50099889 0.09993777 1.49757901 0.09942207
0.600 0.40098229 0.10001659 1.59695951 0.09938050
0.700 0.30088097 0.10010132 1.69630074 0.09934123
0.800 0.20068841 0.10019256 1.79560483 0.09930409
0.900 0.10039741 0.10029100 1.89487377 0.09926894
1.000 0.00000000 0.10039741 1.99410940 0.09923563
w%c -3 22 NQ
———— = —4.123396 713x 10 5— —0.995764 61 +0.9999199979, (73a)
W1 no load 2crit NQC”‘“
2 2
Ul 064304841 x 1072 1 0.006000 011722 4 1.000059 584.
W1 no load 2crit NQCTit (73b)
Table 9. Computational results for v = 0.9 and b = 0.8
j\vféj/vji/r;z”t wi /w? ioaq | Differences | w?,/w? | | Differences
0.000 0.99989764 1.00010236
0.100 0.90003396 0.09986368 1.09996006 0.09985771
0.200 0.80006160 0.09997236 1.19991449 0.09995442
0.300 0.70008252 0.09997908 1.29986357 0.09994909
0.400 0.60009631 0.09998621 1.39980760 0.09994403
0.500 0.50010250 0.09999381 1.49974684 0.09993923
0.600 0.40010058 0.10000191 1.59968151 0.09993468
0.700 0.30009002 0.10001057 1.69961186 0.09993035
0.800 0.20007019 0.10001983 1.79953809 0.09992623
0.900 0.10004044 0.10002975 1.89946039 0.09992230
1.000 0.00000002 0.10004042 1.99937895 0.09991856
2 2
# = —5.252032453 x 10~* '/\2/2 —0.999 440 542 7£ + 0.999 9599196,
W1 no load 2crit NQCT“ (74 )
a
2 2
Wi 1137211210 x 10-4 22 +0.999 462 7271 No + 1.000 038 224.
w% 1 N2 i NQ it
no load 2crit cry

(74b)
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8.2.2. Solutions to Problem 2.

Table 10. Computational results for » = 0.8 and b = 0.2
N/Nc'rit =

No/Noerst wi./w? o.q | Differences | w?,/w? | | Differences
0.000 0.99985219 1.00014779
0.100 0.90004447 0.09980773 1.09994714 0.09979935
0.200 0.80008021 0.09996426 1.19988624 0.09993910
0.300 0.70010685 0.09997336 1.29981761 0.09993137
0.400 0.60012397 0.09998288 1.39974153 0.09992392
0.500 0.50013114 0.09999283 1.49965827 0.09991675
0.600 0.40012789 0.10000325 1.59956811 0.09990983
0.700 0.30011372 0.10001417 1.69947127 0.09990316
0.800 0.20008809 0.10002564 1.79936799 0.09989672
0.900 0.10005039 0.10003770 1.89925848 0.09989049
1.000 0.00000000 0.10005039 1.99914295 0.09988447
W2 2
—5——— = —6.912436 031 x 1074 +0.999 943 9839,
YT no load NQcmt NQC”t (75 )
a
wiy _q NF
5 = —1.802051770 x 10 5— +0.999 281 1886 -+ 1.000 054 509.
W1 no load 2crit NQC”t (75b)
Table 11. Computational results for » = 0.8 and b = 0.4
j\vféj/vji/r';:mt wi /w? loaq | Differences | w?,/w? | | Differences
0.000 0.99987346 1.00012652
0.100 0.90062605 0.09924741 1.09925682 0.09913030
0.200 0.80112977 0.09949628 1.19840145 0.09914463
0.300 0.70150559 0.09962418 1.29743850 0.09903705
0.400 0.60174757 0.09975802 1.39637232 0.09893382
0.500 0.50184936 0.09989821 1.49520701 0.09883468
0.600 0.40180417 0.10004519 1.59394643 0.09873942
0.700 0.30160473 0.10019944 1.69259424 0.09864781
0.800 0.20124325 0.10036148 1.79115389 0.09855966
0.900 0.10071134 0.10053191 1.88962866 0.09847477
1.000 0.00000000 0.10071134 1.98802165 0.09839298
2 2
_Wle 7537051383 x 1032 N L 09999064673,
W1 no load 2(,mt N2C”t (76 )
a
2 2
YN 4640413266 x 1032 Mo 1000072981,
W1 no load QCMt N2CT’“5

(76b)
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Table 12. Computational results for v = 0.8 and b = 0.5

N/Ne¢rit = . .
Né/ﬁ;mt wi /w? _o.q | Differences | w?,/w? | | Differences
0.000 0.99988983 1.00011019
0.100 0.90114665 0.09874319 1.09864583 0.09853564
0.200 0.80207470 0.09907195 1.19709441 0.09844858
0.300 0.70277232 0.09930238 1.29535536 0.09826095
0.400 0.60322679 0.09954553 1.39343768 0.09808232
0.500 0.50342440 0.09980239 1.49134978 0.09791211
0.600 0.40335040 0.10007400 1.58909957 0.09774979
0.700 0.30298888 0.10036152 1.68669445 0.09759488
0.800 0.20232264 0.10066624 1.78414136 0.09744691
0.900 0.10133306 0.10098957 1.88144685 0.09730549
1.000 0.00000000 0.10133306 1.97861707 0.09717021
w2 N2
——¢— = —1.381407376 x 10~?—*— — 0.985 936 3720 +0.999 8553759,
Y1 no load 2crit N20”t ( )
T7a
2 2
w 3 N3 Ny
——t— = —8.037238551 x 10 3N N +1.000096317.
W1 no load 2crit 2crit ( b)
7
Table 13. Computational results for » = 0.8 and b = 0.6
N/Ne¢rit = . .
Né/ﬁ;‘:mt wi /w? loaq | Differences | w?,/w? | | Differences
0.000 0.99990727 1.00009273
0.100 0.90148845 0.09841882 1.09825700 0.09816427
0.200 0.80270523 0.09878321 1.19627516 0.09801816
0.300 0.70363169 0.09907354 1.29406894 0.09779378
0.400 0.60424744 0.09938425 1.39165166 0.09758272
0.500 0.50453016 0.09971728 1.48903562 0.09738396
0.600 0.40445537 0.10007479 1.58623218 0.09719656
0.700 0.30399619 0.10045919 1.68325185 0.09701967
0.800 0.20312300 0.10087319 1.78010438 0.09685253
0.900 0.10180313 0.10131987 1.87679882 0.09669444
1.000 0.00000046 0.10180267 1.97334357 0.09654475
2 2
w o N3
% = —1.820778 680 x 1072 + 0.999 791 5525,
W1 no load N2crzt NQC”t ( )
78a
w2 2
% = —9.344 847633 x 1073 + 1.000115576.
W1 no load NQu it NQCT”

