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Abstract. The formulation of a system of hierarchic models for the simulation of the me-
chanical response of slender elastic bodies, such as elastic rods, is considered. The present
work is concerned with aspects of implementation and numerical examples. We use a finite
element formulation based on the principle of minimum potential energy. The displacement
fields are represented by the product of one-dimensional field functions and two-dimensional
director functions. The field functions are approximated by the p-version of the finite element
method. Our objective is to control both the model form errors and the errors of discretiza-
tion with a view toward the development of advanced engineering applications equipped
with autonomous error control procedures. We present numerical examples that illustrate
the performance characteristics of the algorithm.
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1. Introduction

There is growing interest in the democratization of recurrent numerical simulation
tasks. Democratization aims to make software tools of numerical simulation easily and
broadly accessible. We argue that making data generated by numerical simulation
broadly accessible makes sense only if information about its quality and reliability
are provided in a form understandable by persons whose expertise is not in numerical
simulation. The advantages of democratization include productivity, consistency and
compatibility with simulation process and data management (SPDM) systems. On
the other hand, implementation without appropriate safeguards and error control can
lead to errors that may not be detected in the early phases of design.
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The idea of democratization is not new. Engineering handbooks and design man-
uals are examples of democratization practiced in the pre-computer age. Experts
solved a variety of problems in mechanics by classical methods in parametric form.
Those solutions were collected and made available to engineers through handbooks.

The classical approach to democratization had a serious limitation, however: Only
highly simplified problems can be solved by classical methods. Therefore the hand-
book entries were not the problems engineers actually needed to solve. To get a
rough estimate of the quantities of interest, engineers had to find handbook entries
that were close in some sense to their problem on hand. The errors were primar-
ily model form errors, that is, errors coming from simplifications in geometry and
boundary conditions.

With the maturing of numerical simulation technology it is now possible to remove
the limitations of classical engineering handbooks and provide parametric solutions
for the problems that engineers actually need to solve. This is the main goal of
democratization. The exceptionally rare talents of engineer-scientists who had pop-
ulated conventional handbooks have to be democratized, that is, mapped into the
world of modern-day analysts. Other important objectives are the accumulation and
preservation of corporate knowledge and increased productivity.

The types of problems that are well suited for democratization have the following
characteristics: The parameter space is small, the goals of computation are clearly
defined and the number of times the problems have to be solved is sufficiently large
to justify the investment of creating a dedicated application.

Questions relating to the level of confidence in the accuracy of the numerical solu-
tion have to be addressed by the expert analysts who create dedicated applications.
When a mathematical problem is solved by a numerical method, commonly the finite
element method, then it is necessary to provide information on how large the error in
the quantity of interest (QoI) is. Without such an estimate the answer is incomplete.
In many cases model form error is dominant. Ideally, the model form errors and the
errors of approximation are equal. Applications must be designed so as to estimate
and control both types of error.

In this paper the formulation of a system of hierarchic models is considered for the
simulation of the mechanical response of slender elastic bodies, such as elastic rods.
The displacement fields are represented by the product of one -dimensional field func-
tions and two-dimensional director functions in the following functional form:

u = u(x, y, s) =

M∑
m=1

U(m)(x, y) h
(m)(s) , (1)

where h(m)(s) are the field functions of the centerline coordinate s and U(m)(x, y) are
fixed director functions of the orthogonal coordinates in the direction of the normal
and binormal to the centerline, respectively. In the case of homogeneous bars the
director functions are polynomials (see, for example, Szabó and Babuška [1]. In
the case of bars made of laminated composites, the director functions are piecewise
polynomials (Actis [2]).

The field functions usually are Lagrange or Legendre polynomials, or more recently
use of B-splines and isogeometric functional has also been discussed [3, 4].
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The essential features of hierarchic models are: (a) The exact solutions correspond-
ing to a hierarchic sequence of models converge in energy norm to the exact solution
of the corresponding problem of elasticity, and (b) the exact solution of each model
converges in energy norm to the same limit as the exact solution of the corresponding
problem of elasticity with respect to the diameter of the cross section approaching
zero.

A comprehensive overview of the theory of curved bars was presented by Antmann
in [5]. As evidenced by Antmann’s paper, the mathematical theory of curved bars
is highly developed. We are concerned here with aspects of implementation and
applications to problems of engineering interest.

The formulation of hierarchic models follows the same pattern as the formulation
of three-dimensional models of continuum mechanics cast in variational form. Here
we will consider the displacement formulation. Since the director functions are fixed,
it is possible to integrate in the plane defined by the normal and binormal to obtain
a set of one-dimensional field functions h(m)(s), m = 1, . . . ,M . This process is called
dimensional reduction or semi-discretization.

In order to satisfy the condition that the exact solution of each model must converge
in energy norm to the same limit as the exact solution of the corresponding problem
of elasticity with respect to the diameter of the cross section approaching zero, it is
necessary to make certain adjustments in the formulation for the low-order models.
The Timoshenko beam model is an example of such adjustments (for a discussion of
this point see Szabó and Babuška [1]).

Without any claim to completeness, we mention some important papers on dimen-
sionally reduction in models in the following.

There are many papers on straight or curved beams [6–14], [15], plates [16–18] and
shells [19–21], subjected to static loading as well as undergoing free vibration [22–24].
Varying material properties were examined in [25, 26], rods including piezo elements
in [27], rod structures exposed to thermal effects in [28], and geometrically nonlinear
cases in [29–31]. Solutions of contact problems are found for hierarchical beams in the
case of elastic material in [32] and in the case of elastic-plastic deformation in [33].

In [34], we find analyses of hierarchical models for plates and shells covering static
and eigenvalue problems. The paper addresses the question of whether models based
on Kirchhoff’s hypothesis are members of the hierarchic family. The effects of the
boundary layer were also investigated. The complex nature of this topic is evidenced
by the hundreds of references in the article.

Our primary goal is to present numerical results that highlight the main features of
hierarchic models. We examine prismatic and plane-curved rods and rods with a spiral
centerline, assuming that the material is homogeneous, isotropic, linearly elastic, the
load is quasi-static, and the displacements and deformations are small, i.e., boundary
value problems are solved within the framework of linear elasticity theory.

The three-dimensional reference solutions were obtained using the StressCheck fi-
nite element program [35] and Abaqus program [36]. In either case error control
procedures were applied to ensure that the numerical errors are negligibly small.
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We pay special attention to formulating the contact problem for beams and solving
it effectively. We construct a solution in which class C problems defined in [1, 37]
are reduced to class B problems using a positioning technique [38, 39] whereby the
boundaries of the contact regions are also element boundaries.

Few works can be found in the literature related to the p-version finite element
modeling of contact problems, even in the case of small displacements and deforma-
tions: References [40, 41] examine smooth problems, an axisymmetric friction problem
is solved in [42] and a 3D spatial contact problem is solved using splines in [43]. Ex-
amples of wear calculations can be found in [44]. Frictionless and frictional contact
of spatial supports at large displacements are addressed in [45–48]. Examples of hi-
erarchical modeling are presented in [49]. Parts of the structure are modeled as 3D,
2D, 1D finite elements, using special transition elements.

This paper is organized as follows: The formulation of hierarchical models is de-
scribed in Section 2. The problem of frictionless contact is formulated in Section 3.
Examples, highlighting various aspects of dimensionally reduced hierarchic models,
are presented in Section 4. In order to simplify the discussion, details are presented
in the Appendices.

2. Formulation

2.1. Model in the local curvilinear coordinate system. We examine a linearly
elastic body with a helical centerline of pitch H wound on a cylindrical surface of
radius Ro as shown in Figure 1. The position vector of the centerline is:

r = r(φ̄) = R0 (cos(φ̄) i+ sin(φ̄) j) +
H

2π
φ̄k, (2)

where φ̄ is the angle coordinate of the cylindrical coordinate system and s is the
arc coordinate of the centerline. Using the Serret–Frenet reference frame [25], the
normal, binormal and tangent unit vectors (n,b, t) of the local coordinate system,
the curvature κ, and the twist per unit length τ are obtained. The n, b axes are the
principal axes of the cross section. The notation is indicated in Figure 1.

Figure 1. Centerline and unit vectors of the local coordinate system

2.2. Displacements. The displacement of an arbitrary point P of the body in the
local curvilinear local coordinate system is given by (see Figure 2)

u = u(x, y, s) = unn+ ubb+ utt ≡ u1e1 + u2e2 + u3e3 , (3)
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where

u = u(x, y, s) =

M∑
m=1

h̄(m)(x, y, s) =

M∑
m=1

U(m)(x, y) h
(m)(s) (4)

is the functional form of our approximation. The definition of

h̄(m)(x, y, s)

depends on the choice of the hierarchic model. The function

U(m)(x, y)

represents the director functions. For example, letting M = 3, for homogeneous
isotropic material we have

h̄(1)(x, y, s) =

u01 − y χ3

u02 + xχ3

u03 + y χ1 − xχ2

+

xu1xyu2y

0

 = h̄(1)0 + h̄(1)1 =

= U(1),0(x, y)h
(1)0(s) +U(1),1(x, y)h

(1)1(s) = U(1)(x, y)h
(1)(s) , (5a)

h̄(2)(x, y, s) =

(x
2 u1x2 + xy u1xy + y2u1y2)

(x2 u2x2 + xy u2xy + y2 u2y2)

(x2 u3x2 + xy u3xy + y2 u3y2)

 = U(2)(x, y)h
(2)(s) , (5b)

h̄(3)(x, y, s) =

(u1x3x3 + u1x2yx
2y + u1xy2xy2 + u1y3y3)

(u2x3x3 + u2x2yx
2y + u2xy2xy2 + u2y3y3)

(u3x3x3 + u3x2yx
2y + u3xy2xy2 + u3y3y3)

 = U(3)(x, y)h
(3)(s) .

