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Abstract. Two commonly used overcoring measurement methods for estimating the in situ
stress state in rocks – the In Situ Stress Testing (IST) gauge and the Hollow Inclusion (HI) cell
– are compared based on finite element models. The models simulate idealized measurement
circumstances in homogeneous, isotropic and linearly elastic rocks during overcoring, and
are used to evaluate the maximum accuracy achievable using the two methods. We show
that while both methods are capable of accurately estimating the in situ stress state, their
accuracy depends significantly on the placement of the instruments within the pilot hole.
Recommendations regarding optimal instrument placement are given for both methods by
considering stress disturbances created by the bore- and pilot holes.

1. Introduction

Estimation of the undisturbed underground or in situ stress state is essential to un-
derground operations, such as mining, tunnelling and other geotechnical engineering
projects. Since the in situ stress state is influenced by factors such as depth, tec-
tonic forces, topography, constitutive behaviour of the rock, and the local geological
history, among others [1], measurements are necessary to estimate the state of stress
underground.

There are several techniques to determine the in situ stress state [2–4]. Hydraulic
methods, such as hydraulic fracturing and the flat jack method, are based on pressure
measurements. Their advantage is that these methods do not require knowledge of
the material properties of the rock. On the other hand, they do not provide enough
information to accurately estimate the entire three-dimensional in situ stress state,
which can be necessary in certain cases. Methods based on displacement or strain
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measurements, such as overcoring, enable more accurate estimations. As the in situ
stress state is derived from displacement or strain values, the constitutive behavior of
the rock must be known. Typically, the rock is assumed to be linearly elastic. It is
worth noting that there are methods that take the time dependence of the material
behaviour into consideration, e.g., the Anelastic Strain Recovery (ASR) method [5,
6]. However, here, we work with the assumption of linear elasticity, as the unloading
rate is assumed to be sufficiently low.

In the present paper we investigate two specific overcoring methods: the In situ
Stress Testing (IST) method developed by Sigra, and the Hollow Inclusion (HI)
cell developed by the Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO). Both methods use several assumptions in order to make calculations
feasible, and best practice recommendations are given in order to confirm that the
measurement circumstances conform to these assumptions and consequently the mea-
surement results are accurate to some extent. Our goal is to independently verify such
assumptions and recommendations and potentially improve them in order to ensure
accurate measurement results.

The outline of the paper is as follows. First, we give an overview of overcoring
methods in Section 2. This is followed by the exposition of the theory behind the IST
and CSIRO HI measurement methods in Section 3, which is crucial for understanding
the assumptions made during the evaluation of such measurements as well as for
clearly showing the limitations of these methods. In Section 4, we construct a series
of finite element models for the quasi-static simulation of a case study in the overcoring
measurement process for the IST and CSIRO HI methods. We evaluate the results
of these case studies regarding the theoretically achievable maximum accuracy of the
estimated in situ stress state. Finally, in Section 5, we compare and contrast the two
measurement techniques and give recommendations regarding the placement of the
specific overcoring measurement instruments inside the pilot hole.

2. A concise overview of overcoring methods

One of the most common in situ stress measurement techniques in the mining
industry is overcoring, which has been used since the 1960s [4]. The in situ stress state
can be estimated based on the deformations and strains measured while the core is
relieved. Naturally, the constitutive equations are necessary for the calculation of the
stress state, therefore the material properties of the rock have to be measured. This
is usually performed after the overcoring measurement itself, in a laboratory setting.

An overcoring measurement consists of three main steps, which are shown in Fig-
ure 1.

• Step 1 : Drilling to the depth of the in situ stress state measurement itself.
This main hole is usually called the borehole.

• Step 2 : From the bottom of the borehole, a smaller diameter hole, the pilot
hole, is drilled. An instrument, or gauge, is mounted in the pilot hole, which
measures the deformations and strains of the pilot hole. (The specifics of this
instrument depend on the measurement method used.)
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• Step 3 : A concentric hole is drilled around the instrument in the pilot hole,
i.e. it is cored over. The outer diameter of this hole is identical or similar
to the borehole diameter, and the inner diameter is larger than the pilot hole
diameter. During this step, the remaining rock core is largely relieved from the
in situ stress state, while the instrument installed in the pilot hole measures
and records the deformations or strains throughout the process.

Borehole

Pilot hole

1 – Drilling of the
large diameter hole

2 – Drilling of 
the pilot hole
and setting up
of the
measurement
cell

3 – Overcoring

Measurement
cell

Overcoring trench

Overcoring ring
(relieved core)

Figure 1. Steps of overcoring [7]

There are two main types of measurement tools that can be installed in the pilot
hole. One of these measures the changes in diameter of the pilot hole during Step
3 by pins placed at different depths and orientations. The USBM (US Bureau of
Mines) developed a gauge which measures the diameter change in three different
orientations [8]. This provides enough data to estimate the in situ stress state in
the plane perpendicular to the borehole axis with acceptable accuracy. Naturally,
additional measurement data decreases the amount of total measurement error and the
probability of instrument failure, therefore there are gauges that measure the pilot hole
diameter during overcoring at multiple depths and orientations. For example, the IST
gauge developed by SIGRA measures the diameter change in six different orientations
[9]. The advantage of these instruments is that they can be used more than once,
and there is no need for any cables during the measurements. The disadvantage of
these gauges is that the in situ stress components parallel to the borehole axis cannot
be estimated if the data is collected from a single hole [10]. Besides, this method is
suitable only for relatively shallow depths. [2]

The other main type of overcoring instruments measures the strains of the pilot
hole surface in different directions during Step 3. For example, the Hollow Inclusion
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(HI) cell developed by CSIRO (Commonwealth Scientific and Industrial Research
Organization) contains 9 or 12 strain gauges installed in different positions and ori-
entations [11]. The advantage of these tools is that the full, three-dimensional in situ
stress state can be estimated based on the data collected from a single hole. However,
the CSIRO HI cell is glued into the pilot hole, so the cell can only be used once. A
further disadvantage is that the epoxy-based glues cannot be applied in humid and
dusty environments, and the thickness of the glue may influence the accuracy of the
measurement [2].

A significant limitation of the overcoring technique is that the material properties
of the rock must be known, since the in situ stress state is derived from deformation
or strain values. Young’s modulus and Poisson’s ratio – and other parameters in case
of anisotropic or nonlinear material behaviour – are usually determined by biaxial
compression tests. These tests are usually carried out on the rock core remaining
after Step 3 in the case of the CSIRO HI cell, and on nearby rock cores in the case of
the IST method.

In the following section, the equations required to estimate the in situ stress state
from the data collected by either an IST gauge or a CSIRO HI cell are presented.

3. Theoretical background of the evaluation of overcoring
measurements

3.1. Evaluation of IST measurements. The IST gauge measures the change in
diameter of the pilot hole during the relief of the rock core. The collected data can
be used to determine the original in situ stress state, which still occurs sufficiently far
(1.5–2.5 times the diameter of the borehole [11]) from the borehole.

3.1.1. Assumptions. In order to derive the in situ stress state from the changes in
diameter of the pilot hole, the following assumptions are made:

• the stress state is identical in any plane perpendicular to the axis of the
borehole,

• the drilling of the borehole and the pilot hole have no influence on the
original in situ stress state,

• after overcoring, the rock core and the surface of the pilot hole are completely
relieved from any stress,

• the rock is considered to be linearly elastic, homogeneous and isotropic,
• the axial in situ stress component is known. If the axis of the borehole is
vertical, this component corresponds with the lithostatic (also called
overburden) pressure, which is caused by the weight of the overlying
material [4].

These assumptions imply that the deformations measured by the IST gauge are caused
by the relief of the in situ stress state. As a consequence, a relationship must exist
between the changes in diameter and the in situ stress state.

