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Abstract. The goal of this study is to calculate the eigenvalues that provide the eigenfre-
quencies and the critical loads for two heterogeneous beams with three supports: the (first)
[second] beam is (fixed)[pinned] at the left end, the intermediate support is a roller while the
right end of the beams can move vertically but the rotation is prevented there. The beams
are referred to as FrsRp and PrsRp beams. Determination of the (eigenfrequencies) [critical
loads] leads to three point eigenvalue problems associated with homogeneous boundary con-
ditions. With the Green functions that belong to these eigenvalue problems we can transform
them into eigenvalue problems governed by homogeneous Fredholm integral equations. The
eigenvalue problems can then be reduced to algebraic eigenvalue problems that are solvable
numerically by utilizing effective solution algorithms.
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1. Introduction

Since beam buckling can be a prevalent cause of failure in engineering applications,
it has been the focus of research for a long time. The Swiss mathematician Leonhard
Euler was a pioneer in this subject, publishing his well-known formula for the critical
(buckling) load of straight bars under compression in 1759. There are multiple sources
about shells, columns, arches and other structures [1–3]. For example, the books
[3, 4] provide extremely thorough information about solutions to a wide range of
engineering problems, as well as applications. Article [5] investigates experimentally,
analytically and numerically the static and dynamic stability problem of columns
under self-weight. In [6] both geometrical and load imperfections are considerred in
the buckling studies of columns.

Furthermore, the first concept of the Green function was published by George Green
in 1828. His book [7] presents, discusses, and demonstrates how to use the Green
function approach to electrostatic issues governed by partial differential equations.
In the publication [8], the Green function for two-point boundary value problems
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governed by ordinary differential equations was established. In 1926, the first book
[9] that comprehensively covered the notion of the Green function was published.

The results published in [10] were generalized for degenerated ordinary differential
equation systems in 1975 [11, 12].

In the publication [13], the existence proof for several three-point boundary value
issues linked to third-order nonlinear differential equations is presented by using Green
functions. The related Green functions for some three-point boundary value problems
governed by linear ordinary differential equations of order two are provided in article
[14].

The free vibration and buckling problems of two heterogeneous beams are solved
in this article based on the aforementioned literature. Cross-sectional inhomogene-
ity refers to the fact that the material is linearly elastic, isotropic, and the material
distribution can change throughout the cross-section. Free vibration and stability
equations are given for three-point boundary value issues. These are subsequently
replaced with Fredholm integral equations using the Kernel function. A formulation
of the Green function for three-point boundary value issues with homogeneous bound-
ary conditions is also included. The boundary element approach is used to provide
numerical solutions to integral equations, and algebraic equations are introduced in
this manner. The eigenvalues of free vibration and the linear buckling loads are af-
fected significantly by the location of the middle support in general. The results are
compared to the results of some finite element calculations and high correlation is
found.

2. Differential equations

2.1. Governing equations. The considerred heterogeneous FrsRp and PrsRp beams
are shown in Figure 1. The axial force N acting on the beams is compressive. The
cross section of the beams is uniform throughout their length. The axis x̂ of the
coordinate system x̂, ŷ, ẑ coincide with the E-weighted center line of the beams. Its
origin is located at the left end of the beam. The beams are symmetric with respect
to the coordinate plane x̂ẑ. It is assumed that the modulus of elasticity E satisfies
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Figure 1. FrsRp and PrsRp beams
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the condition E(ŷ, ẑ) = E(−ŷ, ẑ) over the cross section A, i.e., it is independent of
the coordinate ẑ. In this case the beam has cross sectional heterogeneity [15]. L is

the length of the beams while b̂ gives the position of the middle roller support.

The E-weighted first moment Qŷ is zero in this coordinate system:

Qŷ =

∫
A

ẑE(ŷ, ẑ)dA = 0 . (2.1)

Equilibrium problems of beams with cross sectional heterogeneity – the axial force N
is zero – are governed by the ordinary differential equation [15]:

d4ŵ

dx̂4
=

f̂z
Iey

, (2.2)

where ŵ(x) is the vertical displacement of the material points on the E-weighted

center line, f̂z(x) is the intensity of the verical distributed load acing on the beam.
The E-weighted moment of inertia Iey is defined by the equation

Iey =

∫
A

E(ŷ, ẑ)z2 dA . (2.3)

If the beam is homogeneous the modulus of elasticity E is constant. Hence

Iey = IE, I =

∫
A

z2 dA (2.4)

in which I is the moment of inertia.

In what follows we shall use dimensionless variables defined by the following rela-
tions [16]

x = x̂/L, ξ = ξ̂/L, w = ŵ/L,

y =
dŵ

dx̂
=

dw

dx
, b = b̂/ℓ̂ , ℓ =

x

L

∣∣∣
x=L

= 1 ,
(2.5)

where ξ̂ is also a coordinate measured on the axis x̂ with the same origin as for x̂.
Applying dimensionless quantities to equation (2.2) we have

w(4) = fz , w(0) = w , w(k) =
dk w

dxk
, (k = 1, . . . , 4); fz =

L3f̂z
Iey

(2.6)
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Table 1.

Boundary conditions

FrsRp beams PrsRp beam

w(0) = 0 , w(1)(0) = 0 w(0) = 0 , w(2)(0) = 0

w(1)(ℓ) = 0 , w(3)(ℓ) = 0 w(1)(ℓ) = 0 , w(3)(ℓ) = 0

Continuity conditions

w(b− 0) = w(b+ 0) = 0 ,

w(1)(b− 0) = w(1)(b+ 0) ,

w(2)(b− 0) = w(2)(b+ 0) ,

The ordinary differential equation (2.6)1 (ODE) is associated with the boundary
and continuity conditions presented in Table 1.

The general solution for the homogeneous ODE

w(4) = 0 (2.7)

is very simple:

w =

n=4∑
n=0

anwn = an + a1x
1 + a2x

2 + a3x
3 + a4x

4 , (2.8)

in which ak (k = 0, . . . , 4) are undetermined integration constants.

Making use of the Green functions that belongs to the boundary value problems
determined by ODE (2.6) and the corresponding boundary and continuity conditions
presented in Table 1 the solution for the dimensionless deflection w is given by the
integral

w(x) =

∫ ℓ

0

G(x, ξ)fz(ξ) dξ . (2.9)

where G(x, ξ) stand for the Green functions in question.