(5c)
Furthermore

U(1),0=

 1 0 0 0 0 −y
0 1 0 0 0 x
0 0 1 y −x 0

, U(1),1=

 x 0
0 y
0 0

 ,
U(1)=

 1 0 0 0 0 −y x 0
0 1 0 0 0 x 0 y
0 0 1 y −x 0 0 0

 , (6a)

U(2) =

 x2 xy y2 0 0 0 0 0 0
0 0 0 x2 xy y2 0 0 0
0 0 0 0 0 0 x2 xy y2

 , (6b)

U(3) =

 x3 x2y xy2 y3 0 0 0 0 0 0 0 0
0 0 0 0 x3 x2y xy2 y3 0 0 0 0
0 0 0 0 0 0 0 0 x3 x2y xy2 y3

 , (6c)

where u1x, u2y; u0i, χi; uix2 , uixy, uiy2 ; uix3 , uix2y, uixy2 , uiy3 i = 1, 2, 3 are the one-
dimensional field functions of s, the monomials 1, x, y; x2, xy, y2 ;x3, x2y, xy2, y3

are the director functions. In the classical theory of beams only the linear terms
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Figure 2. Notation: x, y, s – local coordinate system, e1, e2, e3 are
the unit vectors, u01, u02, u03 are displacements of the center line,
u1, u2, u3 are displacements at an arbitrary point P , R0 is the radius
of cylinder

are retained. This is justified when the diameter of the cross section approaches
zero. However, in practical problems one has to consider bars that have cross sec-
tions of finite diameters, in which case the higher-order terms may play an important
role, depending on the goals of computation. As M increases, the solution of the
fully three-dimensional problems is approximated progressively better in the norm
of the formulation, in our case the energy norm, and the types of boundary condi-
tions that can be applied increase. The director functions U(m)(x, y) are polynomials
constructed from the monomials of Pascal’s triangle (see Appendix A).

2.3. Deformations. The deformation tensor at small deformation

ε = ε(x, y, s) =
1

2
(u⊗∇+∇⊗ u) (7)

can be calculated through a geometric equation. Here ⊗ denotes dyadic multiplica-
tion. The nabla operator is:

∇ =
∂

∂x
e1 +

∂

∂y
e2 +

R1

R1 − x

∂

∂s
e3 ≡ ∂

∂x
n+

∂

∂y
b+

R1

R1 − x

∂

∂s
t (8)

, where R1 = 1/κ is the radius of curvature.
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The axial and shear strains can be calculated as follows in the adopted curvilinear
coordinate system:

ε1 =
∂u1
∂x

, ε2 =
∂u2
∂y

, ε3 =
R1

R1 − x

(
∂u3
∂s

− u1
R1

)
,

γ12 =
∂u1
∂y

+
∂u2
∂x

, γ13 =
R1

R1 − x

(
∂u1
∂s

− τ u2 + κu3

)
+
∂u3
∂x

,

γ23 =
R1

R1 − x

(
∂u2
∂s

+ τu1

)
+
∂u3
∂y

.

(9)

It is seen from these relationships that some of the deformations depend only on
the function itself and its x, y derivative, while others depend on the derivative with
respect to s. We will introduce the following vectors using notation (...)

′
= ∂(...)/∂s:

For Model 0:

h(1)0T = [u01 u02 u03 χ1 χ2 χ3] , h(1)0 ′T = [u′01 u
′
02 u

′
03 χ

′
1 χ

′
2 χ

′
3]

ψ̃
T

0 = ψ̃
T

0 (s) =
[
h(1)0T h(1)0 ′T

]
=

= [u01 u02 u03 χ1 χ2 χ3 u′01 u
′
02 u

′
03 χ′

1 χ
′
2 χ′

3] .

(10)

For Model 1:

h(1)T =
[
h(1)0T h(1)1T

]
, h(1)1T = [u1x, u2y] , h(1)1 ′T =

[
u′1x, u

′
2y

]
,

ψ̃
T

1 = ψ̃
T

1 (s) =

[
ψ̃

T

0 ψ̃
h(1)1T

]
,

ψ̃
h(1)1T

= ψ̃ h(1)1T (s) =
[
h(1)1T h(1)1′T

]
=

[
u1x, u2y, u

′
1x, u

′
2y

]
.

(11)

For Model 2:

ψ̃
T

2
= ψ̃

T

2
(s) =

[
ψ̃

T

1 ψ̃
h(2)T

]
, ψ̃

h(2)T
=

[
h(2)T h(2)′T

]
,

h(2)T =
[
u1x2 u1xy u1y2 u2x2 u2xy u2y2 u3x2 u3xy u3y2

]
,

h(2)′T =
[
u′1x2 u′1xy u

′
1y2 u′2x2 u′2xy u

′
2y2 u′3x2 u′3xy u

′
3y2

]
.

(12)

For Model 3:

ψ̃
T

3
= ψ̃

T

3 (s) =

[
ψ̃

T

1 ψ̃
h(2)T

ψ̃
h(3)T

]
,

ψ̃
T

3
=

[
ψ̃

T

2 ψ̃
h(3)T

]
, ψ̃

h(3)T
= ψ̃

h(3)T
(s) =

[
h(3)T h(3)′T

]
,

h(3)T =
[
u1x3 u1x2y u1xy2 u1y3 u2x3 u2x2y u2xy2 u2y3 u3x3 u3x2y u3xy2 u3y3

]
.

(13)

For higher approximations we write:

ψ̃
T

m =

[
ψ̃

T

m−1 ψ̃
h(m)T

]
, ψ̃

h(m)T
= ψ̃

h(m)T
(s) =

[
h(m)T h(m)′T

]
. (14)

Additional director functions are listed in Appendix A.
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Based on the above, the deformation vector can be concisely written in the following
form for the m-th model

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) ... Γh(m−1) Γh(m) ]



ψ̃1

ψ̃
h(2)

...

ψ̃
h(m−1)

ψ̃
h(m)


= Γm

ψ̃m−1

ψ̃
h(m)

 = Γmψ̃m,

(15)
where Γm(x, y) is generated based on the derivation relations under (9) and the field

functions in ψ̃m(s). We will approximate based on the p-version finite element

ψ̃m(s) = Gtotal
m (s)qm +Φtotal

mp (s)amp (16)

where qm comprises the nodal values, amp is the vector of parameters related to
the internal functions, Gtotal

m (s), Φtotal
mp (s) are the approximation matrices. Figure 3

shows the approximation of an arbitrary function h.

Figure 3. Approximation of field functions within a finite element

G(s)h describes the linear change along the rod, while Φh
p(s) ah p provides the

approximation with a higher degree (maximum p-th degree) polynomial, as indicated
in Figure 3. The nodal values hI , hJ and the additional constants in the vector
ah p are the unknowns. The derivation of matrices and vectors in (16) is included in
Appendix B.

2.4. Stresses. The six independent elements of the stress tensor define the stress
vector σ of size (6× 1):

σ = D ε (17)

where D is the matrix of the material constants.

2.4.1. In the case of Model-0 this is simplified. It has the following form

εT = [ε3 γ13 γ23] , σT = [σ3 τ13 τ23] , D = ⟨E G G⟩ diagonal matrix (18)

where E is the Young’s modulus, G is the shear modulus.
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2.4.2. Model-1,...,6d. Then we have

εT = [ε1 ε2 ε3 γ12 γ13 γ23] , σT = [σ1 σ2 σ3 τ12τ13 τ23] . (19)

For these cases matrix D is a (6× 6) material constant matrix corresponding to the
3D state of stress.

2.5. Potential energy. The total potential energy is [1] is given by

Πp =
1

2

∫
V

εTD ε dV −Wwork =
1

2

∫
L

ψ̃T
m(

∫
S

ΓT
mDΓm dS )ψ̃mds−Wwork, (20)

where Wwork is the work of the external load and the integral over the volume was
written as the product of two integrals, one over the length coordinate s, the other
over the the cross section S. The integral over the cross section is a function of s,

D̃m =

∫
S

ΓT
mDΓm dS. m = 1, . . . , 6 (21)

Thus the potential energy is

Πp =
1

2

∫
L

ψ̃
T

m D̃m ψ̃mds−Wwork. m = 1, . . . , 6 (22)

The integration should be performed over the domain of s. Using the relations

q = qm, a = amp, D̃ = D̃m =

∫
S

ΓT
mDΓm dS, G = Gtotal

m and Φ = Φtotal
mp

the potential energy can be rewritten into the form

Πp =
1

2

∫
L

(qTGT + aTΦT ) D̃ (Gq+Φa) ds−Wwork = U −Wwork (23)

from which the functional form of the stiffness matrix is yielded as

K =

[
Kqq Kqa

Kaq Kaa

]
, Kqq =

∫
L

GT D̃ G ds, (24a)

Kaa =

∫
L

ΦT D̃ Φ ds, Kqa =

∫
L

GT D̃ Φ ds = KT
aq. (24b)

The reduced load vector is given by fT =
[
fTq fTa

]
.