3.1.2. Description of the stress state. For describing the various stress states consid-
ered, the Cauchy stress tensor σ is used, which is assumed to be symmetric. We
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define a Cartesian coordinate system in which axis z coincides with the borehole axis.
The components of this tensor are

σ =

σx τxy τxz
τxy σy τyz
τxz τyz σz

 . (3.1)

Accordingly, the change in the stress state near the pilot hole during Step 3 of
overcoring is described by the (symmetric) tensor ∆σ expressed as

∆σ =

∆σx ∆τxy ∆τxz
∆τxy ∆σy ∆τyz
∆τxz ∆τyz ∆σz

 . (3.2)

According to Section 3.1.1, the rock core is completely relieved after the overcoring,
hence its loading changes:

∆σ = 0− σ0, (3.3)

where σ0 is the in situ stress state to be determined:

σ0 =

σ
0
x τ0xy τ0xz

τ0xy σ0
y τ0yz

τ0xz τ0yz σ0
z

 = −∆σ. (3.4)

It is worth emphasizing here that these stress tensors describe the in situ stress
state, which is the original, undisturbed stress state, and is different from the stress
field close to the borehole. In most commonly used models, the in situ stress state is
considered to be applied sufficiently far away from the borehole as a far-field boundary
condition.

3.1.3. Connection between stress state and deformations. The change in diameter of
the pilot hole ∆d associated with the change in the loading of the core during the
relief is given by [10]:

∆d =
d

E

[
(∆σx +∆σy) + 2(∆σx −∆σy)(1− ν2) cos(2θ) +

+ 4∆τxy(1− ν2) sin(2θ)− ν∆σz

]
, (3.5)

where d is the diameter of the pilot hole, E and ν are the Young’s modulus and the
Poisson’s ratio of the rock, θ is the angle formed by the measured diameter and the
x axis of the coordinate system. Note that this formula does not contain the τxz and
τyz shear stress components, as the determination of these components would require
measurements from boreholes with different orientations.

The IST gauge measures the changes in diameter in six different orientations (and
depths) [9]. Using equations (3.4) and (3.5), the following can be written:

∆di =− d

E

[
(σ0

x + σ0
y) + 2(σ0

x − σ0
y)(1− ν2) cos(2θi) +

+ 4τ0xy(1− ν2) sin(2θi)− νσ0
z

]
, i = 1, 2, . . . , 6. (3.6)



42 D. Borza and D.M. Takács

This is a system of six linear equations. The variables are σ0
x, σ

0
y, σ

0
z and τ0xy, the

components describing the in situ stress state. The system can be written in a matrix
equation form as

∆d1
...

∆d6

 = Â


σ0
x

σ0
y

σ0
z

τ0xy

 , (3.7)

where:

Â = − d

E


1 + 2(1− ν2) cos(2θ1) 1− 2(1− ν2) cos(2θ1) −ν 4(1− ν2) sin(2θ1)

...
...

...
...

1 + 2(1− ν2) cos(2θ6) 1− 2(1− ν2) cos(2θ6) −ν 4(1− ν2) sin(2θ6)

 .
(3.8)

Although the above system seems to be overdetermined at first glance, the equa-
tions are actually linearly dependent: it can be shown in a straightforward way that
– assuming distinct θi – the rank of matrix Â is 3, i.e. it does not have full rank.

3.1.4. Solution of the system. In order to solve the (3.7) system of equations, σ0
z must

be known to circumvent the linear dependence of the original equations. According to
Subsection 3.1.1, we assume that it is entirely determined by the overburden pressure,
which can be expressed as

σ0
z = −ρgh, (3.9)

where ρ is the mean density of the rocks above the location of the measurement, g is
the gravitational acceleration, h is the depth measured from the surface.

Consequently, the system of equations (3.7) becomes



∆d1 − d
E νσ0

z

∆d2 − d
E νσ0

z

∆d3 − d
E νσ0

z

∆d4 − d
E νσ0

z

∆d5 − d
E νσ0

z

∆d6 − d
E νσ0

z


︸ ︷︷ ︸

b

= A

σ0
x

σ0
y

τ0xy

 , (3.10)
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where:

A = − d

E



1 + 2(1− ν2) cos(2θ1) 1− 2(1− ν2) cos(2θ1) 4(1− ν2) sin(2θ1)

1 + 2(1− ν2) cos(2θ2) 1− 2(1− ν2) cos(2θ2) 4(1− ν2) sin(2θ2)

1 + 2(1− ν2) cos(2θ3) 1− 2(1− ν2) cos(2θ3) 4(1− ν2) sin(2θ3)

1 + 2(1− ν2) cos(2θ4) 1− 2(1− ν2) cos(2θ4) 4(1− ν2) sin(2θ4)

1 + 2(1− ν2) cos(2θ5) 1− 2(1− ν2) cos(2θ5) 4(1− ν2) sin(2θ5)

1 + 2(1− ν2) cos(2θ6) 1− 2(1− ν2) cos(2θ6) 4(1− ν2) sin(2θ6)


.

(3.11)

Now the rank of matrixA is maximal. However, the system is overdetermined since
there are six equations and only three variables. Naturally, measuring the change in
diameter in three different orientations would be sufficient to determine σ0

x, σ
0
y, and

τ0xy (see [8]). The reason for measuring more than three ∆d values is to minimize the
overall error. The optimal least-squares solution can be expressed [12] asσ0

x

σ0
y

τ0xy

 = (ATA)−1ATb. (3.12)

Every element of matrix A and vector b is known, therefore the in situ stress com-
ponents perpendicular to the axis of the borehole – here: the horizontal components
– can be determined. It must be emphasized that these results are just estimations
of the real in situ stress state, as several assumptions have been made (see Subsec-
tion 3.1.1).

Based on the above, the in situ stress components (σ0
x, σ

0
y and τ0xy) in the plane

(x − y) perpendicular to the axis of the borehole can be estimated from the data
collected from a single measurement. In order to calculate these estimations, besides
the assumptions listed in Subsection 3.1.1, the following values have to be known:

• the change in diameter of the pilot hole (∆d) in at least three different orien-
tations θ,

• the material properties of the rock (ρ, E and ν, as defined previously).

Since the IST gauge measures only radial deformations, the in situ stress state can
only be estimated in a plane perpendicular to the axis of the borehole. Furthermore,
the axial in situ stress component must be known. In our model, the axis of the
borehole is vertical, so it has been assumed that this axial component is the lithostatic
pressure (see (3.9)).
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It is worth noting that the determination of the axial in situ stress components
based purely on measurements is possible using the IST method. However, it requires
measurements made in boreholes with different orientations. This method is detailed
in [10].

3.2. Evaluation of CSIRO HI cell measurements. Unlike the IST instrument,
which measures displacements directly, the CSIRO HI cell contains strain gauges,
measuring the strains on the surface of the pilot hole during the relief of the rock
core. The collected data can subsequently be used to determine the original in situ
stress state.

3.2.1. Assumptions. In order to derive the in situ stress state from the strains mea-
sured on the pilot hole surface, the following assumptions have been made according
to [11]:

• the stress state is identical in any plane perpendicular to the axis of the bore-
hole,

• the drilling of the borehole and the pilot hole have no influence on the original
in situ stress state,

• after overcoring, the rock core and the surface of the pilot hole are completely
relieved from any stress,

• the rock and the CSIRO HI cell is considered to be linearly elastic, homoge-
neous and isotropic,

• the viscoelastic behaviour of the epoxy resin bonding the cell to the rock is
negligible,

• the Young’s modulus of the rock and the diameter of the overcoring bit are
sufficiently large to neglect the resistance of the HI cell to the deformation.

These are similar to the assumptions listed in Subsection 3.1.1. They imply that the
strains measured by the gauges are caused by the relief of the in situ stress state,
therefore a connection can be found between them. The stress state can be described
in the way given in Subsection 3.1.2.

However, whilst an IST gauge does not provide enough data to determine the in
situ stress components parallel to the axis of the borehole, a measurement carried out
by a CSIRO HI cell can be used to estimate every component of the in situ stress
tensor.