The Green functions we shall need are presented in Section 3.

2.2. Vibration problem. The dimensionless amplitude for the free vibrations of
FrsRp and PrsRp beams will also be denoted by w. It should fulfill the the following
homogeneous ODE

d4w

dx4
= λw , λ =

ρaAω2L4

Iey
, (2.10)

where λ is the eigenvalue sought, ρa is the average density over the cross section while
ω is the circular frequency of the vibrations.

Substituting λw(ξ) for f(ξ) in (2.9) yields the homogeneous Fredholm integral
equation

w(x) = λ

∫ ℓ=1

ξ=0

G(x, ξ)w(ξ) dξ . (2.11)

In this approach, the three point eigenvalue problem determined by ODE (2.10) and
the boundary and continuity conditions presented in Table 1 is reduced to an eigen-
value problem governed by the homogeneous Fredholm integral equation (2.11).
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2.3. Stability problem. If the uniform heterogeneous beams shown in Figure 1 are
subjected to an axial force N the corresponding equilibrium problems are governed
by ODE

w(4) ±N w(2) = fz, N = L2 N

Iey
, (2.12)

where the axial force N is constant (N > 0) while the sign of N is [positive] (negative)
if the axial force is [compressive] (tensile).

If the stability problem is considered the axial force is compressive and fz = 0. We
have, therefore, two eigenvalue problems (one for each beam shown in Figure 1) – the
eigenvalue sought is N – determined by ODE

w(4) = −N w(2) (2.13)

and the boundary and continuity conditions in Table 1. If we write −N w(2) for fz
in (2.9) we get

w(x)=−N
∫ ℓ

0

G(x, ξ)
d2w(ξ)

dξ2
dξ=−N

(
G(x, ξ)

dw(ξ)

dξ

∣∣∣∣ℓ
ξ=0

−
∫ ℓ

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ

)

where

G(x, ξ)
dw(ξ)

dξ

∣∣∣∣ℓ
ξ=0

= 0

since G(x, 0) is zero and the derivative dw(ξ)/dξ is also zero if ξ = ℓ = 1. Hence

w(x) = N
∫ ℓ

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ . (2.14)

Introduce the notations

dw

dx
= y,

∂2G(x, ξ)

∂x ∂ξ
= K(x, ξ)

and derive equation (2.14) with respect to x. In this way we get a homogeneous
Fredholm integral equation:

y(x) = N
∫ ℓ

0

K(x, ξ) y(ξ) dξ . (2.15)

Consequently, the eigenvalue problems determined by ODE (2.13) and the homoge-
neous boundary and continuity conditions presented in Table 1 are reduced to eigen-
value problems governed by homogeneous Fredholm integral equations. It should be
mentioned that the above line of thought is based on book [17] and paper [16].
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3. Green function for three-point boundary value problems

3.1. Definition. In this subsection we present the definition that provides the main
properties of the Green function for ODEs. The definition is based on book [18].

Consider the inhomogeneous ordinary differential equation

L[y(x)] =

2k∑
n=0

pn(x)y
(n)(x) = r(x) , (3.1)

where k is a natural number, the functions pn(x) and r(x) are continuous and p2k(x) ̸=
0 if x ∈ [0, ℓ] (ℓ > 0). Moreover let b an inner point in the interval [0, ℓ]: b = ℓ1,
ℓ− b = ℓ2 and ℓ1 + ℓ2 = ℓ.

The inhomogeneous differential equation (3.1) is associated with the following ho-
mogeneous boundary and continuity conditions:

2k∑
n=0

αnrIy
(n−1)
I (0) = 0 , r = 1, 2, . . . , k

2k∑
n=0

βnrIy
(n−1)
I (b)−

2k∑
n=0

βnrIIy
(n−1)
II (b) = 0 , r = 1, 2, ...., 2k

2k∑
n=0

γnrIIy
(n−1)
II (ℓ) = 0 . r = 1, 2, . . . , k

(3.2)

The Roman numeral I and II belong to the intervals [0, b] and [b, ℓ]: yI and yII are
the solutions to the differential equation in the intervals I and II. It is assumed that
αnrI , βnrI , βnrII and γnrII are arbitrary constants.

The Green function G(x, ξ) that belongs to the three point boundary value problem
(3.1), and (3.2) is defined by the following formulas and properties [18]:

Formulas:

G(x, ξ) =


G1I(x, ξ) if x, ξ ∈ [0, ℓ],
G2I(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, ℓ],
G1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
G2II(x, ξ) if x, ξ ∈ [b, ℓ].

(3.3)

Properties:
1. The function G1I(x, ξ) is a continuous function of x and ξ if 0 ≤ x ≤ ξ ≤ b and
0 ≤ ξ ≤ x ≤ b. In addition it is 2k times differentiable with respect to x and the
derivatives

∂nG1I(x, ξ)

∂xn
= G1I(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2k (3.4)

are also continuous functions of x and ξ in the triangles 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤
x ≤ b.

2. Let ξ be fixed in [0, b]. Then the function G1I(x, ξ) and its derivatives

G
(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.5)



Vibration and stability of heterogeneous beams with three supports 131

should be continuous for x = ξ:

G
(n)
1I (ξ + 0, ξ)−G

(n)
1I (ξ − 0, ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.6a)

The derivative G
(2k−1)
1I (x, ξ) should, however, have a jump if x = ξ:

G
(2k−1)
1I (ξ + 0, ξ)−G

(2k−1)
1I (ξ − 0, ξ) =

1

p2k(ξ)
. (3.6b)

In contrast to this, G2I(x, ξ) and its derivatives

G
(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.7)

are all continuous functions for any x in [b, ℓ].
3. Let ξ be fixed in [b, ℓ]. The function G1II(x, ξ) and its derivatives

G
(n)
1II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (3.8)

are all continuous functions for any x in [0, b].

4. Though the function G2II(x, ξ) and its derivatives

G
(n)
2II(x, ξ) =

∂nG2II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (3.9)

should also be continuous for x = ξ:

G
(n)
2II(ξ + 0, ξ)−G

(n)
2II(ξ − 0, ξ) = 0 , n = 0, 1, 2, . . . 2k − 2 (3.10a)

the derivative G
(2k−1)
2II (x, ξ) should, however, have a jump if x = ξ:

G
(2k−1)
2II (ξ + 0, ξ)−G

(2k−1)
2II (ξ − 0, ξ) =

1

p2k(ξ)
. (3.10b)

5. Let α be an arbitrary but finite non-zero constant. For a fixed ξ ∈ [0, ℓ] the
product G(x, ξ)α as a function of x (x ̸= ξ) should satisfy the homogeneous differential
equation

M [G(x, ξ)α] = 0 .