Finally, eliminating the internal variables, the reduced stiffness matrix and load
vector are obtained:

Kred = Kqq −Kqa(Kaa)
−1

Kaq, fred = fq −Kqa(Kaa)
−1

fa. (25)

The internal variables are recovered in the post-solution process using the relationship

a = (Kaa)
−1

fa − (Kaa)
−1

Kaqq. (26)
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Figure 4. Unknowns associated with the external and internal nodes
of the finite element belonging to the h3 model

2.6. The load vectors.

1. In the case of the h0 model the applied loads, as well as the stress resultants,
are functions of the center line coordinate.

2. In the case of the h1, h2, h3, . . . models, we calculate the work of the loads
distributed on the surface. The process is illustrated for the h3 model in the
following. The approximate displacement field for this model is calculated
based on (4). Collecting the functions depending on s, we write:

ψdispl
3 =ψdispl

3 (s)=


u0(s)
χ (s)
h(1)1(s)
h(2)(s)
h(3)(s)

=

h(1)(s)
h(2)(s)
h(3)(s)

=R3
red



h(1)(s)

h(1)′(s)
h(2)(s)

h(2)′(s)
h(3)(s)

h(3)′(s)


=R3

red ψ̃3(s), (27)

where the operator R3
red(29,58) produces the displacements ψdispl

3 from the ψ3

vector, including the derivatives. Therefore the displacement vector defined in
(4), taking into account (27), is

u = u(x, y, s) =
[
U(1) U(2) U(3)

]
ψdispl

3 =

= U3(x, y)ψdispl
3 (s) = U3(x, y)R3

redψ̃3(s). (28)
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Furthermore, in a view of (16) we have

ψ̃3(s) = Gtotal(s) qtotal +Φtotal(s) atotal. (29)

Hence the work of the load acting on the surface Sload is

Wwork=

∫
Sload

ψ̃
T

3 (s)R
3,T
red U3,T (x, y) pload(x, y, s) dS, (30)

from which the reduced load vectors are calculated. When the load is a function
of x, y (i.e. the load acts on the cross-section of the bar, marked I or J) and
the cross section of the body is rectangular, with dimensions a, b in the x and
y directions, then the distributed load can be written as

pload =


τ013

(
1−

(
x

a/2

)2
)

τ023

(
1−

(
y

b/2

)2
)

σ0 − σ+

b/2y

 (31)

where τ013, τ023, σ0, σ+ are given quantities. Then the work of the load is

Wwork=ψ̃
T

3 (sI(J))R
3,T
red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy . (32)

With (32) the reduced load vectors are

fq =
(
Gtotal,T (sI(J))

)
R3,T

red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy ,

fa =
(
Φtotal,T (sI(J))

)
R3,T

red

∫
SI(J)

U3,T (x, y) pload(x, y) dSxy .

(33)

If the load is exerted on a planar surface defined by x = −a/2 then

Wwork =

∫
Sload

ψ̃
T

3 (s)R
3,T
red U3,T (x = −a/2, y) pload(y, s) dSys. (34)

The procedure is analogous for the other hierarchic models.

2.7. Treatment of elastic foundation. Let us assume that on the surface y = b/2
a ring-shaped body is in contact with a Winkler-type foundation characterized by
spring constant c. Then the strain energy is

Ufound =
1

2

∫
Sfound

uy(x, y = b/2, s) cuy(x, y = b/2, s) dSxs . (35)

Therefore, in view of the approximation of u(x, y, s) under (28) we get
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uy = u(x, y, s)Te2 =
(
u(x, y, s)

T
e2

)T

= eT2 u(x, y, s) = u(x, y, s)T

 0
1
0

 =

[0 1 0]u(x, y, s) = ψ̃
T

3 (s)R
3,T
redU

3,T (x, y)

 0
1
0

 = [0 1 0]U3(x, y)R3
redψ̃3(s), (36)

that is

Ufound=
1

2

∫
Sfound

ψ̃
T

3 (s)R
3,T
redU

3,T (x, y=b/2)

 0 0 0
0 c 0
0 0 0

U3(x, y=b/2)R3
redψ̃3(s)dSxs .

(37)

Using (29), omitting the upper index and performing the integrations, the energy is
written in the form

Ufound =
1

2

[
qT aT

] [ Cqq Cqa

Caq Caa

] [
q
a

]
, (38)

where the stiffness matrix of the elastic support is

C =

[
Cqq Cqa

Caq Caa

]
in which

Cqq=

∫
Sxs

GTW G dSxs , Caa=

∫
Sxs

ΦT W Φ dSxs , Cqa=

∫
Sxs

GT W ΦdSxs=CT
aq

and

W = W (x, y = b/2) = R3,T
redU

3,T (x, y = b/2)

0 0 0

0 c 0

0 0 0

U3(x, y = b/2)R3
red.

3. Formulation of frictionless contact problem

3.1. General equations. The line of thought in this subsection is based on [38, 39,
50, 51]. Let the displacement of the bodies in the normal direction of contact nc be
ui = ui · nc, i = 1, 2, and g be the initial gap in the contact region Sc – see Figure 5.

Figure 5. Bodies in contact. Notations
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There is contact when d = u
(1)
n − u

(2)
n + g = 0 and pn ⩾ 0, while a gap is present if

d = u
(1)
n − u

(2)
n + g > 0 and pn = 0, where d is the gap formed after deformation and

pn is the contact pressure.

The pnd = 0 condition is fulfilled over the entire Sc domain. Solving the con-
tact problem with the augmented Lagrange multiplier method [17, 28, 32, 42], it is
necessary to incorporate the contact penalty energy:

U cont =
1

2

∫
Sc

d− cn d
− dSc =

1

2

∫
Sc

(u(1)n − u(2)n + g)cn (u
(1)
n − u(2)n + g) dSc (39)

and the Lagrangian term:

Waug =

∫
Sc

pnd dS =

∫
Sc

pn(u
(1)
n − u(2)n + g)dS, (40)

where d− ≤ 0, cn >> 0 is the penalty parameter. The displacement in the normal
direction is given by

u(i)n = nc · u(i) = nTu(i), i = 1, 2.

The total energy, the minimum of which is sought subject to the stated inequalities,
is:

Laug = Πp −Waug + U cont. (41)

Considering the relation u
(i)
n = nc · u(i) = nTu(i) and using (28), (29) for the dis-

placement of the i-th body in the normal direction on the surface y
(i)
b (the formulae

are general, so we ignore the reference to the h3 model, the index 3), we get

u(i)n = nTU(i)(x, y
(i)
b )Rred

(
G(i)(s)q(i) +Φ(i)(s)a(i)

)
=

= nT Ũ(i)(x, y
(i)
b )

(
G(i)(s)q(i) +Φ(i)(s)a(i)

)
(42)

and, defining Cn = cn n
Tn, the penalty energy given in (39), neglecting the constant

term from the initial gap, is written in compact form:

U cont =
1

2

[
aTqT

]([ Cqq Cqa

Caq Caa

] [
q
a

]
− 2

[
fcq
fca

])
=

1

2
q̃T

(
C̃ q̃− 2f̃

)
, (43)

where

qT =
[
q(1)T q(2)T

]
, aT =

[
a(1)T a(2)T

]
,

Cqq =

∫
Sc

[
G(1)T Ũ(1)TCnŨ

(1)G(1) −G(1)T Ũ(1)TCnŨ
(2)G(2)

−G(2)T Ũ(2)TCnŨ
(1)G(1) G(2)T Ũ(2)TCnŨ

(2)G(2)

]
dSc ,

fcq = −
∫
Sc

cn

[
G(1)T Ũ(1)Tng

−G(2)T Ũ(2)Tng

]
dSc ,

Caq = CT
qa =

∫
Sc

[
Φ(1)T Ũ(1)TCnŨ

(1)G(1) −Φ(1)T Ũ(1)TCnŨ
(2)G(2)

−Φ(2)T Ũ(2)TCnŨ
(1)G(1) Φ(2)T Ũ(2)TCnŨ

(2)G(2)

]
dSc ,
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Caa =

∫
Sc

[
Φ(1)T Ũ(1)TCnŨ

(1)Φ(1) −Φ(1)T Ũ(1)TCnŨ
(2)Φ(2)

−Φ(2)T Ũ(2)TCnŨ
(1)Φ(1) Φ(2)T Ũ(2)TCnŨ

(2)Φ(2)

]
dSc ,

fca = −
∫
Sc

cn

[
Φ(1)T Ũ(1)Tng

−Φ(2)T Ũ(2)Tng

]
dSc ,

and C̃, f̃ are the stiffness matrix and load vector of the contact element, respectively.

When u
(1)
n = 0, then we get the stiffness matrix of the Winkler-type foundation for

body 2.