The CSIRO HI cells has variants, that contain either 9 or 12 strain gauges installed
in different positions and orientations [11]. In the following, we consider a 12-gauge
cell.
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3.2.2. Strain gauge positions. The positions of the 12 strain gauges are shown in
Figure 2 and in Table 1.

x

y

Figure 2. Strain gauge positions in the HI cell [11]

Table 1. Strain gauge positions in the HI cell [13]

ID θ [◦] β [◦]

A0 323 0

A90 300 90

A45 300 45

B45 163.5 45

B135 163.5 135

B90 180 90

C0 83 0

C90 60 90

C45 60 45

D135 300 135

E90 210 90

F90 90 90
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The angle θ specifies the position of the strain gauge along the perimeter of the
pilot hole measured from the x axis. The angle β specifies the orientation of the strain
gauge:

• 0°: axial strain (εz),
• 90°: tangential strain (εθ),
• 45° or 135°: diagonal strain (ε±45◦).

Note that whilst the IST gauge measures only radial deformations, the strain gauges
in the CSIRO HI cell measure tangential, axial and diagonal strains: this enables
each component of the in situ stress tensor to be determined from the measurements
performed via the HI cell.

3.2.3. Connection between stress state and strains. The in situ stress state associated
with the measured strains is given by the following relationships (derived in[11]) as

Erεθ =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θ) + 2τ0xy sin(2θ)

]
K2 + νrK4σ

0
z , (3.13)

Erεz =− σ0
z + νr(σ

0
x + σ0

y), (3.14)

Erγθz =− 4(1 + νr)(τ
0
yz cos 2θ − τ0xz sin 2θ)K3, (3.15)

ε±45◦ =
1

2
(εz + εθ ± γθz). (3.16)

Variables and parameters contained in these equations:

• Er and νr are the Young’s modulus and Poisson’s ratio of the rock
• εθ, εz, and ε±45◦ are the tangential, axial and diagonal strains measured by
the strain gauges,

• θ is the angle describing the strain gauge position,
• σ0

x, σ
0
y, σ

0
z , τ

0
xy, τ

0
xz, τ

0
yz are the elements of the in situ stress tensor (see (3.4))

• γθz is the engineering shear strain, which can be calculated according to (3.16),
• K1, K2, K3, K4 are correction factors, detailed below.

The correction factors are necessary as the strain gauges are located in the stress
sensor pipe instead of the pilot hole surface, and the material properties of the CSIRO
HI cell are not identical to the material properties of the rock [11]. It is worth
emphasizing that the behaviour of the HI cell is considered to be linearly elastic. In
certain cases (e.g. high temperature), this assumption is not acceptable since the
viscoelastic behaviour of the HI cell must be taken into consideration.

In order to calculate the correction factors, the following values must be known:

• Ep, the Young’s modulus of the cell,
• νp, the Poisson’s ratio of the cell,
• Rp, the radius of the pilot hole,
• Rsg, the distance between the strain gauges and the borehole axis,
• R1, the inner radius of the stress sensor pipe.

For the detailed calculation of the correction factors, see [11].
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3.2.4. Determination of the stress components perpendicular to the borehole axis. Ex-
pressing σz from (3.14), then substituting it into (3.13) results in the expression

Er(εθ + νrεzK4) =− (σ0
x + σ0

y)K1 + 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θ) + 2τ0xy sin(2θ)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4. (3.17)

Then, equation (3.17) can be used to derive equations for the measurement results
given by the strain gauges as

Er(εθ;A90
+ νrεz;A0

K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θA90

) + 2τ0xy sin(2θA90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18a)

Er(εθ;B90
+ νrεz;BK4) =− (σ0

x + σ0
y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θB90) + 2τ0xy sin(2θB90)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18b)

Er(εθ;C90 + νrεz;C0K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θC90

) + 2τ0xy sin(2θC90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18c)

Er(εθ;E90
+ νrεz;BK4) =− (σ0

x + σ0
y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θE90

) + 2τ0xy sin(2θE90
)
]
K2+

+ ν2r (σ
0
x + σ0

y)K4, (3.18d)

Er(εθ;F90
+ νrεz;C0

K4) =− (σ0
x + σ0

y)K1+

+ 2(1− ν2r )
[
(σ0

x − σ0
y) cos(2θF90) + 2τ0xy sin(2θF90)

]
K2+

+ ν2r (σ
0
x + σ0

y)K4. (3.18e)

The above is a system of linear equations, where σ0
x, σ

0
y and τ0xy are to be deter-

mined. It can be written in a matrix equation form as

Er


εθ;A90

+ νrεz;A0
K4

εθ;B90 + νrεz;BK4

εθ;C90 + νrεz;C0K4

εθ;E90
+ νrεz;BK4

εθ;F90
+ νrεz;C0

K4


︸ ︷︷ ︸

d

=


C11 C12 C13

C21 C22 C23

C31 C32 C33

C41 C42 C43

C51 C52 C53


︸ ︷︷ ︸

C

σ0
x

σ0
y

τ0xy

 , (3.19)

where εz;B can be determined using (3.16):

εz;B =
εB45

+ εB135

2
− εB90

. (3.20)

The elements of matrix C are:

C11 = −K1 + 2(1− ν2r ) cos(2θA90)K2 + ν2rK4, (3.21a)

C12 = −K1 − 2(1− ν2r ) cos(2θA90
)K2 + ν2rK4, (3.21b)
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C13 = 4(1− ν2r ) sin(2θA90), (3.21c)

C21 = −K1 + 2(1− ν2r ) cos(2θB90
)K2 + ν2rK4, (3.21d)

C22 = −K1 − 2(1− ν2r ) cos(2θB90)K2 + ν2rK4, (3.21e)

C23 = 4(1− ν2r ) sin(2θB90
), (3.21f)

C31 = −K1 + 2(1− ν2r ) cos(2θC90
)K2 + ν2rK4, (3.21g)

C32 = −K1 − 2(1− ν2r ) cos(2θC90
)K2 + ν2rK4, (3.21h)

C33 = 4(1− ν2r ) sin(2θC90
), (3.21i)

C41 = −K1 + 2(1− ν2r ) cos(2θE90)K2 + ν2rK4, (3.21j)

C42 = −K1 − 2(1− ν2r ) cos(2θE90
)K2 + ν2rK4, (3.21k)

C43 = 4(1− ν2r ) sin(2θE90), (3.21l)

C51 = −K1 + 2(1− ν2r ) cos(2θF90
)K2 + ν2rK4, (3.21m)

C52 = −K1 − 2(1− ν2r ) cos(2θF90)K2 + ν2rK4, (3.21n)

C53 = 4(1− ν2r ) sin(2θF90
). (3.21o)

The position of the strain gauges imply that the E90 and F90 tangential strains
belong to the εz;B and εz;C0 axial strains.

The elements of matrix C and vector d are known. The system is overdetermined,
thus the solution is carried out using the least-squares error method (similarly to the
case of the IST method detailed in Subsection 3.1) asσ0

x

σ0
y

τ0xy

 = (CTC)−1CTd. (3.22)

This gives an estimate of the in situ stress state perpendicular to the borehole axis.

3.2.5. Stress components parallel to the borehole axis. The axial normal stress com-
ponent can be calculated according to (3.14) as

σ0
z = νr(σ

0
x + σ0

y)− Erεz. (3.23)

If σ0
x and σ0

y are known, the above expression can be evaluated. Since there are several
measurement values for εz, their arithmetic mean is used for the calculations.

The axial shear stresses can be determined using equations (3.15)–(3.16). A linear
system of equations can be written for τxz and τyz as

Erγθz;A45 = −4(1 + νr)(τ
0
yz cos 2θA45 − τ0xz sin 2θA45)K3, (3.24a)

Erγθz;B45
= −4(1 + νr)(τ

0
yz cos 2θB45

− τ0xz sin 2θB45
)K3, (3.24b)

Erγθz;B135 = −4(1 + νr)(τ
0
yz cos 2θB135

− τ0xz sin 2θB135
)K3, (3.24c)

Erγθz;D135
= −4(1 + νr)(τ

0
yz cos 2θD135

− τ0xz sin 2θD135
)K3. (3.24d)
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Expressed in a matrix form as

Er


γθz;A45

γθz;B45

γθz;B135

γθz;D135


︸ ︷︷ ︸

f

= −4K3(1 + νr)


− sin 2θA45 cos 2θA45

− sin 2θB45
cos 2θB45

− sin 2θB135 cos 2θB135

− sin 2θD135
cos 2θD135


︸ ︷︷ ︸

E

(
τ0xz

τ0yz

)
. (3.25)

Engineering shear strains are calculated according to (3.16). The elements of matrix
E and vector f are known. This equation system is also overdetermined, so the
solution is carried out using the least-squares error method again as[

τ0xz

τ0yz

]
= (ETE)−1ETf , (3.26)

giving the remaining components of the in situ stress tensor.

