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Abstract. The main aim of this paper is to construct the fundamental solutions of a sys-
tem of equations for isotropic thermoelastic diffusive materials with microtemperatures and
microconcentrations in the case of steady oscillations in terms of elementary functions. In
addition to this, the fundamental solutions of the system of equations of equilibrium theory
of isotropic thermoelastic diffusivity materials with microtemperatures and microconcentra-
tions are also established.
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1. INTRODUCTION

Eringen and his co-workers [1H7] formulated the theories of micromorphic continua.
In these theories, the particles of a continuous body are assumed to be composed of
microelements which undergo homogeneous deformations called microdeformations.
The system of differential equations and boundary conditions governing a continuum
with microstructure are deduced from the principles of conservation of mass, conser-
vation of microinertia, balance of linear momentum, balance of first moment of mo-
mentum, and the balance of energy. The theory of thermodynamics of elastic bodies
with microstructure was extended by [8] with the assumption that the microelements
have different temperatures. He modified the Clausius—Duhem inequality to include
microtemperatures and added first-order moment of energy equations to the basic
balance laws for determining the microtemperatures of a continuum. Iesan and Quin-
tanilla [9] constructed a linear theory for elastic materials with an inner structure
whose particles, in addition to the classical displacement and temperature fields, pos-
sess microtemperatures. They established the continuous dependence of initial data
and body loads and proved an existence theorem for initial boundary value problems
using semigroup theory. The field equations of a theory of microstretch thermoelastic
bodies with microtemperatures were established in [10], where Iesan proved a unique-
ness theorem in the dynamic theory of anisotropic materials and then derived a linear
theory of microstretch elastic solids with microtemperatures in which a microelement
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of a continuum is equipped with the mechanical degrees of freedom for rigid rotations
and microdilatation in addition to the classical translation degrees of freedom [11].
He also established a uniqueness result in the dynamic theory of anisotropic bodies.

The mass transfer of a substance from a high concentration region to low-
concentration regions is called diffusivity. Nowacki |[12H15], Sherief and his co-workers
|16], Aouadi [17] and Kansal [1§] developed various thermoelastic diffusivity theo-
ries to describe coupled mechanical behavior among temperature, concentration, and
strain fields in elastic solids. Aouadi et al. [19] developed the nonlinear theory of
thermoelastic diffusivity materials with microtemperatures and microconcentrations.
They also obtained the linear theory of thermoelastic diffusivity materials with mi-
crotemperatures and microconcentrations. They proved the well-posedness of a linear
anisotropic problem with the help of the semigroup theory of linear operators and
studied the asymptotic behaviour of the solutions. Bazarra et al. [20] introduced
a numerical scheme in the linear theory of thermoelastic diffusivity materials with
microtemperatures and microconcentrations based on the finite element method to
approximate the spatial domain and the forwarded Euler scheme to discretize the time
derivatives. They also deduced a priori error estimates for the approximative solu-
tions, and obtained the linear convergence of the algorithm under suitable regularity
assumptions. Chiril [21] derived the field equations and the consecutive equations of
the linear theory of microstretch thermoelasticity for materials whose particles have
microelements that are equipped with microtemperatures and microconcentrations.

There is a necessity to construct fundamental solutions for solving boundary value
problems of elasticity and thermoelasticity by potential method [22]. The reason for
constructing fundamental solutions is that an integral representation of the solution
of a boundary value problem by fundamental solution is easily solved by numerical
methods rather than a differential equation with specified boundary and initial condi-
tions. Various authors [23, 24] and |25] constructed fundamental solutions in different
theories of elasticity and thermoelasticity with microtemperatures.

In Section 2, the constitutive relations and field equations for isotropic thermoelas-
tic diffusivity materials with microtemperatures and microconcentrations are written.
The system of linearized equations for steady oscillations in the theory of thermoelas-
tic diffusivity solids with microtemperatures and microconcentrations is obtained in
Section 3. In Section 4, in terms of elementary functions, the fundamental solution of
basic governing equations in the case of steady oscillations is constructed. Some basic
properties of the fundamental matrix in the case of steady oscillations are discussed
in Section 5. In Section 6, the fundamental solutions of basic governing equations in
case of equilibrium are established.