6. The productG(x, ξ)α as a function of x should satisfy both the boundary conditions
and the continuity conditions∑2k

n=1 αnrI G
(n−1)(0) = 0 , r = 1, . . . , k∑2κ

n=1

(
βnrI G

(n−1)(b− 0)− βnrII G
(n−1)(b+ 0)

)
= 0 , r = 1, . . . , 2k∑2k

n=1 γnrII G
(n−1)(ℓ) = 0 . r = 1, . . . , k

(3.11)

The above continuity conditions should be satisfied by the function pairs G1I(x, ξ),
G2I(x, ξ) and G1II(x, ξ), G2II(x, ξ) as well.

Remark 1. It can be proved – see paper [18] for details – that the solution of the
three-point boundary value problem (3.1), and (3.2) has the form

y(x) =

∫ ℓ

0

G(x, ξ)r(ξ)dξ . (3.12)
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Remark 2. If the boundary value problem defined by (3.1) and (3.2) is self adjoint
then the Green function is symmetric [18]:

G(x, ξ) = G(ξ, x) . (3.13)

In Subsections 3.2 and 3.3 we present the Green functions that belong to differential
equation (2.6) under the boundary and continuity conditions presented in Table 1.
The calculations are detailed for FrsRp beams only. As regards PrsRp beams we shall
give the final formulae only.

3.2. Green function for FrsRp beams.

3.2.1. Calculation of the Green function if ξ ∈ [0, b]. We shall assume that G1I(x, ξ)
has the following form:

G1I(x, ξ) =

4∑
m=1

(amI(ξ) + bmI(ξ))wm(x), x < ξ

G1I(x, ξ) =

4∑
m=1

(amI(ξ)− bmI(ξ))wm(x), x > ξ

(3.14)

if x ∈ [0, b]. On the contrary, we search G2I(x, ξ) as

G2I(x, ξ) =

4∑
m=1

cmI(ξ)wm(x), (3.15)

if x ∈ [b, ℓ]. The coefficients amI(ξ), bmI(ξ) and cmI(ξ) are unknown functions, wm(x)
is given by (2.8).

Note that representation (3.14) and (3.15) for G1I(x, ξ) and G2I(x, ξ) ensure the
fulfillment of Properties 1 and 5 of the definition.

Continuity and discontinuity conditions (3.6) result in the following equations

4∑
m=1

bmI(ξ)w
(n)
m (ξ) = 0, n = 0, 1, 2 (3.16a)

and

4∑
m=1

bmI(ξ)w
(3)
m (ξ) = −1

2
. (3.16b)

For FrsRp beams equations (3.16a) and (3.16b) assume the form
1 ξ ξ2 ξ3

0 1 2ξ 3ξ2

0 0 2 6ξ
0 0 0 6




b1I
b2I
b3I
b4I

 =


0
0
0
− 1

2

 . (3.17)

Hence

b1I =
ξ3

12
, b2I = −ξ2

4
, b3I =

ξ

4
, b4I =

1

12
. (3.18)
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Remark 3. Note that (a) the determination of bmI ensures the fulfillment of Property
2 of the Green function; (b) the results obtained for bmI are independent of the
boundary and continuity conditions.

According to Property 6 of the definition G1I(x, ξ) and G2I(x, ξ) should satisfy the
boundary and continuity conditions in Table 1. Utilizing them we get:

(a) Boundary conditions at x = 0:

4∑
k=1

akIwk(0) = −
4∑

k=1

bkIwk(0) , (3.19a)

4∑
k=1

akIw
(1)
k (0) = −

4∑
k=1

bkIw
(1)
k (0) . (3.19b)

(b) Continuity conditions at x = b:

4∑
k=1

akIwk(b) =

4∑
k=1

bkIwk(b) , (3.19c)

4∑
k=1

ckIwk(b) = 0 , (3.19d)

4∑
k=1

akIw
(1)
k (b)−

4∑
k=1

ckIw
(1)
k (b) =

4∑
k=1

bkIw
(1)
k (b) , (3.19e)

4∑
k=1

akIw
(2)
k (b)−

4∑
k=1

ckIw
(2)
k (b) =

4∑
k=1

bkIw
(2)
k (b) . (3.19f)

(c) Boundary conditions at x = ℓ:

4∑
k=1

ckIw
(1)
k (ℓ) = 0 , (3.19g)

4∑
k=1

ckIw
(2)
k (ℓ) = 0 . (3.19h)

The previous linear equations can be given in matrix form as well:



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 b b2 b3 0 0 0 0
0 0 0 0 1 b b2 b3

0 1 2b 3b2 0 −1 −2b −3b2

0 0 2 6b 0 0 −2 −6b
0 0 0 0 0 1 2ℓ 3ℓ2

0 0 0 0 0 0 0 1





a1I
a2I
a3I
a4I
c1I
c2I
c3I
c4I


=

1

12



−ξ3

3ξ2

ξ3 − 3ξ2b+ 3ξb2 − b3

0
−3ξ2 + 6ξb− 3b2

6ξ − 6b
0
0


. (3.20)
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After solving the linear equation system (3.20) the following relationship is obtained
for G1I(x, ξ):

G1I(x, ξ)=

4∑
ℓ=1

(aℓI(ξ)± bℓI(ξ))wℓ(x)=− 1

12
ξ3 ± 1

12
ξ3 +

(
3ξ2

12
±
(
−3ξ2

12

))
x+

+

(
3ξ

12b2 (4ℓ− 3b)

(
8ξb2 − 12ξbℓ+ 4ℓξ2 − 2ξ2b− 3b3 + 4b2ℓ

)
± 3ξ

12

)
x2+

+

(
− 1

12b3 (4ℓ− 3b)

(
6ξ2b2 − 12ξ2bℓ− 3b4 + 4b3ℓ+ 4ℓξ3

)
± −1

12

)
x3 (3.21a)

As regards G2I(x, ξ) we have

G2I(x, ξ) =

4∑
ℓ=1

cℓI(ξ)wℓ(x) = ξ2
(ξ − b) (x− b) (2ℓ− x− b)

2b (4ℓ− 3b)
(3.21b)

3.2.2. Calculation of the Green function if ξ ∈ [b, ℓ]. The assumptions that are used
are similar to those presented in Subsection 3.2.1:

If x ∈ [b, ℓ] then

G2II(x, ξ) =

4∑
m=1

(amII(ξ) + bmII(ξ))wm(x), x < ξ

G2II(x, ξ) =

4∑
m=1

(amII(ξ)− bmII(ξ))wm(x), x > ξ

(3.22)

however, if x ∈ [0, b] then

G1II(x, ξ) =

4∑
m=1

cmII(ξ)wm(x). (3.23)

Here the coefficients amII(ξ), bmII(ξ) and cmII(ξ) are again unknown functions.