As shown above, a measurement carried out by a CSIRO HI cell provides enough
data from a single borehole to estimate every in situ stress component. To summarize,
besides the assumptions mentioned in Subsection 3.2.1, this estimation requires the
following data:

• tangential strain (εθ) values from at least 3 differentθ positions ,
• axial strain (εz) value from at least one θ position (measuring at at more than
one position provides more reliable results),

• engineering shear strain γθz values from at least 2 different θ positions (these
can be calculated according to (3.16)),

• material properties of the rock (ρ, Er and νr),
• values required to calculate the correction factors (see Subsection 3.2.3 for
details).

4. Finite element models of overcoring measurements

For determining the validity and shortcomings of the assumptions contained in the
two measurement methods detailed above, we carry out finite element simulations
of two respective models of overcoring measurement. In situ stress components –
given as boundary conditions – and material properties are specified according to the
results of a measurement carried out at the National Radioactive Waste Repository
in Bátaapáti, Hungary [14, 15]. Based on the deformation and strain results of the
simulation, an estimation of the in situ stress state is calculated according to the
formulas given in Sections 3.1–3.2. Then, we compare these estimations to the values
specified initially as boundary conditions, in order to examine the accuracy of these
techniques, and to determine the optimal location of the measuring instrument.

4.1. Finite element model of the IST measurement. The finite element anal-
ysis was carried out using ANSYS Mechanical. In accordance with the linear elastic
material model assumed and the evaluation procedure of the IST method, we per-
formed three static analyses, each representing one of the three steps of an overcoring
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measurement. We modelled a sufficiently large domain of rock at a depth of 276 m,
loaded by the in situ stress state. (The depth and the loads were chosen according
to [14].) Due to the symmetry of the geometry and the loads, a quarter model was
used. It should be noted that the use of an axisymmetric model is not suitable here,
as the in-situ stress state is usually not hydrostatic [1]. This is modelled according to
Section 4.1.3.

The evaluation of the results from the finite element model (FEM) was carried
out as detailed in Section 3.1. The aim of the investigation was to ascertain whether
it is possible to determine the in situ stress state from the data collected during an
IST measurement and, if so, how accurately the in situ stress components can be
estimated.

4.1.1. Geometry. The simulation domain is represented as a cuboid. The longest
edges of this cuboid are parallel to z, representing the vertical direction. The height
of the cuboid is 2400 mm, and the vertical edges are all 600 mm long. With these
dimensions, the disturbance in the stress field caused by the borehole is negligible on
the side faces of the cuboid. The boreholes are modelled as cylinders with vertical
axes intersecting the horizontal faces at their centers. The hole diameters are the
following:

• borehole: 96 mm,
• pilot hole: 25.5 mm,
• overcoring, inner diameter: 63 mm,
• overcoring, outer diameter: 96 mm.

In order to decrease the computational resources required for the computations a
quarter model was made. The model was divided into different bodies at the hole
bottoms, making structured mesh generation feasible. After slicing, one part was
formed from the bodies, merging the nodes on the contacting faces.

600

2400

IST Step 1

□ 300 x 300Ø96

Figure 3. Applied geometry for modelling Step 1 of the IST measurement



Analysis of overcoring in situ stress measurement methods using . . . 51

600 600

2400

IST Step 2

Ø25.5

Ø96
□ 300 x 300

Figure 4. Applied geometry for modelling Step 2 of the IST measurement

600 600 600

2400

IST Step 3

Ø63

Ø25.5

Ø96
□ 300 x 300

Figure 5. Applied geometry for modelling Step 3 of the IST measurement

The geometry applied for each step is presented in Figures 3–5. The origin of the
global coordinate system is at the intersection of the borehole axis and the upper
horizontal face.

4.1.2. Finite element mesh. The finite element mesh has been generated by ANSYS
Mechanical. During the simulation of all three steps, identical principles were followed.
Hexagonal elements were used to minimize the number of elements, and smaller el-
ements were generated near the bottoms of the holes, as the deformation and stress
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change abruptly at these locations. MultiZone meshing method was applied with
element sizes being

• near the holes: 2–3 mm,
• far from the holes: 12–15 mm.

The applied meshes are presented in Figs. 6–8.

IST Step 1 mesh
Number of nodes: 1 275 232 
Number of elements: 306 607

Figure 6. Applied finite element mesh for modelling Step 1 of the IST measurement

IST Step 2 mesh
Number of nodes: 1 271 339
Number of elements: 300 150

Figure 7. Applied finite element mesh for modelling Step 2 of the IST measurement
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IST Step 3 mesh
Number of nodes: 1 193 806
Number of elements: 277 143

Figure 8. Applied finite element mesh for modelling Step 3 of the IST measurement

4.1.3. Material properties and boundary conditions. Material properties and bound-
ary conditions are defined according to the results of the measurements carried out
at the National Radioactive Waste Repository in Bátaapáti, Hungary [14, 15]. The
rock (porphyric monzogranite) is considered to be linearly elastic with the following
properties:

• Young’s modulus: 73.62GPa,
• density: 2732 kg/m3,
• Poisson’s ratio: 0.253.

The modelled domain is located at a depth of 276 m and loaded by the in situ
stress state. At this point, the following assumptions are made:

• the modelled domain is large enough, so that the load of the outer surface of
it is considered to be identical in every step,

• the vertical normal in situ stress component is the lithostatic pressure (see
(3.9)).

Using the assumptions above, the load of the model can be given as three pressure
boundary conditions acting on the outer surface of the modelled domain. The values
of these during each step:

px = 8.21MPa, (4.1)

py = 7MPa, (4.2)

pz = 7.5MPa. (4.3)

Please note that the pz value is larger than it should be according to (3.9). The reason
behind this is the difference between the areas of the horizontal faces: the upper face
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is smaller due to the presence of the borehole. The pressure pz is applied on the upper
face.

The constraints of the modelled domain are the following:

• symmetry is applied on the x − z and y − z planes: no node in these planes
can move perpendicular to the plane,

• for every node in the lower horizontal face the displacement in z direction is
set to be zero.

The applied boundary conditions are shown in Figure 9. It is worth noting that
while formulating the finite element models, several methods of constraining the rigid
body motion in z direction were tested. One of these was setting the z displacement of
the faces loaded by pressure in the x and y directions to be zero. However, the results
(especially for σz) implied that the best solution is constraining the lower horizontal
face, as shown here.

IST Boundary conditions

UY=0

UX=0 UZ=0

px=8.21 MPa

py=7 MPa pz=7.5 MPa

Figure 9. Boundary conditions applied during simulation of the IST measurement

4.1.4. Evaluation. As described in Section 3.1, the IST gauge measures the changes
in diameter of the pilot hole during overcoring in six different orientations and depths.
The aim of the evaluation performed here is to construct the in situ stress tensor from
the virtual measurement data provided by the finite element results, as detailed in
Section 3.1. Hence, the radial displacement of the points of the pilot hole surface has
been queried in Steps 2 and 3. This simulates a measurement with ideal circumstances.
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IST Path details

Path_0°

Path_30°

Path_60°

Path_90°

Path name Orientation [°]
Start point coordinates End point coordinates

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

path_0° 0 12.750 0 -600 12.750 0 -1200

path_30° 30 11.042 6.375 -600 11.042 6.375 -1200

path_60° 60 6.375 11.042 -600 6.375 11.042 -1200

path_90° 90 0 12.750 -600 0 12.750 -1200

Figure 10. Paths defined to evaluate the simulation of the IST mea-
surement. The paths are given with the global coordinates of the
start and end points.