2. BAsic EQUATIONS

Let x = (21,22, 23) be the point of the Euclidean three-dimensional space E3,

x| = (22 + 22 + 22)2, Dy = (6%1, 6%2, 8%3) and t denotes the time variable. Follow-
ing [8, |10] and [19], the basic equations for an isotropic homogeneous thermoelastic
diffusivity solid with microtemperatures and microconcentrations in the absence of

body forces, heat sources, and mass diffusive sources are as follows:
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Constitutive relations

tij = Neudij + 2pei; — 1005 — F2C045,

—~
[\
—

S—

pS = Biey + %9 + wC, (2.2)

P = —fsey —wb+ xC, (2.3)

pei = —aily — k105 (2.4)

P = —miC; — ka5, (2.5)

Gij = —kaT31055 — ksTy j — k6T, (2.6)
¢ = kO + k1T, (2.7)

G = (k—k3)0; + (k1 — k2) T3, (2.8)
Nij = —haCuidij — hsC; j — heCj 4, (2.9)
oi = (h—h3)P;+ (h1 — h2)C;, (2.10)
ni = hP;+ hC;, (2.11)

pToS = gii, (2.12)

nj5=C, (2.13)

Equations of motion
tijj = piii, (2.14)

Balance of first moment of energy

PEi = Qjii + Qi — Sis (2.15)

Balance of first moment of mass diffusivity

PSYi = Njij + i — i (2.16)
where t;; are the stress tensor components, e; = wu;; are the strain tensor compo-
nents, and u; are the displacement vector components. Lame’s constants are A and p,
B1 = BN+ 2u)ay, Ba = (BX + 2u) ., ay is the coefficient of linear thermal expansion
and «. is the coeflicient of linear diffusivity expansion, d;; is Kronecker’s delta. The
temperature is represented by 6§ = T'— Tj. The absolute temperature is T. In the ref-
erence configuration, the absolute temperature is Ty. C represents the concentration
of diffusive material, p represents density, .S represents entropy, C'g represents specific
heat at constant strain, and P represents chemical potential. The first moments of
energy vector and mass diffusivity vector are ¢; and §2;, respectively. T; and C; are
microtemperature and microconcentration components, respectively. The microheat
flux average is ;. ¢;j,7;; are the first moment of heat flux and mass diffusivity flux
tensors, respectively; o; is the micromass diffusivity flux average; g; are the heat flux
vector components; and 7; are the mass diffusivity flux vector components. The ma-
terial constants are w, x, ¢1, m1, k1, k, k1, ..., kg and h, hy, ..., hg.
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The governing equations for homogeneous isotropic thermoelastic diffusivity solid
with mlcrotemperatures and mlcroconcentratlons are obtamed usmg equatlo
6],

in 1 4)), equations (2.4 , (2.6)-(2.8) in 7 equations (|2 D in (2.16

equatlons 1 2)) and (2.7) in (2.12)) and equatlons 1 3 and |-| in 1 13)), as follows
pAu+ (A + p) graddivu — py grad 0 — Bo grad C = pu,
ks Av + (k4 + ks) graddivv — kov — kg grad 0 = 1V + k1 W,
he AW + (hy + hs) grad divw — how — hg grad P = K1V + mqw,
BTy diva + pCpb + wTpyC = kA0 + ky divv,
A[-Bydivu — @l + x O] 4 hy divw = C, (2.17)
where A is the Laplacian operator, v = (11,75, T5) and w = (Cq, Co, C3).

In the upcoming sections, the chemical potential has been used as a state variable
rather than concentration. Therefore, the system of equations (2.17)) with the help of
equation ([2.3]) becomes

[LA + (Mo + p) grad divju — pa — 71 grad § — y2 grad P = 0,
[k6A + (kg + ks5) grad div — ka]v — 1 v — kyw — k3 grad§ = 0
—£1V + [he A + (hg + hs) grad div — ho]w — my W — h3 grad P = 0,
—71T0divﬁ+kldivv+kA9—cT09—KJTO =0,
—yodiva+ hydivw — k0 + hAP —m P = 0. (2.18)
The coefficients m, k,y1,¥2, Ag, and ¢ are given in Appendix A.

3. STEADY OSCILLATIONS

The displacement vector, microtemperature, microconcentration, temperature change,
and chemical potential functions are assumed as:

u(x,t),v(x,t), w(x,t),0(x,t), P(x, t)] = Re {(u*,v*,w*,9*7P*)e_Lwt , (3.1
where w is the frequency of oscillation.

Using equation (3.1 in the system of equations (2.18) and omitting the asterisk (*)

for simplicity, the system of equations of steady oscillations is obtained as:

(A + (Mo + p) grad div + pw?Ju — 7 grad @ — v, grad P = 0,
[k6 A + (kg + ks5) grad div — kg + wweq v + wrkiw — k3 grad = 0
wk1V + [heA + (hy + hs) grad div — hy + wmy]w — hg grad P = 0,
w1 To divu + k1 divv + [k A + weTp)0 + wrTo P = 0,

wygdivu + hy divw + wk 0 + [h A 4+ wm]P = 0. (3.2)

We introduce the second-order matrix differential operators with constant coefficients