The work term corresponding to augmentation is:

Waug =

∫
Sc

pnd dS =

∫
Sc

pn(q
(1),TG(1)T Ũ(1)Tn− q(2),TG(2)T Ũ(2)Tn+ g)dS+

+

∫
Sc

pn(a
(1),TΦ(1)T Ũ(1)Tn− a(2),TΦ(2)T Ũ(2)Tn)dS,

that is

Waug = qT faug,q + aT faug,a , (44a)

where

faug,q =


∫
Sc

pnG
(1)T Ũ(1)Tn dS

−
∫
Sc

pnG
(2)T Ũ(2)Tn dS

 , faug,a =


∫
Sc

pnΦ
(1)T Ũ(1)Tn dS

−
∫
Sc

pnΦ
(2)T Ũ(2)Tn dS

 . (44b)

In the iterative solution process the contact pressure is calculated from the following
formula using Macaulay brackets

p(j+1)
n =

〈
p(j)n − cnd

(j)
〉
, x(j+1) =

〈
x(j) +

∣∣x(j)∣∣
2

〉
. (45)

The iteration process is started by solving the problem using the penalty method and
continued by incrementing the pressure where the term in parenthesis is positive, and
setting the value of cn to zero where it is negative. This gives us the modified contact
stiffness and load vector. The iteration process is generally stable when the cn value
is sufficiently small.
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3.2. Model in the global coordinate system.

3.2.1. Hierarchical bar elements in cases when the displacement field is approximated
by Taylor or Legendre polynomials. The displacement vector in the XY Z global co-
ordinate system is written as:

u = u eX + v eY + w eZ . (46)

The displacement in the cross section of a rod is approximated by the function
U(m)(ξ, η), in the longitudinal direction it is approximated by the function h(m)(ζ).
The displacement vector is the product of the two functions:

u = u(ξ, η, ζ) =

M∑
m=1

h̄(m)(ξ, η, ζ) =

M∑
m=1

U(m)(ξ, η) h
(m)(ζ), (47)

where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, −1 ≤ ζ ≤ 1 are the coordinates of the standard
hexahedral element.

Depending on the degree of the polynomial functions included in the series expan-
sion, we arrive at a sequence of hierarchical rod models, characterized by polynomials
of degree Tm or Lm. At a given level, the longitudinal distribution of the displace-
ment field is determined by the highest power of the polynomial in the definition of
h(m)(ζ). The maximum of the degree will be denoted by p.

polynomial order : Lm

polynomial order : Lm

polynomial order : p

Figure 6. A prismatic rod with a rectangular cross section in the
adopted local coordinate system (ξ, η, ζ). I and J are the initial and
final cross section labels.

We denote the shape functions containing Lm-order Legendre polynomials [1, 37]
describing the director functions by Ni(ξ, η), and the longitudinal ones by ψi(ζ). We
get

uτ =

nLm∑
i=1

Ni(ξ, η) · ψi
τ (ζ), τ = 1, 2, 3 (48)
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which in matrix form is written as

uτ = Nτ (ξ, η)ψτ (ζ), τ = 1, 2, 3 (49)

where

Nτ (ξ, η) = [N1(ξ, η) N2(ξ, η), ..., Ni(ξ, η), ..., NnLm(ξ, η)](1,nLm),

in which nLm is the number of Legendre polynomials. The ψτ function is approxi-
mated as outlined in Figure 7. The displacement of the bodies will be approximated

Figure 7. Approximation along the length of the rod for an arbitrary
function h

by linear approximation and higher power Legendre functions through the values in
the nodes I and J of the element. In concise form:

ψi
τ =ψ

i
τ (ζ)=

1

2
(1− ζ)ui,Iτ +

1

2
(1 + ζ)ui,Jτ +

p∑
j=2

Hj(ζ)a
i,j
τ , i=1, ..., nLm, τ=1, 2, 3

(50a)

ψi
τ =ψ

i
τ (ζ)=

[
1

2
(1−ζ) 1

2
(1+ζ)

] [
ui,Iτ
ui,Jτ

]
+

p∑
j=2

Hj(ζ)a
i,j
τ , i=1, ..., nLm, τ=1, 2, 3

(50b)

ψi
τ = ψi

τ (ζ) = g̃(ζ)qi
τ + h̃(ζ)aiτ , i=1, ..., nLm, τ=1, 2, 3 (50c)

It can be seen from the approximation displayed in (50) that one component of the
displacement is approximated through nLm ∗ (p + 1) parameters. Note that Hj(ζ)
can be obtained from Legendre polynomials Pj(ζ) using the formula

Hj(ζ) =
1√

2(2j − 1)
(Pj(ζ)− Pj−2(ζ)),

see, for example [1, 37]. In matrix form (np = p− 1):

ψτ(nLm,1) = ψτ (ζ) =

= G̃(ζ)(nLm,2×nLm)qτ(2×nLm,1) + H̃(ζ)(nLm,nLm×np)aτ(nLm×np,1), τ = 1, 2, 3

(51)
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Introducing the following matrix:

N(ξ, η)
(3,3×nLm)

=

 N1(ξ, η) 0 0 . . . Ni(ξ, η) 0 0 . . .
0 N1(ξ, η) 0 . . . 0 Ni(ξ, η) 0 . . .
0 0 N1(ξ, η) . . . 0 0 Ni(ξ, η) . . .

 (52)

the displacement vector uT = [u1 u2 u3] is written in the following form:

u = N(ξ, η)ψ(ζ). (53)

In addition the vector ψ = ψ(ζ) is:

ψ(3×nLm,1) = ψ(ζ) =

= G(ζ)(3×nLm,6×nLm)q(6×nLm,1) +Φ(ζ)(3×nLm,3×nLm×np)a(3×nLm×np,1) (54)

h̃
(1,np)

=
[
H2(ζ) H3(ζ) . . . Hp(ζ)

]
, H̃(ζ)

(nLm,nLm×np)

=


h̃(ζ) . . .

h̃(ζ) . . .
. . . . . . . . . . . . . . . . . . .

. . . h̃(ζ)

 ,
(55a)

qτ
(2×nLm,1)

=


q1

q2

· · ·
qnLm

 , aτ
(nLm×np,1)

=


a1

a2

· · ·
anLm

 , (55b)

G̃
(nLm,2×nLm)

=


G̃11 0 · · · 0 G̃1,nLm+1 0 · · · 0

0 G̃22 · · · 0 0 G̃2,nLm+2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · G̃nLm,nLm 0 0 · · · G̃nLm,2×nLm

 ,
G̃11 = G̃22 = · · · = G̃nLm,nLm =

1− ζ

2
,

G̃1,nLm+1 = G̃2,nLm+2 = · · · = G̃nLm,2×nLm =
1 + ζ

2
,

(55c)

G
(3×nLm,6×nLm)

=
G11 0 · · · 0 G1,3×nLm+1 0 · · · 0

0 G̃22 · · · 0 0 G̃2,3×nLm+2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · G̃3×nLm,3×nLm 0 0 · · · G̃3×nLm,6×nLm

 ,
G11 = G22 = · · · = G3×nLm,3×nLm =

1− ζ

2
,

G1,3×nLm+1 = G2,3×nLm+2 = · · · = G3×nLm,6×nLm =
1 + ζ

2
.

(55d)
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Φ(ζ)
(3×nLm,3×nLm×np)

=


H2 H3 · · · Hp 0 0 · · · 0 · · · · · · 0 0 · · · 0
0 0 · · · 0 H2 H3 · · · Hp · · · · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 0 · · · 0 · · · · · · H2 H3 · · · Hp

 .
(55e)

The internal coordinates displacement coordinates of the element are approximated
via NDhLm

1 = 2× nLm+ nLm× (p− 1) = nLm(p+ 1) parameters. So, the vector
q(6×nLm,1) contains the coefficients of hLm polynomials interpreted on the I and J

planes, while the vector a(3×nLm×np,1) contains the coefficients ai,jτ that multiply the
polynomials Hj(ζ), i.e.

qT

(1,6×nLm)

=
[
u1,I1 u1,I2 u1,I3 u2,I1 u2,I2 u2,I3 . . . unLm,I

1 unLm,I
2 unLm,I

3

u1,J1 u1,J2 u1,J3 u2,J1 u2,J2 u2,J3 . . . unLm,J
1 unLm,J

2 unLm,J
3

]
(56)

aT
(1,3×nLm×np)

=
[
a1,21 . . . a1,p1 a1,22 . . . a1,p2 a1,23 ... a1,p3 . . .

anLm,2
1 . . . anLm,p

1 anLm,2
2 . . . anLm,p

2 anLm,2
3 . . . anLm,p

3

]
(57)

Using the notation u = u1, v = u2 w = u3 the components of the strain tensor are
calculated as follows:

εX =
∂u

∂X
, εY =

∂v

∂Y
, εZ =

∂w

∂Z
,

γXY =
∂u

∂Y
+

∂v

∂X
, γY Z =

∂v

∂Z
+
∂W

∂Y
, γZX =

∂w

∂X
+
∂u

∂Z
.