We remind the reader of the fact that the above representations for G1II(x, ξ) and
G2II(x, ξ) ensure the fulfillment of Property 1 and 5 of the definition.

Continuity and discontinuity conditions (3.10) lead again to equation system (3.17)
in which now the coefficients bmII(ξ), m = 1, 2, 3, 4 are the unknowns. Hence
bmII(ξ) = bmI(ξ).

It’s worth noting that determining the coefficients bmII assures that the Green
function’s Properties 3 and 4 are satisfied. Making use of the boundary and continuity
conditions given in Table 1 equations again the following equations can be obtained
for the eight unknown coefficients amII(ξ) and cmII(ξ):

(a) Boundary conditions at x = 0:

4∑
k=1

ckII wk(0) = 0 , (3.24a)

4∑
k=1

ckII w
(1)
k (0) = 0 , (3.24b)
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(b) Continuity conditions at x = b:

4∑
k=1

ckII wk(b) = 0 , (3.24c)

4∑
k=1

akII wk(b) = −
4∑

k=1

bkII wk(b) , (3.24d)

4∑
k=1

a
(1)
kII wk(b)−

4∑
k=1

c
(1)
kII wk(b) = −

4∑
k=1

b
(1)
kII wk(b) , (3.24e)

4∑
k=1

a
(2)
kII wk(b)−

4∑
k=1

c
(2)
kII wk(b) = −

4∑
k=1

b
(2)
kII wk(b) . (3.24f)

(c) Boundary conditions at x = ℓ:

4∑
k=1

a
(1)
kII wk(ℓ) =

4∑
k=1

b
(1)
kII wk(ℓ) , (3.24g)

4∑
k=1

a
(3)
kII wk(ℓ) =

4∑
k=1

b
(3)
kII wk(ℓ) , (3.24h)

Since c1II = c2II = 0 the final equation system has the following form:
0 0 0 0 b2 b3

1 b b2 b3 0 0
0 1 2b 3b2 −2b −3b2

0 0 2 6b −2 −6b
0 1 2ℓ 3ℓ2 0 0
0 0 0 1 0 0




a1II
a2II
a3II
a4II
c3II
c4II

 =
1

12


0

−ξ3 + 3bξ2 − 3b2ξ + b3

3ξ2 − 6bξ + 3b2

−6ξ + 6b
−3ξ2 + 6ξℓ− 3ℓ2

−1

 (3.25)

After having solved the previous equation system substitution of the results obtained
into equations (3.22), (3.23) and using some algebra yield:

G1II(x, ξ) =

4∑
ℓ=1

cℓII(ξ)wℓ(x) = x2 (x− b) (ξ − b) (2ℓ− ξ − b)

2b (4ℓ− 3b)
(3.26a)

and

G2II(x, ξ) =

4∑
ℓ=1

(aℓII(ξ)± bℓII(ξ))wℓ(x) =

= − 1

12 (4ℓ− 3b)

(
4b3ℓ− 12b2ξℓ+ 6ξ2b2 + 4ℓξ3 − 3ξ3b

)
± ξ3

12
+

+

(
3

12 (4ℓ− 3b)

(
4b2ℓ− 12ξbℓ+ 3ξ2b+ 4ℓξ2

)
± −3ξ2

12

)
x+

+

(
3

12 (4ℓ− 3b)

(
−2b2 + 4ξℓ− 4ξ2 + 3ξb

)
± 3ξ

12

)
x2 +

(
− 1

12
± −1

12

)
x3

(3.26b)
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Note that the calculation of the functions aℓII and cℓII is based on Property 6 of
the definition.

Figure 2 depicts the Green function for an FrsRp beam. It is assumed that L = 100

mm, b̂ = 50 mm and ξ̂ = 75 mm. The computed points are drawn by red diamonds
and the function itself is shown using a continuous line. This notation convention will
be applied to the other figures in the present paper. The Green function shown in
Figure 2 is the dimensionless displacement due to a dimensionless vertical unit force
exerted on the beam at the point ξ = 0.75.
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Figure 2. The Green function of an FrsRp beam

3.3. Green function for PrsRp beams. Repeating the calculations steps pre-
sented in Subsection 3.2 for PrsRp beams yields the following four elements for the
corresponding Green function – the calculation details are all omitted here.

G1I(x, ξ) =

4∑
ℓ=1

(aℓI(ξ)± bℓI(ξ))wℓ(x) =

(
− 1

12
ξ3 ± 1

12
ξ3
)
+

+

(
− 1

12b (2b−3ℓ)

(
−9b3ξ+6b2ξ2+12ℓb2ξ−3bξ3−9ℓbξ2 + 6ℓξ3

)
±
(
−3ξ2

12

))
x+

+

(
− 3

12
ξ ± 3

12
ξ

)
x2 +

(
1

12b2 (2b−3ℓ)

(
−2b3+3b2ξ+3ℓb2−6ℓbξ+ξ3

)
± −1

12

)
x3,

(3.27a)
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G2I(x, ξ) =

4∑
ℓ=1

cℓI(ξ)wℓ(x) =
1

4b

ξ

3ℓ− 2b
(b− x)

(
ξ2 − b2

)
(b+ x− 2ℓ) , (3.27b)

G1II(x, ξ)=

4∑
ℓ=1

cℓII(ξ)wℓ(x)=
1

4b

x

3ℓ− 2b
(b− ξ)

(
x2 − b2

)
(b+ ξ − 2ℓ) , (3.27c)

G2II(x, ξ) =

4∑
ℓ=1

(aℓII(ξ)± bℓII(ξ)) zℓ(x) =

=
1

12 (3ℓ− 2b)

(
−b4 + 6b2ξℓ− 3b2ξ2 − 3ξ3ℓ+ 2ξ3b

)
± ξ3

12
+

+

(
3

12 (3ℓ− 2b)

(
2b2ℓ− 8bξℓ+ 2bξ2 + 3ξ2ℓ

)
± −3ξ2

12

)
x+

+

(
3

12 (3ℓ− 2b)

(
−b2 + 3ξℓ− 3ξ2 + 2bξ

)
± 3ξ

12

)
x2 +

(
− 1

12
± −1

12

)
x3. (3.27d)

Figure 3 shows the Green function of a PrsRp beam under the same conditions as
Figure 2 depicts the Green function of an FrsRp beam.