F(D,) = (Fglmx))mn,
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where

82
qu(DX) = [pA + pWQ}(Spq + (Ao + /‘)a P04 p’quS(D )= Fp+3;q(Dx) =0,

0 0
Fp;q+6(D ) Fp+6,q( ) =0 Fp,lo(D ) = _71671.1)7Fp;11(Dx) = —’7287%,
82
0,0y’

Fpi3.0+6(Dx) = Fyi6,443(Dx) = wr10pg, Fpi3,10(Dx) =

Fp+3 q+3( ) [/C6A ko + Lwcl]épq + (k4 + k5)

0

—k3o—
oz,

Fpi3.11(Dx) = Fi1p+3(Dx) = 0, Fp16,4+6(Dx) =

82

= [th — h2 + mel](qu + (h4 + h5)m,

0 0
Fp+6;10(Dx) = F10;p+6(Dx) = O7Fp+6;11(Dx) = _h3877 FlO;q(Dx) = Lw'YlTOai7
Z'p l’q
0
Fio,g+3(Dx) = kla , Fro;10(Dx) = kA + wcTy, Fio11(Dx) = wkTp,
Zq
0 0
Fii,y = wys— Dy’ Fi1,046(Dx) = h187%7F11;10(Dx) = WK,
Fi1.11(Dx) = hA 4+ wm, p,q=1,2,3.
and
FDw) = (FuDw)
11x11
where
~ 82 2
B (Dy) = uAd,, + (A — koAb, + (ks + k :
pal )=H pq+( 0+M)a 0z, p+3,q+3( x) = ke pq+( 4+ 5)3Ip5'zq
9? -
Fyi6.q46(Dx) = hAdpg + (ha + hs)agc oz, 10:0(Dx) = kA, F11.11(Dy) = hA,
P

Fp;quS(DX) = Fp;q+6(DX) = Z:ﬂer3:,q(DX) = Fp+6;q(DX) =0,
Fp+3 q+6(D ) = Fp+6'q+3(DX) = Fie(DX) = Fei(DX) =0,
Fip11(Dx) = Fiy. 10( ) =0, p,q¢=123 e=10,11; i=1,..,9.
The system of equations (3.2)) can be represented as
F(Dy)U(x) =0,
where U = (u,v,w,0, P) is a vector function with eleven components on E3. The
matrix F(Dy) is called the principal part of operator F(Dy).

Definition 1: The operator F(Dy) is said to be elliptic if [F(k)| # 0, k = (1, p2, f13)-

Since |F (k)| = p?Mkkekrhhohz| k|22, X = No+2u, k7 = ka+ks+ke, hy = hy+hs+hs.
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Therefore, operator F(Dy) is an elliptic differential operator iff
pMkkgkshhghy # 0. (3.3)
Definition 2: The fundamental solution of the system of equations (3.2)) (the funda-

mental operator matrix F) is the matrix G(x) = | Gg(x) satisfying condition
11x11

F(D,)G(x) = d(x) I(x), (3.4)

where ¢(x) represents the Dirac delta, I = (dg;)11x11 is the unit matrix, and x € E3.

4. CONSTRUCTION OF G(x) IN TERMS OF ELEMENTARY FUNCTIONS

Let us consider the system of non-homogeneous equations

(1A 4 (N + p) grad div + pw?]u + wy1 Tp grad 6 + wwy, grad P = H, (4.1)

[k A + (k4 + Es5) grad div + ks]v + wwrkiw + ki grad 0 =V, (4.2)

twk1V + [heA + (hy + hs) grad div + hg|lw + hy grad P = W, (4.3)

—y1diva — k3 divv + [k A + weTp]0 + wkrP = Z, (4.4)

—vodivu — hgdivw + wrTp 0 + [ A + wm]P = X, (4.5)

where ks = —kg + wwer, hg = —ha + wmq; H, V, W are vector functions with three

components on E3; Z and X are scalar functions on E3.

Equations (4.1)-(4.5) can also be written as
F"(Dx)U(x) = Q(x), (4.6)
where F!" is the transpose of matrix F , Q = (H,V, W, Z, X) and x € E3.

Using the divergence (div) operator on the equations (4.1) -(4.3), we get

AA + pw?] divu + wy ToA 0 4 wy AP = divH, (4.7)
(k7 A + kg) divv + wrky divw + k1 A0 = div 'V, (4.8)
wky divv + (hr A + hg) divw + hi AP = divW. (4.9)
The equations (4.4), and (£.7)-(4.9) can be expressed as
N(A)S = Q, (4.10)

where S, Q, and N(A) are given in Appendix A.

The equation (4.10]) can be written in determinant form as
I'i(A)S =1, (4.11)
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where I'1 (A), and ¥ are given in Appendix A.