(78b)
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Table 14. Computational results for v = 0.8 and b = 0.8

j\vféj/vﬁ;;ctmt wi /w? _o.q | Differences | w?,/w? | | Differences
0.000 0.99993292 1.00006707
0.100 0.90028412 0.09964880 1.09966903 0.09960196
0.200 0.80051788 0.09976624 1.19929442 0.09962540
0.300 0.70069738 0.09982051 1.29887909 0.09958467
0.400 0.60081828 0.09987910 1.39842568 0.09954659
0.500 0.50087577 0.09994251 1.49793660 0.09951093
0.600 0.40086450 0.10001127 1.59741409 0.09947748
0.700 0.30077846 0.10008604 1.69686015 0.09944607
0.800 0.20061092 0.10016754 1.79627667 0.09941652
0.900 0.10035429 0.10025663 1.89566536 0.09938869
1.000 0.00000000 0.10035429 1.99502779 0.09936244
2 2
__Yle 3574308585 x 1032 _ 0.996325 21472 4 0.999 937 4502,
W1 no load NZcrit NQC”'it
(79a)
wiy 3 N Na
5 = —1.613827513 x 10 5— +0.996 593 5135 -+ 1.000 040 048.
W1 no load 2crit NQCTit

(79b)

REMARK 15. The differences listed in the tables vary very little as a function of
N/N_yit: they can be considered practically constant. It is also worth noting that the
largest change in value (which is still a very small change in value) concerning the
differences is for the value b = 0.5, where the change in cross section is at the central
point of the beam.

9. CONCLUDING REMARKS

Making use of the definition presented in 18] for the Green functions of coupled
boundary value problems, the paper has presented the Green functions of pinned-
pinned stepped beams with heterogeneous cross section provided that (a) no axial load
is exerted on the beam, (b) the beam is subjected to a compressive axial force, and (c)
a tensile axial force is exerted on the beam. The eigenvalue problem related to the free
vibrations of the pinned-pinned stepped beams is reduced to an eigenvalue problem
governed by a homogeneous Fredholm integral equation. The vibration problems of
the axially loaded stepped beams are also reduced to two Fredholm integral equations.
Then these eigenvalue problems are solved numerically and the computational results
are presented. It is a well known result that the equations

w?, N w?, N

=1.0- , =104+ — )
OJ% no load Ncrit UJ% no load Ncrit ( )

are the solutions to a similar problem for simply supported homogeneous and hetero-
geneous beams — in the second case cross sectional heterogeneity is assumed. Ac-
cording to our computational results, equations provide very good solutions
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for both pinned-pinned and stepped beams — the maximum of the relative error in
Wi /w? o joaq for v =0.8, b= 0.5 and N'/ N,y = 1.0 is 1.069% (see Table .

APPENDIX A. STABILITY PROBLEM OF PINNED-PINNED STEPPED BEAMS

The stability problem of stepped beams is governed by ODEs associated with
boundary and continuity conditions (27]). Making use of the solutions given by equa-

tions , the eigenvalue problem (51)), with ps = v/AN> as the eigenvalue yields
the following homogeneous equation system for the unknown integration constants:

(10 1 0 0 0 0 0 ai 0
00 1 0 0 0 0 0 a1 0
106 cos bpay sinbpey —1 —b —cosp2b —sinpab as1 0
0 1 —poysinbpay p2ycosbpey 0 —1 p2sinpab —p2 cos p2b asr1 | _ |0 (81)
00 —cosbpay —sinbpey 0 0 cospzb sin pab a2 | |0
00 ~sinbpey —vycosbpey 0 0 —sinp2b cospab a22 0
00 0 0 1 E COS ng sin pzé as2 0
100 0 0 0 0 cosp2t sinp2l | | a2 | | 0]
v=Va
The characteristic equation is the determinant of the coefficient matrix
D = —ylcosbypa sinps (£ — b) — £sinbyps cosps (£ —b) = 0. (82)

JN2(b)

58
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561
551
541
531
521
511
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491
48T
4Tt
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451
44t
431
421
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40T
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361
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341
331
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31t

a = 0.31640625

a = 0.52200625

a = 0.656 10000

a = 0.81450625

0
—— T

3.0
0.00

Figure 8. Critical force against b, « is a parameter
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REMARK 16. Assume that « =b=/¢ =1 and ps = p. Then we get the characteristic
equation for a uniform fixed-fixed beam

D =sinp=20 (83)
where p = 7 is the smallest root for p.

Equation has been solved numerically. Figure [§| shows the critical force
No it (b) against b obtained from the numerical solution mentioned.
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