P1 stress plot of the pilot hole surface

P3 stress plot of the pilot hole surface

Figure 11. P1 and P3 stress results from Step 3 of the IST simulation.
The minimal and maximal values imply that the pilot hole is relieved
in this step.

Paths have been defined on the pilot hole surface along the full length of the hole
in several orientations θ, as depicted in Figure 10. A real IST gauge measures the
change of six diameters, forming a 30-degree angle. Since a quarter model is used,
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only four of these are investigated, because the other two do not give any further
results. Consequently, the paths are defined at orientations θ = 0◦, θ = 30◦, θ = 60◦

and θ = 90◦, where θ is the angle formed by the measured diameter and the x axis of
the global coordinate system. The distance of the pins in the IST gauge is 10–15 mm
[16], so the distance between the points where the radial displacements are queried is
12.5mm.

This provides the radial displacement of the points on the pilot hole surface caused
by the in situ stress state in each step. In Step 2, this stress state loads the pilot hole
surface. However, in Step 3, the remaining rock core, which contains the pilot hole,
is relieved from any stress. This is shown in Figure 11.

The diameter change of the pilot hole during the relief in any orientation can be
calculated as (taking symmetry into account):

∆d = 2(U
[3]
rad − U

[2]
rad), (4.4)

where U
[2]
rad and U

[3]
rad are the radial displacements of the pilot hole surface calculated

from the FEM in Steps 2 and 3. Since the pilot hole is assumed to be relieved from
any stress in Step 3,

U
[3]
rad = 0, (4.5)

thus the change in diameter becomes

∆d = −2U
[2]
rad. (4.6)

Based on (4.6), the changes in diameter along the paths presented in Figure 10 can
be evaluated. These changes in diameter are shown in Figure 12.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 50 100 150 200 250 300 350 400 450 500 550 600

Diameter change [mm]

Depth (measured from the top of the pilot hole) [mm]

IST
Changes in diameter in different orientations

theta=0° theta=30° theta=60° theta=90° error>10% error<1%

AB CD

Figure 12. Diameter change ∆d results of the IST simulation in each
orientation. Red and green lines represent the error correlating to the
∆d result from the middle of the pilot hole. The intervals labelled
with letters are the locations of the simulated measurements.
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The in situ stress state can be derived from the diameter changes according to
equations (3.10)–(3.12). Due to the symmetry, the last two rows of matrix A and
vector b are not considered. To solve these equations, the following values are needed:

• E and ν material properties (see Subsection 4.1.3),
• pilot hole diameter: d = 25.5mm,
• vertical normal in situ stress component according to equation (3.9):
σ0
z = −7.5MPa,

• angles describing the different orientations: θ1 = 0◦, θ2 = 30◦, θ3 = 60◦,
θ4 = 90◦,

• ∆d diameter changes in each orientation.

The diameter changes depend on the depth measured from the top of the pilot
hole, as presented in Figure 12. Firstly, let us substitute ∆d values from location
A (287–325 mm) into the equations. Doing so, a measurement carried out at such
depth is simulated. This location is between the two green lines representing optimal
instrument placement in Figure 12. The substituted values are presented in Table 2.

Table 2. ∆d values substituted into equation (3.10), from location A (cf. Figure 12).

θ [◦] Depth [mm] ∆d [mm]

0 287.5 5.437 · 10−3

30 300 5.037 · 10−3

60 312.5 4.240 · 10−3

90 325 3.842 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 3. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is less than 1%. As a
consequence, the estimation error is minimal if the data is collected from location A.

Table 3. Comparison of the in situ stress components derived from
the data presented in Table 2., and the loads applied to the model
detailed in Subsection 4.1.3.

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.261 −8.21 0.62%

σ0
y −7.031 −7.00 0.45%

τ0xy 0.001 0 –

Secondly, let us substitute ∆d values from location B (100–137.5 mm) into the
equations. This location is between the red and green lines shown in Figure 12, i.e.,
in the 10 % and 1% error range. The substituted values are presented in Table 4.
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Table 4. ∆d values substituted into equation (3.10), from location B (c.f. Figure 12)

θ [◦] Depth [mm] ∆d [mm]

0 100 5.742 · 10−3

30 112.5 5.258 · 10−3

60 125 4.381 · 10−3

90 137.5 3.940 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 5. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is around 5%.

Table 5. Comparison of the in situ stress components derived from
the data presented in Table 4 and the loads applied to the model
detailed in Subsection 4.1.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.628 −8.21 5.09%

σ0
y −7.246 −7.00 3.51%

τ0xy 0.019 0 –

Now, we substitute ∆d values from location C (537.5–575 mm) into the equations.
This location is between the green and red lines to the right in Figure 12. The
substituted values are presented in Table 6.

Table 6. ∆d values substituted into equation (3.10), from location C (c.f. Figure 12)

θ [◦] Depth [mm] ∆d [mm]

0 537.5 5.369 · 10−3

30 550 4.958 · 10−3

60 562.5 4.153 · 10−3

90 575 3.701 · 10−3

In situ stress components derived from the ∆d values above, and their comparison
against the loads set in the model are shown in Table 7. It can be seen that the error
of the in situ stress components given by the solution of (3.10) is less than 5%.

The three cases cases illustrate that a good estimation can be given for the in situ
stress components, if the ∆d values are from a location between the two red lines
shown in Figure 12.
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Table 7. Comparison of the in situ stress components derived from
the data presented in Table 6 and the loads applied to the model
detailed in Subsection 4.1.3.

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.133 −8.21 0.94%

σ0
y −6.857 −7.00 2.04%

τ0xy −0.018 0.00 –

However, if the estimation is based on ∆d values collected outside this interval,
the error is significant. The increased error is caused by the disturbed stress and
displacement field near the bottom of the boreholes. As an example, we substitute
∆d values from location D (12.5–50 mm) into the equations. This location is outside
the interval marked by the two red lines according to Figure 12. The substituted
values are presented in Table 8.

Table 8. ∆d values substituted into equation (3.10), from location D (c.f. Figure 12).

θ [◦] Depth [mm] ∆d [mm]

0 12.5 6.284 · 10−3

30 25 6.123 · 10−3

60 37.5 5.082 · 10−3

90 50 4.457 · 10−3

In situ stress components derived from the ∆d values above and their comparison
against the loads set in the model are shown in Table 9. It can be seen that the error
of the in situ stress components given by the solution of (3.10) exceeds 10%.

Table 9. Comparison of the in situ stress components derived from
the data presented in Table 8 and the loads applied to the model
written in Subsection 4.1.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −9.427 −8.21 14.82%

σ0
y −7.976 −7.00 13.94%

τ0xy −0.209 0.00 –

4.1.5. Summary of IST simulation results. Based on the results of the finite element
analysis, the in situ stress components can be estimated from the changes in diameter
of the pilot hole as written in Section 3.1. Another conclusion is that the location of the
IST gauge in the pilot hole has a significant influence on the results. The simulation
shows that the ideal position of the IST gauge is between the two green lines in
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Figure 12, which means a depth between 200–525 mm, measured from the top of the
pilot hole. Nondimensionalizing the depths by the borehole diameter (D = 96mm)
produces the following results: in order to make the best approximation, the IST
gauge should be located at least 2.1D beneath the bottom of the borehole, and at
least 0.8D above the bottom of the pilot hole.

Locating a gauge outside the interval marked by the two red lines in Figure 12
increases the error. In terms of dimensionless values, this means the IST gauge must
be located at least 0.7D beneath the bottom of the borehole, and 0.1D above the
bottom of the pilot hole in order to get an acceptable estimation. This agrees with
[8, p. 5], which suggests the following: “the plane of the deformation measurement
should be located 1D ahead of the larger hole”. If this 1D distance is provided between
the gauge and the top of the pilot hole, the error of the estimation is less than 10%.
This location is marked with B in Figure 12. The in situ stress components in the
horizontal x − y plane can be estimated with an error less than 10% from the data
collected at this location (see Table 5).