On expanding I'; (A), we see that

5

T (A) =J(Aa+A)).

i=1

where A7, i = 1,....,5 are the roots of the equation I';(—¢) = 0(with respect to ).
Applying operator I'1 (A) to the equation (4.1)), we get
D1 (A) A+ A)u=T (4.12)

where A2, and ¥’ are given in Appendix A.

Multiplying equations and by h¢A + hg and wk; respectively, we obtain
(heA + hg)[keA + (k4 + k5) grad div + kg]v + (heA + hg)iwriw
= (heA + hg)[V — ky grad 6], (4.13)
and
(twk1)*v 4 wri[hgA + (hy + hs )grad div + hg]w = wk1[W — hy grad P].  (4.14)
Using equation in equation (4.13)), we obtain
[(heA + hg)(keA + kg) — (wwk1)?]v = wk (hg + hs) grad divw
+(heA + hg)[V — k1 grad 0 — (k4 + ks) grad div v] — wk  [W — hy grad P].  (4.15)
Applying operator I'1 (A) to the equation and using equation , we get
I'1(A)(A)v =", (4.16)
where T'3(A), and ¥ are given in Appendix A.
It can be seen that
L2(A) = (A +A)(A +X3),
where A2, \2 are the roots of the equation I'y(—¢) = O(with respect to &).
Multiplying equations and by wky and kgA + kg respectively, we obtain
(whky)[keA + (kg + ks) grad div + ks]v + (twk1)*w = (wr)[V — ki grad 0], (4.17)
and
(twr1) (ke A + kg)v + (ke A + kg)[he A + (ha + hs )grad div + hg]lw =
= (ke A + kg)[W — hygrad P]. (4.18)
Utilizing equation in equation , we obtain
[(Re A + hg) (ke A + ks) — (wr1)?]w = wori (ks + ks) grad div v
+(keA + kg)[W — hy grad P — (hy + hs) grad divw] — wk1 [V — ky grad 0], (4.19)
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Applying operator I'1 (A) to the equation (4.19) and using equation (4.11]), we get
T (A (A)w =", (4.20)
where W' is given in Appendix A.

From equations (4.11)), (4.12), (4.16) and (4.20)), we obtain
O(A)U(x) = ¥(x), (4.21)

where ¥, and ©(A) are given in Appendix B.

The expressions for ¥’ ®"” ¥ and V,, (p = 4,5) can be rewritten in the form

5
I — m [H(A)J + w11 (A) grad div] H+ Zwﬂ(A) grad w;, (4.22a)

=2

1

‘I’/I —
>

(hA + hg)['1(A)J + waa(A) grad div} V + wi2(A) grad divH

1
+ waz(A) grad Z + ws2(A) grad X + { - waanl(A)J + w32 (A) grad div] W,
(4.22b)

o H*(;%A ¥ k)T (A)T + was(A) grad div} W+ wi3(A) grad div H

1
+ wy3(A) grad Z + ws3(A) grad X + [ - mbwmfl(A)J + w3 (A) grad div} V,

(4.22¢)
U, = wip(A) divH 4+ wap (A) div' V +wsp (A) div W 4wy, (A) Z4ws,(A) X, (4.22d)
where J = (645 )3x3 is the unit matrix and the coefficients wp;, p,i = 1,...., 5 are given

in Appendix B.

From equations (4.22)), we have
¥(x) = R"(Dx)Q(x), (4.23)
where the matrix R(Dy) is given in Appendix B.

From equations (4.6)), (4.21]) and (4.23]), we obtain
®U =R"F"U.
The above relation implies
R"F" = ©.
Therefore, we obtain
F(Dx)R(Dx) = ©(A). (4.24)
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‘We assume that

Let .
Y00 = (¥560) V0 = S )

11x11 =1

8
Ypt3ip+3(X) = Yprepre(x) = Z T2959(X),
g=1,976

Yy (x ngggq (x)=0p=1,2,31=10,11¢q,z2=1,....,11 g # 2

where ¢4(x), g =1,....8, 1p, p=1,.....,6, ro;, L = 1,....7,8, and 134, ¢ = 1,..., 5 are
given in Appendix C.

Lemma 1: The matrix Y defined above is the fundamental matrix of operator
O(A), ie.
O(A)Y (x) = 0(x) I(x). (4.25)

Proof: To prove the lemma, it is sufficient to prove that

THA)(A + AV (x) = 3(x), (4.26)
['1(A)T2(A)Yau(x) = 0(x), (4.27)
Fl(A)Ylo;lo(X) = 6(X) (428)

Let us consider a sum

: > (=1)z
Sy = s

=7

i=1
where z;, j =1,....,7 are given in Appendix C.