1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

z ŵ

  75mm

Gx ,75 mm 

1000

x
10

x

L

b  L/2

  0.75

Figure 3. The Green function of an PrsRp beam

Remark 4. The Green function given by equations (3.21) and (3.26) (FrsRp beams),
(3.27) (PrsRp beams), should satisfy symmetry condition (3.13). It can be proved by
paper and pencil calculations that this condition is really fulfilled. Note that for G2I
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and G1II a comparison of (3.21b) and (3.26a) as well as that of (3.27b) and (3.27c)
clearly shows the fulfillment of the symmetry condition.

Remark 5. The Green functions (3.21), (3.26) and (3.27) are dimensionless quanti-

ties. By substituting b̂, L, x̂ and ξ̂ for b, ℓ, x andξ in (3.21), (3.26) and (3.27) we
obtain the Green functions for a selected length unit. Then the unit of the Green
function is the cube of the length unit selected.

4. Numerical solutions for the free vibration and stability problems

4.1. The free vibration of FrsRp and PrsRp beams. Making use of the algo-
rithm detailed in Subsection 7.2 of the book [18] a Fortran 90 program was developed
for solving eigenvalue problem (2.11), i.e., for computing the eigenvalues λ (the nat-
ural circular frequencies) of the freely vibrating FrsRp and PrsRp beams (the axial
force is now zero) shown in Figure 1. Table 2 and Table 3 present the values of
λi/4.730042

2, (i = 1; 2; 3) for FrsRp and PrsRp against 21 uniformly increasing b
values in the interval [0.0, 1.0].

Table 2. Solutions for the eigenvalues λ of FrsRp beams

b
√
λ1

4.730042

√
λ2

4.730042

√
λ3

4.730042

0.000 0.2545 1.3707 3.3876
0.050 0.2751 1.4832 3.6692

0.100 0.2989 1.6159 4.0085
0.150 0.3264 1.7737 4.4165
0.200 0.3587 1.9626 4.9052

0.250 0.3970 2.1896 5.4794
0.300 0.4428 2.4631 6.0887
0.350 0.4983 2.7884 6.1999

0.400 0.5667 3.1487 5.3372
0.450 0.6520 3.3867 4.7648
0.500 0.7599 3.1710 5.0303

0.550 0.8973 2.7863 5.8037
0.600 1.0688 2.4707 6.2988
0.650 1.2566 2.2989 5.7913

0.700 1.3675 2.4086 5.1793
0.750 1.3348 2.9030 4.7797

0.800 1.2429 3.3735 5.1642
0.850 1.1494 3.2747 6.2815
0.900 1.0727 3.0380 6.0457

0.950 1.0203 2.8423 5.6192
1.000 1.0000 2.7568 5.4059

Polynomials (4.1), (4.2) and (4.2) are fitted onto the computed discrete values of√
λk/4.73004

2(k = 1, 2, 3) presented in Table 2.

Polynomials for the first eigenvalue:
√
λ1

4.730042
= −30. 475 109 9b6 + 55. 991 058 8b5 − 33. 778 406 3b4 + 10. 464 803 2b3

− 0.743 507 022b2 + 0.443 726 955 b+ 0.254 099 177, b ∈ [0, 0.625] (4.1a)
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√
λ1

4.730042
= 4172. 108 44b6 − 20498. 081 7b5 + 41635. 160 7b4 − 44700. 075 2b3+

+ 26718. 075 5b2 − 8418. 283 6b+ 1092. 096 96, b ∈ [0.625, 1] (4.1b)

Polynomials for the second eigenvalue:
√
λ2

4.730042
= −173. 518 714b6 + 150. 076 835b5 − 40. 246 420 1b4 + 11. 010 604 2b3+

+ 2. 870 516 97b2 + 2. 082 056 16b+ 1. 370 692 02, b ∈ [0, 0.35] (4.2a)

√
λ2

4.730042
= −310557. 518b6 + 845065. 5b5 − 950123. 189b4 + 564838. 656b3−

− 187284. 725b2 + 32856. 293 2b− 2381. 762 03, b ∈ [0.35, 0.55] (4.2b)

√
λ2

4.730042
= −30502. 323 2b6 + 110600. 102b5 − 166009. 888b4 + 132140. 138b3−

− 58844. 558 6b2 + 13891. 813 1b− 1353. 111 55, b ∈ [0.55, 0.775] (4.2c)
√
λ2

4.730042
= −11948. 296 5 b6 + 71424. 316 6 b5 − 176869. 672 b4 + 232479. 487 b3−

− 171191. 813 b2 + 66992. 127 4 b− 10883. 393 7, b ∈ [0.775, 1] (4.2d)

Polynomials for the third eigenvalue:
√
λ3

4.730042
= 413332. 622b6 − 649900. 151b5 + 411344. 981b4 − 133672. 324b3+

+ 23342. 110 5b2 − 2033. 367 18b+ 70. 510 977 0, b ∈ [0.25, 0.4] (4.2e)

√
λ3

4.730042
= 48544. 085 3b6 − 91571. 404 8b5 + 48349. 687 5b4 + 9960. 134 03b3−

− 18412. 920 1b2 + 6294. 346 68b− 702. 680 179, b ∈ [0.4, 0.55] (4.2f)

√
λ3

4.730042
= 2073702. 86b6 − 7913552. 44x5 + 12563013. 6x4 − 10618667. 1x3+

+ 5039221. 87x2 − 1272877. 15x+ 133685. 395, b ∈ [0.55, 0.7] (4.2g)

√
λ3

4.730042
= −243505. 380x6 + 882582. 997b5 − 1246562. 71b4 + 831781. 698b3−

− 231920. 390b2 − 1744. 473 18b+ 9178. 324 82, b ∈ [0.7, 0.825] (4.2h)

√
λ3

4.730042
= −284198. 684x6 + 1619914. 01x5 − 3845547. 04x4 + 4867005. 53x3−

− 3463802. 03x2 + 1314397. 42x− 207763. 794, b ∈ [0.825, 1.0] (4.2i)

Figures 4, 5 and 6 show the graphs of the functions
√

λk(b)/4.73004
2(k = 1, 2, 3).
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For PrsPRp beams Table 3 contains the computational results.