The same standard [8] suggests that when a distance of 1D cannot be left between
the IST gauge and the top of the pilot hole, the gauge should be located as far ahead of
the larger hole as possible. This also agrees with the simulation results: the distance
to be left between the gauge and the bottom of the pilot hole (0.1D) is far less than
the distance which has be left between the top of the pilot hole and the gauge (0.7D).

Furthermore, the assumption made in Subsection 3.1.1 regarding the stress state
of the pilot hole at the end of the overcoring is correct based on the results of the
simulation (see Figure 11).

4.1.6. Plausibility check. In order to prove the results of the FE model plausible, the
force equilibrium has been checked. The vector of the loading forces:

Ft =

pxAx

pyAy

pzAz

 =

−5 911 200
−5 040 000
−661 500

N. (4.7)

In these equations, Ax, Ay and Az are the surfaces on which the pressure boundary
conditions were defined. The vector of the reaction forces computed from the FEM:

Fr =

5 911 200
5 040 000
661 430

N. (4.8)

The sum of the loading and the reaction forces:

Ft + Fr =

 0
0

−70

N. (4.9)

This sum has to be zero. Since −70N is negligible, it can be stated that the reaction
forces and the defined loads are in equilibrium.

Besides the reaction forces, the stress field on the borehole surface has been checked.
At points which can move along the x direction, σx has to be zero. Also at points
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which can move along the y direction, σy has to be zero. As shown in Figure 13 the
results of the FE model meet these two criteria.

𝜎𝑥 stress on the borehole surface

𝜎𝑦 stress on the borehole surface

Figure 13. σx and σy stresses on the borehole surface in Step 2 of
the IST simulation

𝜎𝑥 stress on the borehole surface
Original calculation

𝜎𝑦 stress on the borehole surface

Calculation with swapped loads

Figure 14. σx (left) results of the original simulation and σy (right)
results of the simulation carried out with the commuted loads

Furthermore, an analysis with px and py values commuted was carried out and
the stress state of the borehole surface was investigated. The commutation of the
loads also commutes the x and y axes. This means the σx results of the original
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computation must be the same as the σy results of this new simulation. Based on
Figure 14, the results of the FE model meet this criterion. Naturally, the results must
be mirrored to the plane defined by the z axis and the x = y line.

The plausibility checks were carried out on the results of Step 2 of the IST sim-
ulation, since these results are used to derive the in situ stress state. Based on the
performed plausibility checks, the results of the FE model are shown to be plausible.

4.2. Finite element model of the CSIRO HI measurement. For the CSIRO
HI measurement method, the finite element analysis was carried out similarly to the
previously described analysis. Three static analyses was performed using ANSYS
Mechanical on a large domain of rock at a depth of 276 m and loaded by the in situ
stress state, as detailed in Section 4.1. Due to the symmetry of the geometry and the
loads, a quarter model can be used here as well. The evaluation of the simulation
results was carried out as in Section 3.2. Similarly to the previous analysis, the goal
was to determine whether it is possible to determine the in situ stress state from the
data collected during a measurement carried out using a CSIRO HI cell, and if so, to
determine how accurately the in situ stress components can be estimated.

4.2.1. Geometry. The geometric model is similar to that used for simulating the IST
measurement. The differences from the model described in Subsection 4.1.1 are the
diameters of the holes, which were specified according to [14] as

• borehole : 146 mm,
• pilot hole : 37.7mm,
• overcoring, inner diameter: 131.4mm,
• overcoring, outer diameter: 146 mm.

The applied geometry for each step is presented in Figs. 15–17.

4.2.2. Finite element mesh. The finite element mesh was generated similarly to the
previous analysis, with a slightly different range of element sizes in the MultiZone
meshing to accommodate for the different geometry. These element sizes were

• near the holes: 2.5–5 mm,
• far from the holes: 15–17 mm.

The applied meshes are presented in Figures 18–20.

4.2.3. Material properties and boundary conditions. The material properties and bound-
ary conditions are the same as those given in Subsection 4.1.3. The applied boundary
conditions are shown in Figure 21.

4.2.4. Evaluation. As described in Section 3.2, the strain gauges in the CSIRO HI cell
measure the strains on the surface of the pilot hole during overcoring in 12 different
orientations and positions. The aim is to construct the in situ stress tensor from
the virtual measurement data provided by the finite element results as written in
Section 3.2. Hence, the strains of the points of the pilot hole surface were queried in
Steps 2 and 3. This simulates a measurement in ideal circumstances.
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600

2400

CSIRO Step 1

□ 300 x 300

Ø146

Figure 15. Applied geometry for modelling Step 1 of the CSIRO measurement

600 600

2400

CSIRO Step 2

Ø37.7
Ø146

□ 300 x 300

Figure 16. Applied geometry for modelling Step 2 of the CSIRO measurement



64 D. Borza and D.M. Takács

600 600 600

2400

Ø131.4

Ø37.7

CSIRO Step 3

Ø146
□ 300 x 300

Figure 17. Applied geometry for modelling Step 3 the of CSIRO measurement

CSIRO Step 1 mesh
Number of nodes: 790 227
Number of elements: 187 438

Figure 18. Applied finite element mesh for modelling Step 1 of the
CSIRO measurement
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CSIRO Step 2 mesh
Number of nodes: 1 055 152
Number of elements: 249 387

Figure 19. Applied finite element mesh for modelling Step 2 of the
CSIRO measurement

CSIRO Step 3 mesh
Number of nodes: 1 612 604
Number of elements: 381 592

Figure 20. Applied finite element mesh for modelling Step 3 of the
CSIRO measurement
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CSIRO Boundary conditions

UY=0

UX=0

UZ=0

px=8.21 MPa

py=7 MPa pz=7.5 MPa

Figure 21. Boundary conditions applied for the simulation of the
CSIRO measurement

The positions and orientations of the strain gauges are detailed in Table 1. Since
a quarter model was used, the positions change to the values shown in Table 10. The
orientation (β) of the strain gauges are not affected by the mirrorings. The following
gauges measure the same strain in the quarter model:

• A90 and C90,
• A45 and C45.

The strains measured by these gauges are only considered once during the evaluation.

Table 10. Strain gauge positions in the quarter model [13]

ID Original θ [◦] Modified θ [◦]

A0 323 37

A90 300 60

A45 300 60

B45 163.5 16.5

B135 163.5 16.5

B90 180 0

C0 83 83

C90 60 60

C45 60 60

D135 300 60

E90 210 30

F90 90 90
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Paths have been defined on the pilot hole surface along the full length of the hole
in the modified positions θ as depicted in Figure 22. Along these paths, εθ, εz and
γθz are queried in Steps 2 and 3. The difference in these is the strain measured by
the gauges during overcoring:

∆ε = ε[3] − ε[2], (4.10)

where ε tensor describes the strain state of a point of the pilot hole surface.

As mentioned earlier, by the end of the measurement (Step 3), the pilot hole surface
is relieved from any stress, which means:

ε[3] = 0, (4.11)

hence strain caused by the relief from the in situ stress state:

∆ε = −ε[2]. (4.12)

The evaluation detailed in Section 3.2 was carried out with these results.

CSIRO Path details

Path_0°

Path_30°

Path_60°

Path_90°

Path name Position [°]
Start point coordinates End point coordinates
x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

path_0° 0 18.750 0.000 -600 18.750 0.000 -1200
path_16.5° 16.5 17.978 5.325 -600 17.978 5.325 -1200
path_30° 30 16.238 9.375 -600 16.238 9.375 -1200
path_37° 37 14.974 11.284 -600 14.974 11.284 -1200
path_60° 60 9.375 16.238 -600 9.375 16.238 -1200
path_83° 83 2.285 18.610 -600 2.285 18.610 -1200
path_90° 90 0.000 18.750 -600 0.000 18.750 -1200

Path_16.5°

Path_37°

Path_83°

Figure 22. Paths defined to evaluate the simulation of the CSIRO
measurement. The paths are given with the global coordinates of
the start and end points.