On simplifying the right hand side of above relation, we obtain

6
Z T = 0. (429)
i=1

Similarly, we find that

6 6 2
rii (A2 = \2) o,zm{n (A2 =) } =0,
=2 i=3 j=1
6 3 6 4
Zm{]‘[(x? - )\f)} = O,Zm[H(Ai ~ )\?)} =0,
i=4 j=1 i=5 j=1

H 7“16()\? M) =1 (4.30)
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Also,
(B4 26, (x) = 6(0) + (X2 = Ny (%), p.g=1,..8. (4.31)
Now, consider

6 6
T1(A)(A + )Y (x) HAH ancg

Using equations (4.29)-(4.31]) in the above relation, we obtain
6

DUA)A + )V = [[(A + A7) Z[ )+<A%—A§)<g<x>}

=2 g=1

1=2 g
[ [imm a2 [6<x> n A3><g<x)H
=3 g=2
6 6 2
=TI 30| o | TT0% - 28100
=3 g=3 j=1

=4 9=  LjZi l
= E(A +2?) L}Zm [f[l(xf - )\3)} cg(x)]
6 6 3
_ g(A pe [;mg L]:[l(xﬁ - )\E)} [5(){) 2 Ag)gg(x)”
6 6 4
- g(A +22) [;m Ll:[l(xi -~ )\3)} cg(x)]
A+ [Z [f{l@;‘? -] [560 + 02 = X))
,

Equations (4.27) and (4.28) can be proved in a similar way.

We introduce the matrix
G(x) = R(Dx)Y (x). (4.32)
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From equations , and , we obtain
F(Dyx)G(x) = F(Dx)R(Dx)Y(x) = O(A)Y(x) = 0(x) I(x).
Hence, G(x) is a solution to the equation (3.4).

Theorem 1: If condition (3.3) is satisfied, then the fundamental solution of the
system of equations ([3.2)) is the matrix G(x) given by equation (4.32) and it is rep-
resented as follows:

Ggi(x) = Rgi(Dx)Y11(x), Ggq(x) = Rgq(Dx)Ya4(x), Gg;(x) = Ry;(Dx)Y10510(x),
g=1,....,11; 1=1,2,3; ¢=4,....,9; j=10,11.
5. BASIC PROPERTIES OF MATRIX G(x)

Theorem 2: Each column of the matrix G(x) is a solution of system of equations
(3-2) at every point x € E3 except at the origin.

Theorem 3: If the condition (3.3) is satisfied, then the fundamental solution of
the system F(Dy)U(x) = 0 is the matrix

B = (Bat)

11x11
1 02 1 -~
By(x) = |= ~ Lhylam),
109 = [§ g — 1 50
1 2 1 -~
Bi i = |— — —R;; * ,
+3,5+3(%) [k7 om0z, ko ]]§2 (x)
1 2 1 -
B' o pu— — — — .. *
z+6,3+6(x) [h7 0x,0x;  he w} S5 (%),
S (x ¢ (x
Bio;10 = %7311;11 = 1}(1 )7Biq = By = 0,B;434 = B,it3 =0,
x
Bit6;a = Basi+e = 0, Bio;11 = Bi1;10 = 0,67 = —M,GS = —%,
- 62

= — Adyj 7 =1,2,3; =4,..,11; [=7,..,11; d=10,11.
1] (‘9%3% 17 (2W) 3 4y 9y q ) i ’ PR ’ ’

6. FUNDAMENTAL SOLUTIONS OF SYSTEM OF EQUATIONS IN EQUILIBRIUM
THEORY

If we put w = 0 in the system of equations (3.2), we obtain the system of equa-
tions in equilibrium theory of thermoelastic diffusivity with microtemperatures and
microconcentrations as:

[LA 4+ (Ao + p) grad div]u — v, grad  — y2 grad P = 0,
[k6A + (k4 + ks) grad div — ko]v — ks grad 8 = 0,
[h6 A + (hy + hs) grad div — ho]w — hs grad P = 0,
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kidivv+ kA0 =0,
hidivw +h AP =0. (6.1)

The second-order matrix differential operator with constant coefficients is introduced
as:

BD.) - (EaD)

11x11
where matrix E(Dx) can be obtained from F(Dy) by taking w = 0.

The system of equations can be represented as

E(D4)U(x) =0.
Definition 3: The operator E(Dy) is said to be elliptic differential operator iff equa-
tion (3.3) is satisfied.
Definition 4: The fundamental solution of the system of equations (the fun-
damental matrix of operator E) is the matrix G'(x) = | G7,;(x) satisfying

11x11
condition

E(D,)G’ (x) = §(x) I(x). (6.2)

We consider the system of non-homogeneous equations

[WA + (N\o + p) grad divju = H’, (6.3)

(kA + (kg + ks) grad div — ko]v + ky grad 6 = V', (6.4)
[heA + (hy + hs) grad div — hy]w + hy grad P = W', (6.5)
—yydivu — kgdivv + kA= Z', (6.6)
—vodivu — hsdivw + hAP = X/, (6.7)

where H', V/, W' are vector functions with three components on E3; Z’ and X’ are
scalar functions on E3.