Table 3. Solutions for the eigenvalues λ of PrsRp beams

b
√
λ1

4.730042

√
λ2

4.730042

√
λ3

4.730042

0.000 0.2545 1.3707 3.3876
0.050 0.2729 1.4722 3.6446

0.100 0.2942 1.5951 3.9650

0.150 0.3191 1.7435 4.3553
0.200 0.3484 1.9225 4.8163

0.250 0.3836 2.1369 5.3049
0.300 0.4251 2.3877 5.4168
0.350 0.4756 2.6539 4.6226
0.400 0.5383 2.7983 4.0604
0.450 0.6153 2.5824 4.2051

0.500 0.7101 2.2442 4.7850
0.550 0.8229 1.9719 5.4203
0.600 0.9388 1.8167 5.2861

0.650 1.0050 1.8513 4.7224

0.700 0.9830 2.1426 4.2451
0.750 0.9163 2.6083 4.0641

0.800 0.8445 2.7945 4.7548
0.850 0.7819 2.6420 5.4909
0.900 0.7333 2.4480 5.1979

0.950 0.7012 2.2972 4.8356

1.000 0.6891 2.2338 4.6607
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Polynomials (4.3), (4.4) and (4.5) are fitted onto the computed discrete values of√
λk/4.73004

2(k = 1, 2, 3) presented in Table 3.

Polynomials for the first eigenvalue:

√
λ1

4.730042
=−41. 080 096 2b6+63. 147 880 9b5−33. 556 975 5b4 + 9. 262 020 48b3−

− 0.510 379 219b2 + 0.383 506 985b+ 0.254 263 737, b ∈ [0, 0.575] (4.3a)

√
λ1

4.730042
= 1322. 696 25b6 − 6268. 407 31b5 + 12232. 936 9b4 − 12555. 559 8b3+

+ 7129. 384 25b2 − 2117. 638 81b+ 257. 278 716, b ∈ [0.575, 1] (4.3b)

Polynomials for the second eigenvalue:

√
λ2

4.730042
= −295. 492 865b6 + 201. 661 94b5 − 47. 755 381 3b4 + 10. 626 197 6b3+

+ 3. 195 613 34b2 + 1. 848 783 9b+ 1. 370 702 43, b ∈ [0, 0.3] (4.4a)

√
λ2

4.730042
= −230 912.0 83b6 + 557 443.625b5 − 554 657.434b4 + 291 066.631b3−

− 84987. 941 7b2+13104. 515 1b−832. 379 11, b ∈ [0.3, 0.5] (4.4b)

√
λ2

4.730042
= −5813. 451 13b6 + 18042. 657 9b5 − 22715. 726b4 + 14807. 845 8b3−

− 5220. 857 11b2 + 918. 110 040b− 55. 842 264 2, b ∈ [0.5, 0.75] (4.4c)

√
λ2

4.730042
= 4928. 738 89b6 − 22244. 172 9b5 + 39776. 050 7b4 − 34844. 077 6b3+

+ 14431. 718 2b2 − 1786. 725 11b− 259. 298 607, b ∈ [0.75, 1] (4.4d)

Polynomials for the third eigenvalue:

√
λ3

4.730042
= −2623. 305 96b6 + 1237. 635 68b5 − 231. 339 925b4 + 30. 257 014 1b3+

+ 10. 385 009 6b2 + 4. 566 326 26b+ 3. 387 600 46, b ∈ [0, 0.2] (4.5a)

√
λ3

4.730042
= 1. 131 061 48× 105b6 − 20897. 459 2b5 − 90629. 798b4 + 66709. 594 1b3−

− 19457. 354 7b2 + 2639. 576 61b− 134. 025 486, b ∈ [0.2, 0.35] (4.5b)
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√
λ3

4.730042
= 29681. 777 8b6 − 36384. 972 8b5 − 6235. 294 22b4 + 30141. 818 9b3−

− 18135. 112 4b2 + 4465. 631 98b− 399. 021 738, b ∈ [0.35, 0.5] (4.5c)

√
λ3

4.730042
= −1 479 416.38b6+ 500 694.40b5−7 035 081.66b4+5252 557.83×106b3−

− 2 197 910.20b2 + 488 766.44b− 45129. 13, b ∈ [0.5, 0.65] (4.5d)

√
λ3

4.730042
= −743 272.68b6+3194 975.26× 106b5− 5 713 572.25b4+5441 676.39b3−

− 2 911 437.16b2 + 829 724.55b− 98399.24, b ∈ [0.65, 0.8] (4.5e)

√
λ3

4.730042
= 372 346.0b6 − 2 006 546.6b5 + 4496 069.4b4 − 5 360 883.7b3+

+ 3586 778.1b2 − 1 276 523.3b+ 188 764.8 b ∈ [0.8, 1.0] (4.5f)
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2 against b
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Figures 7,8, and 9 show the graphs of the functions
√
λk(b)/4.73004

2(k = 1, 2, 3).
As regards Figures 4, 5, 6, 7, 8, and 9 the discrete point pairs are denoted by diamonds.
The continuous lines are drawn by using polynomials (4.1), (4.2), (4.2), (4.3), (4.4)
and (4.5) which fit onto the discrete point pairs with four digit accuracy.