(58)

Since the displacement field is approximated in the local system ξ, η, ζ, it will be
necessary to calculate the derivative of the displacement u in the global system:

∂Gu =


∂u
∂X
∂u
∂Y
∂u
∂Z

 = J−1


∂u
∂ξ
∂u
∂η
∂u
∂ζ

 = J−1∂Lu ,

where J−1 is the inverse of Jacobian matrix J:

J =


∂X
∂ξ

∂Y
∂ξ

∂Z
∂ξ

∂X
∂η

∂Y
∂η

∂Z
∂η

∂X
∂ζ

∂Y
∂ζ

∂Z
∂ζ

 . (59)

We remark that J is calculated from the mapping functions. For later consideration
we shall introduce the following notations:

∂ξN(ξ, η)=N,ξ(ξ, η), ∂ηN(ξ, η)=N,η(ξ, η), ∂ζG̃(ζ)=G̃,ζ(ζ), ∂ζH̃(ζ)=H̃,ζ(ζ)
(60)
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The derivatives of the displacement fields in the local system are:

u,ξ =
∂u

∂ξ
= N,ξ(ξ, η)(G̃(ζ)qu + H̃(ζ)au), u = u1 ↔ v = u2 ↔ w = u3

u,η =
∂u

∂η
= N,η(ξ, η)(G̃(ζ)qu + H̃(ζ)au), u = u1 ↔ v = u2 ↔ w = u3

u,ζ =
∂u

∂ζ
= N(ξ, η)(G̃,ζ(ζ)q

u + H̃,ζ(ζ)a
u), u = u1 ↔ v = u2 ↔ w = u3

(61)

Based on (58), the derivatives of the displacement components are computed in the
global coordinate system from which the 3D strain tensor and, through application
of Hooke’s law, the stress tensor are computed.

Figure 8. Relationship betweern the local coordinates ξ, η, ζ and the
global ones

The mapping for a curved element is illustrated in Figure 8 where the blending
technique was used to produce a smooth mapping function [1, 37].

Note that φ̄m = (φ̄I + φ̄J)/2, φ̄d = (φ̄J − φ̄I)/2, φ̄ = φ̄m + ζφ̄d.

It is worth comparing the number of unknowns associated with the 3D p-version
with the hierarchical element: Using the trunk space described [1, 37], each field is
approximated with ND3D

1 unknowns whereas there are NDhLm
1 unknowns in the

hierarchic formulation.

The three displacement fields are approximated using NDhLm = 3 × nLm × 2 +
3 × nLm × (p − 1) = 3 × nLm × (p + 1) degrees of freedom per element. Of these,
3 × nLm × 2 belong to the boundary points (nodes I and J), the rest are internal
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functions. For 3D elements (hexahedral element), the number of unknowns used to
describe one or three fields is ND3D

1 or ND3D
3, i.e.,

p = 2 3 4 5 6

ND3D
1 20 35 54 79 111

ND3D
3 60 105 162 237 333

For the planar trunk space, the number of unknowns is:

p = 2 3 4 5 6 7 8

ND2D
1 8 12 17 23 30 38 47

ND2D
2 16 24 34 46 50 76 94

These relationships also hold when Tm polynomials rather than Lm polynomials
are used.

The director functions for the hTm elements are the polynomials constructed by
substituting x→ ξ, y → η for the monomials of the Pascal triangle (see Appendix A)
for the hm element, where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, i.e. hm→ hTm.

Since three-dimensional displacements are approximated by both the hTm and
hLm elements, the total number of unknowns is NDhTm

1 and NDhTm, respectively.

hTm beam element with Taylor expansion

ht2 ht3 ht4 ht5 ht6 ht7 ht8

NDhTm
1 6(p+1) 10(p+1) 15(p+1) 21(p+1) 28(p+1) 36(p+1) 45(p+1)

NDhTm 18(p+1) 30(p+1) 45(p+1) 63(p+1) 84(p+1) 108(p+1) 134(p+1)

hLm beam element with 2D Legendre function

hL2 hL3 hL4 hL5 hL6 hL7 hL8

NDhLm
1 8(p+1) 12(p+1) 17(p+1) 23(p+1) 30(p+1) 38(p+1) 47(p+1)

NDhLm 24(p+1) 36(p+1) 51(p+1) 69(p+1) 90(p+1) 114(p+1) 141(p+1)

For hTm elements, we use polynomials defined by

Hj+1(ζ) = [0.5(1 + ζ)]
j+1 − 0.5(1 + ζ), j = 1, 2, ....

It is seen that for the 3D approximation at p = 6, the degree of freedom of the element
is 333, while for the hierarchical element hTm (hT6) it is 588, and for the hierarchical
element hLm (hL6) it is 630. Here we assumed that the polynomial degree assigned
to the longitudinal approximation is 6.

Note: Given that the displacement field of the i-th element is approximated in
the form u(i) = N(i)(ξ, η)ψ(i)(ζ), the N(i)(ξ, η) and N(i)(ξ, η = ±1) matrices must

be used instead of the U(3)(x, y)R
(3)
red and Ũ(i)(x, y

(i)
b ) matrices when a Winkler-type

foundation is used or the contact problem described previously has to be solved.
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4. Numerical examples

4.1. Prismatic beam. Let the geometric dimensions of a prismatic beam be a = 40,
b = 20, L = 157.0796 mm (200π/4 = 50π), and the material constants be: Elastic
modulus E = 2 · 105 MPa, Poisson’s ratio ν = 0.3. The beam is shown in Figure 9.

In the following we present results for two load cases. In the first load case, at
the end of the rod, on the Z = 0 boundary, a parabolic distributed load acts in the
direction y which has the resultant FY = 200 N. In the second load case a distributed
load with an intensity of py = −pY = 0.25 N/mm

2
acts on the y = −b/2 surface in

the direction y.

Figure 9. The geometry of a cantilever prismatic beam, the global
XY Z and the local coordinate system xys (s = Z). The beam is
fixed in the Z = L plane

Solving a sequence hierarchical models, we get the results for degrees p = 2, ..., 6
in terms of the Y -component of the displacement of the centroid of the cross section
Z = 0 shown in Figure 10. The results of the 3D finite element model (obtained
by the StressCheck program) are also shown. It is clear that as the hierarchic level
increases, displacement converges to the 3D result. The results for a sequence of
hLm models are shown in Figure 11. The differences between the hierarchic models
and the 3D finite element solution are model form errors within the family of models
formulated under the assumptions of the linear theory of elasticity.
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a

 

b

Figure 10. Convergence diagrams for hm models: a) the parabolic
distributed load on the end plate acts (1st load), resulting in FY =

−200 N, b) py = −pY = 0.25N/mm
2
load is distributed on the

y = −b/2 surface (2nd load)

 

a

 

b

Figure 11. Convergence diagrams for hLm models, a) 1st load case,
the displacement of the point x = y = 0 of the end plate in the Y
direction in the case of different hierarchical models, b) 2nd load case

It is seen that in the case of load 2 the displacement values agree to 4 decimal digits
when 16 elements and the hL6 and hL7 models are used. The numerical values are:
hL6 – 0.482632D-01, hL7 – 0.482690D-01 mm for load case 1; hL6 – 0.142313D+00,
hL7 – 0.142336D+00 mm for load case 2.

Solving the same problem using the Abaqus software, we get:

Mesh 1: 10 × 10 × 9.862 hexahedral elements (C3D20R), 20 nodes, quadratic,
reduced integration, the number of nodes is 869 (2496 degrees of freedom, lnNDOF
= 7.82) Mesh 2: 2 × 2 × 1.987 hexahedral elements (C3D20R), 20 nodes, quadratic,
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reduced integration, thus the total node number: 71129 (212726 unknown, lnNDOF
= 12.27)

• Load case 1 for Mesh 1 −0.0541153 [mm]; for Mesh 2 −0.0485062 [mm]
• Load case 2 for Mesh 1 −0.1416740 [mm]; for Mesh 2 −0.142314 [mm].

On comparing the results with those obtained by StressCheck (load case 1 -0.0484
mm, load case 2 -0.143 mm), a much lower rate of convergence is observed.

Furthermore, we note that reduced integration introduces a type error that cannot
be treated by mesh refinement. Reduced integration is one of the variational crimes
[52].

The distributions of the stress σ2 for the models h3 and h6 are shown for load
case 2 in Figure 12. Here py = 0.25 MPa acts as a compressive stress on the surface
y = −b/2.

  

Figure 12. σ2 stress distributions in load case 2 (models h3, h6)

We observe that the weak boundary conditions are well approximated by the h6
model: σ2 is zero at the y = 10 mm boundary and it is = −0.25 MPa at the y = −10
mm boundary. This is not the case for lower order models such as model h3.

4.2. Curved beam. Next we consider the curved beam shown in Figure 13. The
geometric parameters are: R0 = 100 mm, a = 40 mm, b = 20 mm. The material is
assumed to be linearly elastic, homogeneous and isotropic, the modulus of elasticity
is E = 2.0 · 105 MPa, Poisson’s ratio is 0.3.

We examine the behavior of the structure under two load cases: In load case 1,
parabolic distributed traction is applied on the cross section φ̄ = π in the Z direction,
the resultant of which is Fz = 200 N. In load case 2 distributed normal traction
is exerted on the surface y = −b/2 in the Z direction, the magnitude of which is
py = 0.25 MPa.