The system of equations ((6.3)-(6.7)) can also be written in the form
E"(D,)U(x) = Q'(x), (6.8)
where E'" is the transpose of matrix E and Q'(x) = (H', V', W' Z' X").

Applying operator div to the equations (6.3)-(6.5), we obtain

Adivu = L divH = @, (6.9)

A
(k7A — kg) divv + ]{31 Af = div \f’7 (610)
(h7A — hy)divw 4+ hy AP = div W' (6.11)

Using equation in the equation (6.10]), we get
A(A — D?)divv = @, (6.12)
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where D?, and ®, are given in Appendix D.

Using equation (6.7) in equation (6.11)), we get
A(A — L) divw = @3, (6.13)

where L?, and ®5 are given in Appendix D.

Applying operators A(A — D?) and A(A — L?) to the equations and (6.7),
respectively and using equations and , we get
A%(A - D?*) 0 = d,, (6.14)
A*(A — L*) P = @5, (6.15)
where ®4, and ®5 are given in Appendix D.

Applying the operators A, A%2(A — D?), A2(A — L?) to the equations (6.3)), (6.4)
and (6.5 respectively and using equations and ((6.12)-(6.15), we obtain

A’u=&,
A%(A — D?) (A — ’]‘22) v=2>a"
6
A%(A - L?) <A - ZQ) v=2>a" (6.16)
6

where ®', &, and &' are given in Appendix D.

From equations ((6.14))-(6.16)), we get
A(A) U(x) = &(x), (6.17)
where A(A), and ®(x) are given in Appendix D.

The expressions for ®', ®”, &', and ®,, p=4,5 can be rewritten as
$(x) = T"(Dx)Q'(x), (6.18)
where matrix T(Dx) is given in Appendix E.

From equations , (6.17) and (6.18]), we get
E(D4)T(Dx) = A(A). (6.19)
Let

i = (vp0)

11x11
Yy, (%) = 65 (%), Ypia.,03(%) = 71165 (%) 4 1967 (%) + 71363 (%) + 71565 (%),
Y i6p6(X) = 79165 (X) 4 19967 (X) + 75465 (%) + 79656 (%),
Y1/0;10(X) = 7315 (X) + 73967 (%) + 73363 (%),
Y1/1;11(X) =715 (X) + 767 (%) + 7465 (%),
Y.(x)=0p=1,2,3¢q,2=1,.....,11 ¢ # z,
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where ¢/ (x),1 = 3,..,6, 71,7 = 1,2,3,5,15,,¢ = 1,2,4,6,75,,2 = 1,2,3, and
r’lp,p =1,2,4 are given in Appendix F.

Lemma 2: The matrix Y’ defined above is the fundamental matrix of operator
A(A), ie.
A(A)Y'(x) = §(x) I(x). (6.20)

Proof: To prove the lemma, it is sufficient to prove that

A?Y]) (x) = 6(x), A*(A=D?)(A~77)Yiy(x) = 6(x), A*(A=L?)(A~73)Y7:(x) = 8(x),
AQ(A - DZ)Yllo;lo(X) = 6(x), AZ(A - LQ)Ylll;ll(X) = 6(x). (6.21)

It is very easy to prove equations ([6.21]). This has been left for the reader.

We introduce the matrix
G/(x) = T(Dx)Y'(x). (6.22)
From equations , and , we obtain
E(Dx)G (x) = 6(x)1(x).
Hence G/(x) is a solution to the equation (6.2).

Theorem 4: If the condition (3.3 is met, then the fundamental solution of the
system of equations (6.1)) is the matrix G’(x) given by the equation (6.22)) and it can
be represented in the following form:

01 (%) = Tou(Ds) Y11 (%), Gypy3(x) = Ty43(Dx) Yia (%),

G;;lJrG(X) = Tg;l+6(Dx)Y7/7(x)» G;j (x) = TQJ(DX)Y—jIj(X)v
g=1,....,111=1,2,3 7 =10,11.

7. CONCLUSIONS

In terms of elementary functions, the fundamental solution of system of equations
in the theory of thermoelastic diffusive materials with microtemperatures and mi-
croconcentrations in the case of steady oscillations has been constructed. By poten-
tial method, the fundamental solution to the system of equations makes it possible
to investigate three-dimensional boundary value problems of theory of thermoelas-
tic diffusive materials with microtemperatures and microconcentrations. Some basic
properties of the fundamental matrix are also discussed.