4.2. Stability problems of FrsRp and PrsRp beams.

4.2.1. Solution procedures. There are various methods for calculating the critical load.
(a) It is possible to solve the eigenvalue problem determined by the homogeneous Fred-
holm integral equation (2.15) numerically if we apply the boundary element technique.
See for instance [16] which uses this technique for other support arrangements. (b) It
is also possible to establish the nonlinear characteristic equations and then to solve
them for the critical load In the present paper the boundary element approach will
be preferred, and the numerical solution of the characteristic problem is used to val-
idate the findings obtained using this approach. As regards the boundary element
technique the solution steps are detailed in Subsection 8.15.2 in [12]. A Fortran 90
program was developed. The kernel in equation (2.15) has the following form

K(x, ξ) =


K1I(x, ξ) if x, ξ ∈ [0, ℓ],
K2I(x, ξ) if x ∈ [b, ℓ] and ξ ∈ [0, ℓ],
K1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, ℓ],
K2II(x, ξ) if x, ξ ∈ [b, ℓ],

(4.6a)

where

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
, K2I(x, ξ) =

∂2G2I(x, ξ)

∂x ∂ξ
,

K1II(x, ξ) =
∂2G1II(x, ξ)

∂x ∂ξ
, K2II(x, ξ) =

∂2G2II(x, ξ)

∂x ∂ξ
.

(4.6b)

It is obvious from equations (4.6) that the determination of the kernel K(x, ξ) requires
the calculation of second derivatives.

4.2.2. The kernel function for FrsRp beams. Making use of equations (3.21), (3.26)
and (4.6) we get the elements of the kernel function for FrsRp beams in the following
form:

K1I(x, ξ) =
∂2

∂x∂ξ
G1I(x, ξ) =

(
6

12
ξ ±

(
− 6

12
ξ

))
+

+

(
− 6

12b2 (4ℓ− 3b)

(
3b3 − 16b2ξ − 4ℓb2 + 6bξ2 + 24ℓbξ − 12ℓξ2

)
± 6

12

)
x+

− 36

12b3
ξ

4ℓ− 3b

(
b2 − 2ℓb+ ξℓ

)
x2, (4.7a)

K2I(x, ξ) =
∂2

∂x∂ξ
G2I(x, ξ) =

1

b
ξ
2b− 3ξ

4ℓ− 3b
(x− ℓ) , (4.7b)

K1II(x, ξ) =
∂2

∂x∂ξ
G1II(x, ξ) =

1

b
x
2b− 3x

4ℓ− 3b
(ξ − ℓ) , (4.7c)
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K2II(x, ξ)=
∂2

∂x∂ξ
G2II(x, ξ) =

(
3

12 (4ℓ− 3b)
(6bξ − 12bℓ+ 8ξℓ)± −6ξ

12

)
+

+

(
6

12 (4ℓ− 3b)
(3b− 8ξ + 4ℓ)± 6

12

)
x. (4.7d)

Figure 10 depicts the kernel function of an FrsRp beam provided that

L = 100 mm, b̂ = 50 mm and ξ̂ = 75 mm.
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Figure 10. The kernel function of an FrsRp beam

4.2.3. The kernel function for PrsRp beams. Making use of equations (3.27) and (4.6)
we can derive the elements of the kernel function for PrsRp beams:

K1I(x, ξ) =
∂2

∂x∂ξ
G1I(x, ξ) =(

− 1

12b (2b− 3ℓ)

(
−9b3 + 12b2ξ + 12ℓb2 − 9bξ2 − 18ℓbξ + 18ℓξ2

)
±
(
−6ξ

12

))
+

(
− 6

12
± 6

12

)
x+

(
3

12b2 (2b− 3ℓ)

(
3b2 − 6ℓb+ 3ξ2

))
x2, (4.8a)

K2I(x, ξ) =
∂2

∂x∂ξ
G2I(x, ξ) = − 1

2b (3ℓ− 2b)

(
3ξ2 − b2

)
(x− ℓ) , (4.8b)

K1II(x, ξ) =
∂2

∂x∂ξ
G1II(x, ξ) = − 1

2b (3ℓ− 2b)

(
3x2 − b2

)
(ξ − ℓ) , (4.8c)
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K2II(x, ξ) =
∂2

∂x∂ξ
G2II(x, ξ) =

(
3

12 (3ℓ− 2b)
(4bξ − 8bℓ+ 6ξℓ)± −6ξ

12

)
+

+

(
6

12 (3ℓ− 2b)
(2b− 6ξ + 3ℓ)± 6

12

)
x. (4.8d)

Figure 11 shows the kernel function of a PrsRp beam assuming that

L = 100 mm, b̂ = 50 mm and ξ̂ = 75 mm.
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Figure 11. The kernel function of a PrsRp beam

Remark 6. The kernel functions given by equations (4.7) and (4.8) (FrsRp beams),
(3.27) (PrsRp beams), satisfy the symmetry condition K(x, ξ) = K(ξ, x). It can be
proved by paper and pencil calculations that this condition is really fulfilled. As
regards K2I and K1II , however, a comparison of (4.7b) and (4.7b) as well as that of
(4.8b) and (4.8c) clearly shows the fulfillment of the previous symmetry condition.

4.3. Computational results.

4.3.1. FrsRp beams. Tables 4 contain the values of the dimensionless critical force√
Ncrit /π as a function of b.
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Table 4. The critical forces of FrsRp beam

b

√
Ncrit /π

√
N (b) /π b

√
Ncrit /π

√
N (b) /π

0.000 1.00000 1.00003 0.500 1.57277 1.57282

0.025 1.01910 1.01908 0.525 1.61363 1.61370

0.050 1.03895 1.03893 0.550 1.65509 1.6541
0.075 1.05958 1.05957 0.575 1.69675 1.69650

0.100 1.08104 1.08105 0.600 1.73809 1.73862

0.125 1.10336 1.10338 0.625 1.77845 1.77940
0.150 1.12659 1.12661 0.650 1.81707 1.81793

0.175 1.15078 1.15079 0.675 1.85313 1.85350

0.200 1.17599 1.17599 0.700 1.88580 1.88552
0.225 1.20226 1.20224 0.725 1.91439 1.91360

0.250 1.22964 1.22962 0.750 1.93846 1.93750
0.275 1.25819 1.25817 0.775 1.95784 1.95711
0.300 1.28796 1.28794 0.800 1.97270 1.97252

0.325 1.31898 1.31898 0.825 1.98350 1.98393
0.350 1.35131 1.35132 0.850 1.99086 1.99171
0.375 1.38496 1.38499 0.875 1.99550 1.99638

0.400 1.41996 1.41998 0.900 1.99812 1.99859
0.425 1.45630 1.45629 0.925 1.99940 1.99914
0.450 1.49394 1.49391 0.950 1.99989 1.99897

0.475 1.53281 1.53277 0.975 2.00000 1.99915
0.500 1.57277 1.57282 1.000 2.00001 2.00087