As detailed in Section 4.1., the in situ stress components determined by an IST
measurement depend on the location of the gauge in the pilot hole. The same depen-
dence exists in case of the CSIRO HI cell. Tangential strain results are presented in
Figure 23.
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Figure 23. Tangential strain εθ results of the CSIRO simulation in
each position. Red and green lines represent the error correlating to
the εθ result from the middle of the pilot hole. The points marked
with a cross are the locations of the simulated measurements.

Axial strain results are presented in Figure 24. In the modelled case, the εz axial
strains are independent from the gauge position θ.

The in situ stress components in the horizontal (x− y) plane can be derived from
the strains according to equations (3.19)–(3.22). Due to the symmetry, the 3rd row
of matrix C and vector d are not considered. To solve these equations, the following
values are needed:

• Er and νr material properties (Subsection 4.2.3),
• positions and orientations of the strain gauges (Table 10),
• strain results of the simulation, queried at the locations of the strain gauges,
• K1, K2, K4 correction factors. K3 is only needed to calculate the shear stresses.

In Subsection 3.2.3 the role and calculation of the correction factors are detailed.
Since the CSIRO HI cell itself is not modelled, its material properties are considered
to be

• Ep = 0,
• νp = 0.

In the finite element model, the measured strains are queried from the pilot hole
surface, hence:

Rp = Rsg = R1 = 18.85 mm (4.13)
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Figure 24. Axial strain εz results of the CSIRO simulation in each
position. Red and green lines are representing the error correlating
to the εz result from the middle of the pilot hole. The points marked
with a cross are the locations of the simulated measurements.

are used for further calculations. With these input parameters, correction factors can
be calculated according to [11]:

K1 = K2 = K3 = K4 = 1. (4.14)

This means that the stiffness of the CSIRO HI cell has not been taken into consid-
eration in the model. The fact that the strains are not measured on the pilot hole
surface is also neglected.

Firstly, let us substitute strain values shown in Table 11 into equation (3.19), and
solve it using (3.22).

Table 11. Tangential strain values from location ‘a’ (300 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = 4.54 · 10−5.

θ [◦] Strain gauge εθ [1]

0 B90 1.521 · 10−4

30 E90 1.675 · 10−4

60 A90 1.993 · 10−4

90 F90 2.148 · 10−4
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With this evaluation the horizontal components of the in situ stress state can be
estimated. These values are presented in Table 12.

Table 12. Comparison of the horizontal in situ stress components
calculated from the values in Table 11 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.284 −8.21 0.90%

σ0
y −7.047 −7.00 0.68%

τ0xy −0.001 0 –

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −7.221MPa. (4.15)

It can be seen that the error of the horizontal in situ stress components is less
than 1%. As a consequence, the estimation error is minimal if the data is collected
from location ‘a’. This location is in the interval bounded by the two green lines in
Figures 23–24. In terms of σ0

z , the error value is higher: 3.72%.

The axial (vertical) shear stresses can be calculated according to equations (3.25)–
(3.26). Engineering shear strain results can be queried directly from the FE model,
therefore the modelling of the diagonal strain gauges is not required. Since the x, y,
and z axes of the model coincide with the principal stress directions of the in situ
stress state, only normal stress components have been given as boundary conditions.
As a consequence, the in situ shear stress components derived from the measured
strains on the pilot hole surface have to be zero. The queried γθz values are negligible
compared to the strain results, so the derived τ0xz and τ0yz are very close to zero.

Let us substitute strain values shown in Table 13 into equation (3.19), and solve
it using (3.22). With this evaluation the horizontal components of the in situ stress

Table 13. Tangential strain values from location ‘b’ (150 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = 3.917 · 10−5

θ [◦] Strain gauge εθ [1]

0 B90 1.589 · 10−4

30 E90 1.754 · 10−4

60 A90 2.263 · 10−4

90 F90 2.225 · 10−4

state can be estimated. These values are presented in Table 14.

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −6.913MPa. (4.16)
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Table 14. Comparison of the horizontal in situ stress components
calculated from the values in Table 13 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −8.628 −8.21 5.09%

σ0
y −7.299 −7.00 4.29%

τ0xy −0.002 0.00 –

It can be seen that the error of the horizontal in situ stress components is around
5%. As a consequence, the error of the estimation increases if the data is collected
from location ‘b’. This location is in the interval bounded by a green and a red line
in Figure 23. In terms of σ0

z , the error value is higher: 7.83%. Although location
‘b’ is outside the interval bounded by the two red lines in Figure 24 – so this is not
an ideal location to measure axial strains – the estimation of the axial normal stress
component is acceptable.

We substitute strain values shown in Table 15 into equation (3.19) and solve it
using (3.22).

Table 15. Tangential strain values from location ‘c’ (50 mm depth)
to be substituted into (3.19). The axial strain at this depth is
εz = −1.962 · 10−5.

θ [◦] Strain gauge εθ [1]

0 B90 1.817 · 10−4

30 E90 2.019 · 10−4

60 A90 2.434 · 10−4

90 F90 2.638 · 10−4

The horizontal components of the in situ stress state can be estimated. These
values are presented in Table 16.

Table 16. Comparison of the horizontal in situ stress components
calculated from the values in Table 15 and the loads of the model
detailed in Subsection 4.2.3

Stress component Estimation [MPa] Load [MPa] Error

σ0
x −9.374 −8.21 14.18%

σ0
y −7.756 −7.00 10.80%

τ0xy −0.002 0 –

The axial normal in situ stress component can be calculated according to (3.23):

σ0
z = νr(σ

0
x + σ0

y)− Erεz = −2.889MPa. (4.17)
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It can be seen that the error of the horizontal in situ stress components is around
15%. In terms of σ0

z , the error value is even higher: 61.48%. As a consequence, the
estimation is not acceptable if the data is collected from location ‘c’. This location
is outside the interval bounded by the two red lines in Figure 23. Based on the
results of the simulation, the in situ stress components should not be derived from
the data collected by a measurement outside the interval marked with the red lines
in Figure 23.

4.2.5. Summary of CSIRO HI simulation results. Based on the results of the finite
element analysis, the in situ stress components can be estimated from the strains of
the pilot hole surface during overcoring as given in Section 3.2. Another conclusion
is that the location of the CSIRO HI cell in the pilot hole has a significant effect
on the results. The simulation shows that the ideal position of the CSIRO HI cell
is between the two green lines in Figure 23, which means a depth between 250–450
mm measured from the top of the pilot hole. Nondimensionalizing the depths by the
borehole diameter (D = 146mm) produces the following results: in order to make the
best approximation, the CSIRO HI cell should be located 1.7D beneath the bottom
of the borehole, and 1D above the bottom of the pilot hole. This agrees with [11],
which suggests that the CSIRO HI cell should be located 1.5D − 2.5D beneath the
bottom of the borehole.

Locating a gauge outside the interval marked by the two red lines in Figure 23
increases the error. In terms of dimensionless values, this means that the HI cell must
be located at least 0.7D beneath the bottom of the borehole, and at least 0.1D above
the bottom of the pilot hole in order to obtain an acceptable estimation.

In order to give an accurate estimation for the axial normal in situ stress component
σ0
z , the CSIRO HI cell is recommended to be located in the interval bounded by

the two green lines in Figure 24. In terms of depths, this means 262.5–487.5 mm.
Nondimensionalizing the depths by the borehole diameter (D = 146mm) produces the
following results: in order to make the best approximation, the CSIRO HI cell should
be located 1.8D beneath the bottom of the borehole, and 0.8D above the bottom of
the pilot hole. If the axial strain values are measured outside the interval bounded
by the two red lines in Figure 24, the estimation for σ0

z is less reliable. However, as
has been demonstrated by the results of location ‘b’, the accuracy of the estimated
in situ stress components depends on the tangential strains rather than on the axial
strains.

Note that at every location of evaluation, the error of the estimated value of σ0
z

is greater than the error of the horizontal in situ stress components. The reason for
this is that the pressure boundary condition in z direction is applied on the upper
horizontal face of the rock mass. This upper face is smaller than the lower face due
to the presence of the borehole. The σz stress value caused by the reaction force on
this lower face – which cannot move in direction z – is −7.153MPa.