Application of hm type elements.The convergence diagrams obtained for two load
cases are shown in Figures 14–15. The results of the 3D solution obtained with
the StressCheck finite element program [35] are also shown. The diagrams clearly
show the rapid convergence of the quantities of interest computed from the numerical
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solutions. The relative errors defined by

error =
|uFEM | − |uhierarc|

|uFEM |
100% (62)

are below 4% for both load cases in the h6, h7 models, whereas the relative error is
over 17% at the initial low hierarchical level.
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Figure 13. Geometry of the curved rod, the global XY Z coordinate
system and the local xys coordinate system. The beam is fixed in
the plane φ̄ = 3π

Load case 1

 

a b

Figure 14. Convergence diagrams for hm elements for load case 1
(Fz = 200 N), a) displacement values, b) relative errors in displace-
ments
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Load case 2

 

a

 

b

Figure 15. Convergence diagrams for hm elements in load case 2: a)
displacements, b) relative errors in displacements

Application of hLm type elements. In this section we demonstrate that much faster
convergence can be obtained with hLm type elements. Polynomial approximations
p = 3, 4, 5, 6 were used in the longitudinal direction.

Load case 1:

 

a 4 elements

 

b 8 elements

 

c 16 elements

Figure 16. Convergence diagrams for hLm elements: at Fz = 200 N
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Load case 2:

 

a 4 elements

 

b 8 elements

 

c 16 elements

Figure 17. Convergence diagrams for load case 2

The relative errors do not exceed 1.2% when 8 elements and p = 6− 8 are used.

a b

Figure 18. Relative errors for 8 elements, p = 8, a) in load case 1, b)
in load case 2
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Application of hTm elements. The relative errors in terms of the maximum displace-
ment are shown for load cases 1 and 2 in Figure 19. Four hTm elements were used.

 

a

 

b

Figure 19. Convergence diagrams for load cases 1 and 2 using four
htm elements

 

a

 

b

c

Figure 20. Relative errors for hierarchical elements of type hTm, four
elements, a) load case 1, b) load case 2, c) potential energy for load
case 2
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Figure 20 shows the relative errors. Figure 20c shows the convergence of in potential
energy. It is clearly visible that the potential energy decreases as p increases, and the
smallest value was obtained by the hT7 model.

The hTm solution is more accurate than our original hm model. Comparing the
results obtained with the hTm and hLm approximations, we can see that the hLm
hierarchical approximation gives the more accurate result. This is because if the
maximum degree in Taylor expansion is q, then the trunk space will have two more
terms. The sum of the powers of the polynomial product terms is q + 1. It can be
seen that the results for the excessively low hT3, hL3 hierarchical level are far from
the exact solution.

4.3. Numerical example for the contact problem of prismatic beams. Let us
consider two flexible, prismatic cantilever beams as shown in Figure 21. The geometric
dimensions are: a = b = 15 mm. l = 66.66 mm. The possible contact domain is:
X ∈ (200, 300). The elastic constants are: E1 = 200 GPa, E2 = 50 GPa, or 20 GPa,
Poisson’s ratio ν = 0.3. The applied load is F0 = 1 kN.
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Figure 21. Contact problem of two prismatic beams. There are 12
elements. The points indicated by the open circles represent nodal
points

The calculations are performed with the h5 hierarchical rod model.

The contact conditions are checked in the Lobatto points, see, for example, [1, 37].
The penalty parameter was set to cn = 1000E1. Moving along the X axis from right
to left, we reach the point where we first find a negative d value.

At this value of X, we assume contact along the x axis in the transverse direction.
We will then select this point as the penultimate integration point of the element,
which we can use to determine the right-hand side, e.g. the position of the 6th
node. With repeated calculations, we move the edge of the element until we reach
the position in Figure 22.

Thus, there is contact on the entire surface of this element, and the one to the right
already has a gap [38, 39]. Figures 22–26 show some results for this. In the case of
E2 = 50 GPa, nodes 3′−4′ were moved, while in the case of E2 = 20 GPa , nodes 3′−4′

and 5′−6′ were moved. With the 12 element mesh, p = 6, the number of unknowns is
NDOF = 4464. The contact element boundaries were established in 10–20 iterations.
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Figure 22. Contact element

Comparing the results with those calculated by the Abaqus [36] and StressCheck [35]
3D finite element programs, looking at the deflection diagrams (Figures 23, 24 and 25),
we obtained very close approximations. The deformed configuration obtained with
StressCheck can be seen in Figure 23b. We note that the 3D solution with p = 6,
product space [1, 37], the number of unknowns exceeded the number of unknowns in
our h5 hierarchical beam model by the factor of nearly 7.

The edge of the contact range and the maximum bending stress in beam 1 are as
follows:

g = 0, Xc = 221.71 mm, σ(1)
max = 117.15 MPa,

g = 0.5, Xc = 207.47 mm, σ(1)
max = 124.40 MPa.

The distribution of the contact pressure as a function of s is shown in Figure 26. It
is clearly visible that the solution satisfies the constraint condition pnd = 0.

ba

Figure 23. The modulus of elasticity of beam 2 is E2 = 50 GPa, a)
Contact pressure with initial gap of 0.5 mm, b) deflection obtained
with the StressCheck program with zero initial gap. The number of
unknowns (NDOF) is 31,104
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Figure 24. Deflection of the beams

 

Figure 25. Deflection of the beams for beam 2 with a lower elasticity
modulus (E2 = 20 GPa)
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Figure 26. Modulus of elasticity of beam 2: 20.0 GPa, no initial
gap: a) the contact pressure, b) the gap d after deformation, c) the
resulting bending moment
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The edges of the contact range and the maximum bending stress in beam 1:

g = 0, Xc = 237.52− 262.05 mm, σ(1)
max = 100.71 MPa,

g = 0.5, Xc = 232.69− 257.29 mm σ(1)
max = 104.85 MPa.

4.4. Numerical example: Curved beam contact problem. We examine the
curved beam shown in Figure 13. The beam is resting on a Winkler-type elastic
foundation on the surface y = b/2. A parabolic distributed force Fz = 800 N is acting
on the face φ̄ = π . The geometric parameters are R0 = 100 mm, a = 40 mm, b = 20
mm. The material constants are E = 200 GPa, ν = 0.3. The Winkler constant is
cn = 50N/mm

2
. The beam is fixed at φ̄ = 3π. The calculations are performed using

the hierarchic model h6, that is, the polynomial degree of the field functions is 6.

The displacement component in the Z direction on the circular curve x = 0,
y = −b/2, i.e., the curve on the surface on which the Winkler boundary condition is
prescribed, is shown in Figure 27. The displacement curve obtained for the Winkler
support is displayed in Figure 27a. Observe that tensile stresses occur. The maxi-
mum vertical displacement estimated by our method was 0.0154 mm whereas Abaqus
estimated it at 0.01616 mm, while the StressCheck estimation is 0.0164 mm. The
error in our approximation, compared with StressCheck, is approximately 6%.

Assuming one-sided frictionless contact between the elastic body and the founda-
tion, i.e. permitting compressive stresses only, the solution is shown in Figure 27b.
The first element is in contact, then a gap occurs and at the end there are four
elements on which contact occurs again.

The vertical displacement of the y = b/2 surface, corresponding to the the h6
model with 6 elements (NDOF = 7996), is shown in Figure 28. The convergence of
the displacement of the point x = 0, y = b/2, s = 0 on the loaded surface and the
convergence curve including the maximum occurring at x = −a/2, y = b/2, s = 0 of
the loaded surface is shown in Table 1.

 

a

 

b

Figure 27. Displacement of the center line x = 0, y = b/2: a) Winkler
support, b) contact condition
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Figure 28. Vertical displacement of the surface y = b/2. The dis-
placement of the point x = 0, y = b/2, s = 0 is equal to maxuz =
25.76 µmm

Strong convergence is evident. Figure 29 shows the change in the value of the
angle φ̄, which marks the boundary of the first element. It can be seen that after 10
iterations we have already obtained the solution of the contact problem with negligibly
small error.

Solving the problem with 3D finite element programs (Abaqus, StressCheck), we
find that, considering Figures 30 and 31, the maxuz is in the point (x = −a/2,
y = b/2, s = 0), that is maxuz = 29.88 µmm obtained with Abaqus and the maxuz =
27.9 µmm (maxσz = 1.396 MPa, cn = 50 n/mm3) obtained with StressCheck with
maxuz = 29.61 µmm; we used the h6. The calculated error is Error= 100(29.61 −
27.9)/27.9 = 6.1%, which is a reasonable value considering the significantly smaller
number of unknowns in model h6. It should be mentioned that the Abaqus program
is based on the h-version whereas StressCheck program is based on the p-version. The
latter provides faster convergence and a sequence of solutions from which the limit
value of the quantities of interest can be estimated. This is an essential requirement
of solution verification.