Appendix A
1 C
mz;, K =mw, y1 = P1+ B2k, Y2 = Pom, Ag = A — P22, csziE—me
0

S = (divu,divv,divw, 0, P),Q = (wy, ...... ,ws) = (divH, divV,divW, Z, X),
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N(A) = (Ngl(A))5X5 =

AA + pw? 0 0 wy1ToA Lwya A
0 k7A + kg LWRK1 klA 0
= 0 LWK1 h7A + hg 0 hiA
-7 —ks3 0 EA + wcly WK
—79 0 —hs wrTy hA + wm .
T
‘I’—(\Ifl, ....... ,\115),\111,:%;]\[*101',
1 .
1"1(A)ZM|N(A)|7 M* = Mkk;hh7, p=1,....5
and NN}, is the cofactor of the element N;;, of the matrix N.
2= g~ M (AVH - grad(() v Ty v
6—7; —; 1(A)YH — grad[(Ao + 1) V1 + w1 ToWy + w2 ¥s] |,
_ 1 ke + kg LWK1
T2 (A) TN+ LWK1 h6A +hg |’

N* _ kﬁhﬁ, ‘Il,/ _ % |:(h6A —+ hS)[Fl(A)V — kl grad \114 — (k4 + k5) grad \]:12]

— LWk [Fl(A)W — hy grad Uy — (h4 + h5) grad \1’3]:| s

1
o' — F |:(k‘6A + k‘g)[rl(A)W — hygrad U5 — (h4 + h5) grad \113}

—wk1[['1(A)V — kg grad Uy — (kg + k5) grad \IIQ]:|

Appendix B
v = (‘Illv lI’/lv ‘I’//lv \:[147 \115)7

6

Opp(A) =T1(A)(A+3) = [J(Aa+ D),
i=1
8
Opiapi3(A) = Opropre(A) =T1(AT2(A) = [ (A +AD),
i=1,i£6
5
0;;(A) =T1(A) = [J(A+ A7), ©gy(A) =0,
=1
p=123 gq=1,..,11; j=10,11; g#q

wp(A) = - [(Ao F N (A) + o ToN(A) + wN&(A)}

M*p
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1

wp2(A) = TMN* P

wra(A) = ~ 3 p e v
N* N
'LUp4(A) — Mi’:l7 wp5(A) = ]\41)537 = 1, ..... ,5
R(D,) = (7,4(D.) )
11x11
Rij(Dy) = I (A)dij +wi1(A) il
(D) = 3 L8005 ()55
1 0
Rits;+3(Dx) = W“LGA +he)T1(A)di; + wQQ(A)axlax »
K3 J
1 >
Ritej+6(Dx) = ﬁu{:("A + ks)T1(A)i5 + wss(A) Ox;0x;’
1 J
0 o2
Ri.jy3(Dy) = A)m——, Ri;j16(Dx) = A)mr—,
’]_,'_3( ) wlg( )szax] ,j+6( ) w13( )axzax]
9 >

Riypi6(Dx) = wlp(A)%a Riy3.5(Dx) = w21(A)W,
i0T;

K2

02 1
Ri+3;j+6(Dx) = wzg(A)m — FLLUKJlI‘l(A)éij7
2 J

0 9?
Riy3p+6(Dx) = W2p(A)7ami Ritvej = w31(A)M7
R (Dx) (A) o ! i (A)s
i+6;5+3(Jx) = W32 Ao, aRwRill i
J &viaxj N J
0 0
Rii6.p16 (Dx) = w3p(A) oz, Ry 16 (Dx) = wpl(A)iﬁxi»

0 0
Rpi6:i+3(Dx) = wpz(A)%, Rpi6.i+6(Dx) = U’pS(A)g,

3

Rp+6;l+6 = wpl(A)v 7".7 = 1a233; pal = 4a5

Appendix C
eAol| : 2 2\—1 & 2 2\—1
Cg(x):_mmlp:‘r‘[ ()\i_)\p) 77“21:‘ H A=),
i=1,i#p 1=1,i#6,1#l
5
rag= [ OF=2D)7" p=1,...6; g=1,....8 1=1,..7,8 q=1,..
i=1,i#q

6
(A5 = XD TTOE = AD (A3 = A3),

|:(h6A+hg) [(katFks)Npo+ki Npy|—wrihy Npjs — 1wk (h4+h5)N;3]