Furthermore, we can conclude that the assumption made in Subsection 3.2.1 re-
garding the stress state of the pilot hole at the end of the overcoring is correct based
on the results of the simulation (see Figure 25).
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P1 stress plot on the pilot hole surface

P3 stress plot on the pilot hole surface

Figure 25. P1 and P3 stress results from Step 3 of the CSIRO simu-
lation. The minimal and maximal values imply that the pilot hole is
relieved in this step.

4.2.6. Plausibility check. In order to prove the results of the FE model plausible, the
force equilibrium has been checked. The vector of the loading forces:

Ft =

pxAx

pyAy

pzAz

 =

−5 911 200
−5 040 000
−643 770

N. (4.18)

In these equations, Ax, Ay and Az are the surfaces on which the pressure boundary
conditions were defined. The vector of the reaction forces computed from the FEM:

Fr =

5 911 200
5 040 000
643 610

N. (4.19)

The sum of the loading and the reaction forces:

Ft + Fr =

 0
0

−160

N. (4.20)

This sum has to be zero. Since −160N is negligible compared to the applied
boundary conditions, it can be stated that the reaction forces and the defined loads
are in equilibrium.

Besides the reaction forces, the stress field on the borehole surface was also checked.
At points which can move along the x direction, σx has to be zero. Also at points
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𝜎𝑥 stress on the borehole surface

𝜎𝑦 stress on the borehole surface

Figure 26. σx and σy stresses on the borehole surface in Step 2 of
the CSIRO HI simulation.

which can move along the y direction, σy has to be zero. As shown in Figure 26, the
results of the FE model meet these two criteria.

𝜎𝑥 stress on the borehole surface
Original calculation

𝜎𝑦 stress on the borehole surface

Calculation with the swapped loads

Figure 27. σx (left) results of the original simulation, and σy (right)
results of the simulation carried out with the commuted loads
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Furthermore, an analysis with px and py values commuted was carried out and
the stress state of the borehole surface was investigated. The commutation of the
loads also commutes the x and y axes. This means the σx results of the original
computation must be the same as the σy results of this new simulation. Based on
Figure 27, the results of the FE model meet this criterion. Naturally, the results must
be mirrored to the plane defined by the z axis and the x = y line.

The plausibility checks were performed based on the results of Step 2 of the CSIRO
HI simulation, since these results are used to derive the in situ stress state. Based
on the performed plausibility checks, the results of the FE model are deemed to be
plausible.

5. Comparison of the IST and CSIRO HI techniques

In this section, the main conclusions of Section 4 have been collected.

Firstly, based on the results of the finite element analysis, both the IST gauge
and CSIRO HI cell can provide enough data to give a correct estimation for the in
situ stress state. The detailed evaluation process has been presented in Section 3.
According to Table 3, the horizontal in situ stress components can be derived from
the deformations measured by the IST gauge with an error less than 1%. According
to Table 12, the horizontal in situ stress components can be derived from the strains
measured by the CSIRO HI cell with an error of less than 1%. Compared to the IST
gauge, the error of the estimation based on the data provided by the CSIRO HI cell is
higher. However, the CSIRO HI cell provides enough data to estimate the axial in situ
stress components as well. The error of this estimation is less than 5%. Meanwhile,
the axial in situ stress components cannot be derived from the data collected by the
IST gauge in a single borehole.

It must be emphasized that during the calculations, several assumptions have been
made, for example:

• the the rock was considered to be linearly elastic, homogeneous and isotropic,
• the stress state was considered to be identical in any plane perpendicular to
the axis of the borehole.

Besides the items mentioned above further assumptions have been made. These are
detailed in Subsections 3.1.1 and 3.2.1. We must emphasize that the results of a real
measurement can only be less accurate than when calculated by an idealized model,
and the robustness of the presently investigated methods in the case of non-ideal
circumstances should be assessed to supplement the analysis presented here.

Secondly, based on the results of the finite element analysis, the ideal position of the
IST gauge and the CSIRO HI cell has been determined. In order to make the results
comparable, the distances have been nondimensionalized by the borehole diameters.
This value is D = 96mm in terms of the IST gauge, and D = 146mm in terms of the
CSIRO HI cell. The ideal position of the tools is the following:

• the minimal distance between the top of the pilot hole and the IST gauge is
2.1D,



76 D. Borza and D.M. Takács

• the minimal distance between the top of the pilot hole and the CSIRO HI cell
is 1.7D,

• the minimal distance between the bottom of the pilot hole and the IST gauge
is 0.8D,

• the minimal distance between the bottom of the pilot hole and the CSIRO HI
cell is 1D.

Comparing the dimensionless values, it can be stated that the CSIRO HI cell can
be located closer to the top of the pilot hole than the IST gauge. However, the IST
gauge can be located closer to the pilot hole bottom than the CSIRO HI cell. These
optimal intervals are marked by green lines in Figures 28– 29.

To obtain acceptable estimations for the in situ stress components, both the IST
gauge and the CSIRO HI cell should be set at least 0.7D beneath the top of the
pilot hole, and 0.1D above the bottom of the pilot hole. This interval is marked by
red lines in Figures 28– 29. Note that the optimal location of the CSIRO HI cell
has been determined based on the tangential strain results, since the accuracy of the
estimations depends more on the tangential strains than the axial strains.
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𝐷 = 96 mm

Figure 28. Dimensionless diameter change results of the IST simu-
lation as a function of dimensionless depth in each orientation. The
change in diameter values is nondimensionalized by the pilot hole
diameter (d = 25.5mm), the depth values by the borehole diameter
(D = 96mm).
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Figure 29. Tangential strain results of the CSIRO HI simulation as
a function of dimensionless depth in each position. The depth values
are nondimensionalized by the borehole diameter
(D = 146mm).

6. Discussion

The present work has been carried out with the explicit assumption of homoge-
neous, isotropic and linearly elastic materials, in accordance with the assumptions
made during the derivation of the measurement evaluation methods. However, these
assumptions are all based on the necessity of making calculations feasible, while rocks
are often non-homogeneous and frequently behave in an anisotropic, viscoelastic way.
Thus, relaxing any of these three assumptions during the simulations would yield fur-
ther valuable insight into the accuracy of the measurement techniques and evaluation
methods.

A first step in this direction would be the investigation of the effects of anisotropy
on the optimal placement of the instruments used. The size of the optimal and
acceptable ranges of placement would, presumably, change significantly even if the
condition of isotropy is relaxed to transverse isotropy. Experience of such effects is
often considered when overcoring measurements are performed by experts.

Additionally, the effects of the measurement time compared to the relaxation time
of a viscoelastically behaving rock type could also influence the accuracy of the esti-
mated in situ stress state. Practical experience as well as analytical calculations [17]
suggest that the measurement time indeed influences the displacements and strains
observed in a borehole surrounded by a rock mass exhibiting viscoelasticity.
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Author contributions

D. Borza: Methodology, Formal analysis, Investigation, Validation, Visualization,
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17. Fülöp, T. and Szücs, M. “Analytical solutions for rheological processes around
bores and tunnels.” Journal of Engineering Mathematics, 136(1) (2022), pp. 1–
28. doi: 10.1007/s10665-022-10235-6.

https://doi.org/https://doi.org/10.1016/0148-9062(67)90003-4
https://doi.org/https://doi.org/10.1016/0148-9062(67)90003-4
https://doi.org/https://doi.org/10.1016/B978-0-08-042066-0.50020-3
https://doi.org/10.1002/0471722960
https://doi.org/10.1007/s10665-022-10235-6

	1. Introduction
	2. A concise overview of overcoring methods
	3. Theoretical background of the evaluation of overcoring measurements
	3.1. Evaluation of IST measurements
	3.2. Evaluation of CSIRO HI cell measurements

	4. Finite element models of overcoring measurements
	4.1. Finite element model of the IST measurement
	4.2. Finite element model of the CSIRO HI measurement

	5. Comparison of the IST and CSIRO HI techniques
	6. Discussion
	Author contributions
	References