Table 1. Demonstration of the convergence of the p-version method

p NDF uz [mm] maxuz [mm]

(x = 0, y = b/2, s = 0) (x = −a/2, y = b/2, s = 0)

2 2863 0.0256558 0.02955

3 4012 0.0257587 0.02964

4 5339 0.0257623 0.02963

5 6668 0.0257666 0.02962

6 7996 0.0257685 0.02961
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Figure 29. Location of the boundary of the first element as a function
of the iteration number when the positioning technique is used

 

Figure 30. Solutions obtained by the Abaqus program for different
numbers of elements using quadratic finite elements C3D20R (NDOF
= 20343, NDOF = 6174)
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Figure 31. The distribution of σz obtained by the StressCheck p-
version finite element program, (NDOF = 41616)

4.5. The second numerical example for the contact problem of prismatic
beams. We examine the intersecting prismatic beams shown in Figure 32. Curved
surfaces, characterized by a parabolic function, is formed on the y = ±b/2 surfaces of
the beams. The extent of this is characterized by the cz amplitude value.

The elastic material parameters are Young modulus: E = 200 GPa, and Pois-
son’s ratio ν = 0.3. The dimensions and location coordinates of the beams result in
symmetrical contact when the loads have the appropriate symmetry.
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Figure 32. Configuration 2
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Figure 34. Finite element for mapping a) local system −1 ≤
ξ, η, ζ ≤ 1 , b) second order’s boundary is characterized by pa-
rameter cz

Load case 1:
We assign the values F8 = F11 = −F0 = −10 kN (in the −Z direction) and fix the
boundary A and B.

The hT6 hierarchical model and 16-node elements, shown in Figure 34, were used,
however the locations of the mid-side nodes 9, 11, 13, 15 were assigned values to
obtain curved surfaces. The assignment of nodes 9 and 11 is indicated in Figure
34. The assignment of nodes 13 and 15 was analogous. The penalty parameter was
assigned the value cn = 100000.

Using 5 elements per bar, taking into account the boundary conditions, the total
number of unknowns was 4874. The forces F8 F11 act as concentrated forces, since
the first term of the director function in the hT6 model is 1. This means that the
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force acts in the centroid of the cross section. The initial gap is provided by the
difference between the Z coordinates of the contact surfaces of bodies B1 and B2:
g = Z(B1, y = −b/2) − Z(B2, y = b/2). We calculate this from the finite element
solution. The function obtained at cz = 0.1 is a quadratic function. (See e.g. Figure
36a.)

The estimated contact pressure is shown in Figure 35. The initial gap, the dis-
placement of the beams, the shear force and bending moment are shown in Figure 36.
The contact pressure was calculated in 19×19 Gauss integration points. The contact
conditions were enforced on the same 361 points. It is seen that contact occurs on a
relatively small surface area which was determined by augmentation. There was no
change in the final iterations, the gap between the bodies formed during the shape
change: d is of the order of 10−3. As expected, due to the vertical equilibrium, the re-
sulting contact force is 10.0 kN, its line of action passes through the point Xc = 75.0,
Yc = 0.0.

 

a

 

b

 

c

 

d

Figure 35. The distribution of the contact pressure in the configura-
tion is shown in this figure for load case 1, a) without augmentation
step = 1, b) with augmentation, step = 13, c), d) normal contact
stresses calculated from Hooke’s law: c) augmentation step = 0, d)
augmentation step = 13
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The symmetry of the displacements is clearly visible in Figure 36b. The normal
stress calculated from the derivatives of the displacement field in the contact region via
Hooke’s law is shown in Figures 35c,d. Owing to the continuity of the approximation
fields in the assumed contact region, approximated by one element, we cannot recover
the negative of the contact pressure. The pressure is high in the middle of the contact
domain, and small at the edges; however, the hT6 model cannot accurately represent
the pressure distribution with the number of elements used in this example. On
the other hand, the contact pressure can be reliably estimated with the augmented
Lagrangian technique as indicated below.

 
a b

 c  d

Figure 36. Results for configuration 2 at load case 1, a) initial gap
function, b) vertical displacement on middle line of beam, c) distri-
bution of the shear force T , d) bending moment M1



Application of the p-version of FEM to hierarchic rod models 73

  

a b

Figure 37. Vertical displacement in the contact zone, a) for body B1,
b) for body B2 at initial gap cz = 0.1, load case 1

At cz = 0 the initial gap between the supports is zero. The normal stress in the
corner points of the contact region is not analytic. The numerical results obtained
on a grid of 19 × 19 Gauss points are shown in Figure 38. The resulting solution is
symmetric, resulting from the contact force of Fcont = 10.0 kN.

 

a

 

b

Figure 38. Contact pressure distribution interpolated on a grid of
19 × 19 Gauss points, a) without augmentation step = 1, b) with
augmentation, step = 13. The initial gap was zero

Load case 2:
The l load is Fc = −5 kN (in the −Z direction). Referring to Figure 32, the B and
C boundaries are free, A and D are fixed.

We define second-order surfaces by letting cz = 0, 0.04, 0.08, 0.12, 0.4, 0.6, 0.8.
The resulting contact pressures and position of contact resulting force are shown in
Table 2. Note that as the curvature decreases, the contact area shifts inward of the
supposed contact area (65 ≤ X ≤ 85, −10 ≤ Y ≤ 10) and extends to a very small
surface area.
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At cz = 0, the contact is in the left corner of the relevant domain. Then, depending
on the curved surfaces of the beams, the contact shifts towards the middle of the
assumed contact area.

Table 2. Resulting contact forces and their positions at different pa-
rameters cz

cz Xs mm Ys mm Fz kN

0.00 66.41 −9.647 6.740

0.04 67.52 −9.560 6.665

0.08 69.10 −8.596 6.474

0.12 70.68 −6.842 6.297

0.40 72.99 −2.012 6.247

0.60 74.26 −2.100 6.110

0.80 75.00 −1.500 6.049

  a b

 
c

Figure 39. Results for case cz = 0.12 a) vertical displacement on the
center line of the beam, b) vertical displacement on middle line of
beam, c) distribution of the shear force T2, d) bending moment M1



Application of the p-version of FEM to hierarchic rod models 75

It is also obvious that, as the resultant of the contact pressure moves towards the
larger Y by increasing cz = 0, the resulting contact force decreases. The resulting dis-
tributions of bending moments and shear forces are essentially the same for different
variants. Therefore only one is presented here; Figure 39 represents the case cz = 0.12.

5. Summary and conclusions

We have investigated the algorithmic aspects hierarchic models for elastic rods us-
ing sequences of polynomial approximations. The models are semi-discretizations, in
which the displacement components that lie in the cross-sectional plane are repre-
sented by polynomials of a fixed degree when the rod is homogeneous, or piecewise
polynomials when the rod is made of composite materials. These are the director
functions. The coefficients of the director functions are functions of the lengthwise
coordinate and are discretized by the finite element method. In this way, the three-
dimensional problem of elasticity is transformed into sets of one-dimensional problems
that can be solved very efficiently. An important practical advantage is that the model
form errors as well as the discretization errors can be controlled.

Classical models of rods are extensively used in conventional engineering handbooks
and design manuals, see for example [53].

Through application of the algorithmic procedures outlined in this paper, is pos-
sible to extend the number and type of entries to a much broader class of problems
while removing the limitations inherent in the classical formulations. In other words,
numerical techniques, examples of which were discussed in this paper, allow substan-
tial extension of the breadth and depth of the scope of classical engineering handbooks
and design manuals.

Smart applications, also called ‘simulation apps’, are expert-designed in such a way
that those applications can be used by engineers whose expertise is not in numerical
simulation. The preservation and maintenance of institutional knowledge are among
the important objectives of standardization. Economic benefits are realized through
improved productivity and improved reliability. The challenging aspects of standard-
ization are that (a) the input parameters have to be suitably restricted so that the
assumptions incorporated in the models are not violated and (b) the model form
and the discretization errors have to be controlled such that the users’ expectation
of accuracy, stated in terms of the quantities of interest, is satisfied. The hierar-
chic formulation outlined in this paper provides the algorithmic foundation for smart
applications.

The hierarchical beam models can be advantageously used to solve strength prob-
lems through a model containing far fewer unknowns than fully 3D models. The
complexities in implementation are compensated for by substantially shortened exe-
cution times and increased reliability.
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Appendix A. The Pascal Triangle

The Pascal triangle is the set of monomial functions shown below:

1

x y h1

x2 xy y2 h2

x3 x2y xy2 y3 h3

x4 x3y x2y2 xy3 y4 h4

x5 x4y x3y2 x2y3 xy4 y5 h5

x6 x5y x4y2 x3y3 x2y4 xy5 y6 h6

x7 x6y x5y2 x4y3 x3y4 x2y5 xy6 y7 h7

x8 x7y x6y2 x5y3 x4y4 x3y5 x2y6 xy7 y8 h8

Appendix B. Mathematical transformations

In the present Appendix we detail the calculations for the terms in equation (16).

qG,T
I =

[
u0X u0Y u0Z χX χY χZ

]
, I → J, qT =

[
qG
I qG

J

]T
(B.1)

interpreted in the local system:

u0
L,T =

[
u01 u02 u03

]
, χL,T =

[
χ1 χ2 χ3

]
(B.2)

formally, the center line displacement, angular rotation and their derivatives with respect to
s are approximated in the form:[

u0

χ

]L

= Guχ q+Φuχ,p auχ,p,

[
u′
0

χ′

]L

= G′
uχ q+Φ′

uχ,p auχ,p (B.3)

where Guχ is the matrix [54] linearly approximating rigid-body and elastic displacements,
Φuχ,p is the matrix containing polynomials depending on the degree p, and is the vector of
additional constants. The vector in equation (10), taking into account equation (B.3), can
be written as

ψ̃0 = G0 q+Φ0
p a0p , G0 =

[
Guχ

G′
uχ

]
, Φ0

p =

[
Φuχ,p

Φ′
uχ,p

]
. (B.4)

By substituting equation (B.4) into equation (24), the stiffness matrix of the finite element

formulation is produced [1, 37].