1
|:(k6A+k8)[(h4+h5)N*3+h1N;5] LwﬂlklN;4LWI€1(k4+k5)N;2:|

.5
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6 6
i= 3 g=4 1:5
6 6
aa= [ OF =) TS = XD [TOF = A2 - 2d),
1=2,i7#3 j=4 =5
6 6
a= [ & H A TTOS =208 = A3),
i=2,i#4 j=3,j =5
6 6 6
»= [ H N | S EPDIPVEPE
i=2,i#5 j=3,j 1=4,1#5
5 5 5
=2 ]:3 l:4
6 6 6 6
2= [[OF =) T8 =MD T3 =D [T = (8 = 29).
i=2 Jj=3 1=4 p=5
Appendix D
1 1 .
D2 = ﬁ(k kQ — kgkl),q)Q = m[k’Adlvvl — k‘l"}/lq)l — kl AZ/],
1 1 .
L? = ﬁ(hhz — hghy), &5 = Tm[hAdIVW/ — h1v2®1 — Ay AX’],
1 1
Py = E[kg Dy + (A = D) (A Z +71®)], D5 = E[h;; B3+ (A — L) (A X +72®1)],

1
= ;[A H' — (Ao + u) grad @]

&' = _ ik (A - ) grad ®; — i <A - ) grad A Z'+

kkr e ke ke
! A?%(A - D?) — L (ka + ks)k A + k1ks p A grad div |V’
kﬁ kk?
h h h h
" =~ (A_2) gradd; — —1 (A —"2) grad A X
i he ) S T Wy he ) EASAT

1 A2(A7L2)fi (ha + hs)h A + hyhg ¢ A grad div| W/,
h6 hh7

b(x) = (&, ®" "y, P5), AA) = (APQ(A))
11x11

Aii(A) = A2 Aysi05(A) = A2(A — D?) (A - k6>

h
Airoire(A) = A% (A — L?) (A - hZ) Aygi10 = A2(A — D?),

A =A*(A—-L2), Ay=0, 4,j=1,2,3; Lj=1,...,11; 1#]
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Appendix E
(D) = (7(D.
11x11

82
8.%1'8.%]' ’

1
T;(Dx) = 0 Ad;; +mar(A)

1, 2\ 5 02
Tz+3;3+3(DX) = ]?6 A*(A—-D )5ZJ +ma2(A) al‘iaxj’
1 ., 9 0?
Tive;j+6(Dx) = 7o A (A= L7)6i; + mQQ(A)M’
82
TlO;lO(Dx) = m44(A)7 Tll;ll(Dx) = m55(A), Tz‘;j+3(Dx) = m12(A)W7
i0T;
Tosro(Ds) = mis(A) =2 Ty1p(Da) = m1aA) -2, Tos(Dae) = s (A) -2
4;5+6 x) = M13 axlaxj > 1410 x) = Mi4 axl y 1411 x) = Mi5 axl )
0
Ti+3.;(Dx) = Tit3,46(Dx) = Ti43.11(Dx) =0,  Tiys.10(Dx) = maa(A) pI
0
Tit6.j(Dx) = Tite;j+3(Dx) = Tite10(Dx) =0, Tit6.11(Dx) = m3s(A) Ero
0
T10;i(Dx) = Tio;i+6(Dx) = Th0;11(Dx) = 0, Tho;i4+3(Dx) = ma2(A) EIE
0
T11;i(Dx) = T11;i+3(Dx) = T11;10(Dx) =0, Ti1i16(Dx) = m53(A)8x-’
Ao + 1 Alk(ky 4 ks)A + k1 k3]
A) = = A) = —
mn( ) ,u)\ ) m22( ) k kg s
Alh(hg + hs)A + hyhs] A(krA —k2)
5 A = — A = —
mas(A) b in . mug(A) K her ,
A(h7A — hy) kim(A - 2)
mss(A) = ST 02y () = - Rl
so() = SIS l8) = =
hivya(A — B2) kA —k
m13(A) = —~7}16, m14(A) = M,
ANhhy ANk Ky
’)’2(h7A — h2) kgA th
py = 22 = he) Ay =2 A) =
m15( ) Nhhe ) m24( ) kk7’ m35( ) hh7’
EA(A - k2 hA(A — h2)
A)=—— T’ A — Ml =12
m42( ) kk7 ) m53( ) hh7 ) 1, ) a3
Appendix F
« e_Dlxl " e_L‘xl " e_T1|x| ” 6_7-2|x|
3 (x) = —my si(x) = —m7 G (x) = —my S (x) = — x|’
1, D412 1 , 1

/

T = —F T = — r e — r -

11 52 T12 4 > T13 172 v T15 /2 2\’
D27} D47 DY(D? —713) (17 — D?)
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10.

11.

12.

13.

14.

oL T,_L2+722 oo 1 oo 1
21 L2723’ 22 Liry 2 LY(L2% —72)’ 26 (13 — L?)’
1 1 1 1
Ty = BGYE Thy = —Ti3 = YR = “ T2 Tho = —Thy = R
D D L L
k h
2 2 2 2
T =—, T4 = —.
ke he
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