In some detail

Φuχ,p =

[
Φ0p 0
0 Φ0p

]
=

[
Φup

Φχp

]
, Φ′

uχ,p =

[
Φ′

0p 0
0 Φ′

0p

]
=

[
Φ′

up

Φ′
χp

]
(B.5)

Letting s̄ = s/L, where L is the length of the center line of the element, the derivative with
respect to s can be calculated based on

(.)′ =
d(.)

ds
=

1

L

d(.)

ds̄
.
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We have

Φ0p
(3,3×np)

=

 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄

 ,
(B.6a)

Φ′
0p

(3,3×np)

=
1

L

 2s̄− 1 · · · ps̄p−1 − 1 0 · · · 0 0 · · · 0
0 · · · 0 2s̄− 1 · · · ps̄p−1 − 1 0 · · · 0
0 · · · 0 0 · · · 0 2s̄− 1 · · · ps̄p−1 − 1


(B.6b)

and

a0p,T

(1,6np)
=

[
ap,T
u ap,T

χ

]
(B.7)

in which

ap,T
u

(1,3×np)

=
[
ap=2
u1 ap=3

u1 , ..., apu1 a
p=2
u2 ap=3

u2 , ..., apu2 a
p=2
u3 ap=3

u3 , ..., apu3
]
,

ap,T
χ

(1,3×np)

=
[
ap=2
χ1 ap=3

χ1 , ..., apχ1 a
p=2
χ2 ap=3

χ2 , ..., apχ2 a
p=2
χ3 ap=3

χ3 , ..., apχ3

]
.

In Model-1 the matrix of strains is:

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 =
[
Γ1(0) Γ1(1)

] [ ψ̃0

ψ̃
h(1)

]
= Γ1ψ̃1 (B.8)

Using equations (10) and (11), the 16 functions are approximated as

ψ̃1 =

[
ψ̃0

ψ̃
h(1)1

]
=

 ψ̃0

hh(1)1

hh(1)1′

 =

 G0 0

0 Gh(1)1

0 Gh(1)1′

[
q

qh(1)1

]
+

+

 Φ0
p 0

0 Φh(1)1

p

0 Φh(1)1′
p

[
a0p

ah(1)1p

]
= Gtotal

1 q1 +Φtotal
1p a1p (B.9)

where

Gh(1)1

=

[
1− s̄ 0 s̄ 0
0 1− s̄ 0 s̄

]
, Gh(1)1′ =

1

L

[
−1 0 1 0
0 −1 0 1

]
, (B.10)

Φh(1)1

p
(2,2×np)

=

[
s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0

0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄

]
, (B.11a)

Φh(1)1′
p

(2,2×np)

=

[
2s̄− 1 3s̄2 − 1 · · · ps̄p−1 − 1 0 0 · · · 0

0 0 · · · 0 2s̄− 1 3s̄2 − 1 · · · ps̄p−1 − 1

]
, (B.11b)

q1T =
[
qT
I ,q

T
J , q

h(1)1T
I ,qh(1)1T

J

]
, qh(1)1T

I
= [u1x u2y]I

I → J

ah(1)1pT =
[
ap=2
1x , ap=3

1x , ..., ap1x ; a
p=2
2y , ap=3

2y , ..., ap2y
]
.

(B.12)

Based on the previous equations, it is seen that the strain vector for the hm-th model is:
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ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) ... Γh(m−1) Γh(m) ]



ψ̃1

ψ̃
h(2)

· · ·

ψ̃
h(m−1)

ψ̃
h(m)

 =

= Γm

[
ψ̃m−1

ψ̃
h(m)

]
= Γmψ̃m = Gtotal

m qm +Φtotal
mp amp, (B.13)

where

ψ̃
h(m)

=

[
h(m)

h(m)′

]
=

[
Gh(m)

Gh(m)′

]
qh(m)

+

[
Φph

(m)

Φph
(m)′

]
ah(m)p, (B.14)

ψ̃m =

[
ψ̃m−1

ψ̃
h(m)

]
=

 Gtotal
m−1 0

0 Gh(m)

0 Gh(m)′

[
qm−1

qh(m)

]
+

+

 Φtotal
mp 0

0 Φh(m)

p

0 Φh(m)′
p

[
am−1,p

ah(m),p

]
= Gtotal

m qm +Φtotal
mp amp, (B.15)

Gh(m)

=

 Gh(m)1 0 0 Gh(m)2 0 0
0 Gh(m)1 0 0 Gh(m)2 0
0 0 Gh(m)1 0 0 Gh(m)2

 ,
Gh(m)′

=

 G′
h(m)1 0 0 G′

h(m)2 0 0
0 G′

h(m)1 0 0 G′
h(m)2 0

0 0 G′
h(m)1 0 0 G′

h(m)2

 ,
(B.16)

Gh(m)1 = (1− s̄)E(m+1,m+1), Gh(m)2 = s̄E(m+1,m+1),

G′
h(m)1 = − 1

L
E(m+1,m+1), G′

h(m)2 =
1

L
E(m+1,m+1),

(B.17)

in which E(m+1,m+1) is the unit matrix of size (m + 1,m + 1), s̄ = s/L, 0 ≤ s̄ ≤ 1.
Furthermore

Φh(m)

p
(3×(m+1),np×(m+1))

=

Φh(m)p

0 Φh(m)p

0 0 Φh(m)p

 , m = 2, 3, 4, 5, 6 (B.18)

Φh(m)′
p

(3×(m+1),np×(m+1))

=

Φ′
h(m)p

0 Φ′
h(m)p

0 0 Φ′
h(m)p

 , m = 2, 3, 4, 5, 6 (B.19)

Φh(m)p
(m+1,np×(m+1))

=
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=



s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄ 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0 0 · · · 0 s̄2 − s̄ s̄3 − s̄ · · · s̄p − s̄





1
· · ·
· · ·
i
· · ·
· · ·
m+1


For the sake of brevity, we provide the additional unknowns of the finite element for the h2
model only:

q2T =
[
q1T
I ,q1T

J , qh(2)T
I , qh(2)T

J

]
(B.20)

qh(2)T
I =

[[
u1x2 u2xy u3y2

]
I

[
u2x2 u2xy u2y2

]
I

[
u3x2 u3xy u3y2

]
I

]
, I → J

ah(2)pT =
[
ah(2)pT
1 ,ah(2)pT

2 ,ah(2)pT
3

]
,

ah(2)pT
i =

[
ap=2

ix2 , a
p=3

ix2 , ..., a
p

ix2 ; a
p=2
ixy , a

p=3
ixy , ..., a

p
ixy; a

p=2

iy2 , a
p=3

iy2 , ..., a
p

iy2

]
, i = 1, 2, 3

(B.21)

Continuing the construction of the models based on (B.15), for the h6 model we get:

ε =


ε1
ε2
ε3
γ12
γ13
γ23

 = [Γ1 Γh(2) Γh(3) Γh(4) Γh(5) Γh(6) ]



ψ̃1

ψ̃
h(2)

ψ̃
h(3)

ψ̃
h(4)

ψ̃
h(5)

ψ̃
h(6)


= Γ6ψ̃6 (B.22)

Furthermore

Gtotal
6 =



G1 0 0 0 0 0

0 Gh(2)

0 0 0 0

0 Gh(2)′
0 0 0 0

0 0 Gh(3)

0 0 0

0 0 Gh(3)′
0 0 0

0 0 0 Gh(4)

0 0

0 0 0 Gh(4)′
0 0

0 0 0 0 Gh(5)

0

0 0 0 0 Gh(5)′
0

0 0 0 0 0 Gh(6)

0 0 0 0 0 Gh(6)′



(B.23a)
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and

Φtotal
6 =



Φ1 0 0 0 0 0

0 Φh(2)

0 0 0 0

0 Φh(2)′
0 0 0 0

0 0 Φh(3)

0 0 0

0 0 Φh(3)′
0 0 0

0 0 0 Φh(4)

0 0

0 0 0 Φh(4)′
0 0

0 0 0 0 Φh(5)

0

0 0 0 0 Φh(5)′
0

0 0 0 0 0 Φh(6)

0 0 0 0 0 Φh(6)′



(B.23b)

Table 3. Main characteristics of hm models

Hierarch. NDOF in Number of Number of AD=Additional NDOF
model one nodal inner nodes for one (inner) deegre for one

point nodal points element element

h1 6 6 8 6(p− 1) 12 +AD
h2 15 15 17 15(p− 1) 30 +AD
h3 27 27 29 27(p− 1) 54 +AD
h4 42 42 44 42(p− 1) 84 +AD
h5 60 60 62 60(p− 1) 120 +AD
h6 81 81 83 81(p− 1) 162 +AD
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