The dimensionless parameter b in the first column shows the location of the middle
roller support. The second column contains the critical value for the dimensionless

compressive force, more precisely, the quantity
√
Ncrit /π against the discrete values of

b. The third column contains the approximations computed by using the polynomials√
N (b) /π fitted onto the point pairs taken from the first two columns of Table 4:

√
Ncrit(b) /π = −1. 930 307 982b5 + 1. 921 741 813b4 − 0.156 388 723 6b3+

+ 0.637 849 474 6b2 + 0.746 170 973 5b+ 1. 000 037 785 , bin [0, 0.5] (4.9a)

√
Ncrit(b) /π = −2. 260 967 607b5 + 24. 937 737 41b4 − 62. 207 343 07b3+

+ 61. 907 897 88b2 − 25. 522 238 92b+ 5. 145 794 214 . b in [0.5, 1.0] (4.9b)

Figure 12 depicts the dimensionless critical force against b. The discrete points are
depicted by diamonds, while the corresponding polynomials are drawn using contin-
uous lines.
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Figure 12. The dimensionless critical force for an FrsRp beam

4.3.2. PrsRp beams. Tables 5 contains the values of the dimensionless critical force√
Ncrit /π as a function of b. The schemes of these tables are the same as those for

Tables 4.

Table 5. The critical forces of PrsRp beam

b

√
Ncrit /π

√
N (b) /π x = b

√
Ncrit /π

√
N (b) /π

0.000 1.00000 1.00004 0.500 1.43029 1.43033
0.025 1.01694 1.01692 0.525 1.44907 1.44919
0.050 1.03446 1.03444 0.550 1.46537 1.46560

0.075 1.05258 1.05257 0.575 1.47877 1.47889
0.100 1.07130 1.07131 0.600 1.48897 1.48889
0.125 1.09063 1.09066 0.625 1.49581 1.49559

0.150 1.11060 1.11062 0.650 1.49935 1.49912
0.175 1.13120 1.13121 0.675 1.49984 1.49971

0.200 1.15243 1.15242 0.700 1.49768 1.49771

0.225 1.17428 1.17426 0.725 1.49334 1.49352
0.250 1.19673 1.19670 0.750 1.48736 1.48760

0.275 1.21973 1.21971 0.775 1.48025 1.48046

0.300 1.24323 1.24323 0.800 1.47251 1.47258
0.325 1.26715 1.26717 0.825 1.46456 1.46447

0.350 1.29137 1.29139 0.850 1.45679 1.45657
0.375 1.31573 1.31575 0.875 1.44954 1.44930
0.400 1.34002 1.34003 0.900 1.44311 1.44297

0.425 1.36398 1.36397 0.925 1.43776 1.43783
0.450 1.38728 1.38725 0.950 1.43371 1.43397

0.475 1.40954 1.40952 0.975 1.43117 1.43139

0.500 1.43029 1.43033 1.000 1.43029 1.42989
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The polynomials fitted onto the computational results are given below:√
Ncrit(b) /π = −4. 332 224 892b5 + 2. 844 038 856b4 − 0.646 783 773 5b3+

+ 0.551 935 872 4x2 + 0.661 558 617 6b+ 1. 000 046 948 , bin[0, 0.5] (4.10a)

√
Ncrit(b) /π = −18. 118 635 59x5 + 68. 962 372 98x4 − 99. 608 791 11x3+

+ 66. 823 638 2x2 − 20. 119 893 78x+ 3. 491 203 828 , bin[0.5, 1.0] (4.10b)

Figure 13 depicts the dimensionless critical force against b. The continuous lines
belong to polynomials (4.10). Note that the dimensionless critical force reaches its
maximum if b ∈ [0.65, 0.68].
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Figure 13. The dimensionless critical force for an PrsRp beam

Remark 7. The corresponding nonlinear characteristic equations are presented in
Appendix A – see equations (A.4) and (A.5). They are also solved numerically. The
results obtained coincide up to five to six digit accuracy with those presented in Tables
4 and 5.

5. Example

Consider an FrsRp beam with the cross section shown in Figure 14. It is assumed
that a = c = 100 mm, a1 = a2 = a/3, E1 = Ealuminium ≈ 7.0 · 104 N/mm

2
while

E2 = Esteel ≈ 2.1 · 105 N/mm
2
. The length L of the beam is 3000 mm.
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Figure 14. The cross section of an FrsRp beam

Under these conditions

Iey =
a4

12
(
2E1 + E2

3
) =

1004

12
(
2× 0.71 + 2.0

3
)105 =

= 9.5× 1011 Nmm2 = 9.5× 1014 kgmm3/ sec2 (5.1)

and

ρa =
1

A

∫
A

ρdA =
(2ρ1 + ρ2)A1

A
=

(2× 2710 + 7850)× 100× 100
3

109 × 1002
= (5.2)

= 4.423333× 10−6 kg/mm
3

(5.3)

According to Table 2 the dimmensionless critical load for b = 0.4 is given by the
equation

√
Ncrit/π = 1.41996 from where we get

Ncrit = (1.41996× 3.14)
2
= 19. 879 (5.4)

With Ncrit equation (2.6) yields

Ncrit =
IeyNcrit

L2
=

9.5× 1011 × 19. 879

30002
= 2.0983× 106 N (5.5)

As regards the first eigenvalue λ1 concorning the free vibrations it follows from Table
2 that √

λ1|b=0.4 = 0.5667× 4.730042 = 12. 678 (5.6)

With
√
λ1|b=0.4 equation (2.10) yields

ω1 =

√
λ1|b=0.4

L2

√
Iey
ρaA

from where substituting (5.1), (5.2) and (5.6) we obtain

ω1 =
12. 678

30002
×
√

9.5× 1014

4.423333× 10−6 × 1002
= 206. 440

rad

sec
(5.7)

The above results are validated by the commercial finite element program Ansys. 228
uniform hexahedral elements (SOLID185) were used to generate the geometry mesh.
Table 6 shows a comparison.
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Table 6. Comparison of the results

Our Ansys Relative
solution solution error

Critical load Ncrit 2.0983× 106 2.0731× 106 1.2%

Eigenfrequency for the
206.440

2π
= 32.85 32.30 1.67%unloaded beam

There is a good agreement between our solutions and the finite element findings.

6. Concluding remarks

Making use of the definition given in paper [18] the Green functions for the three
point boundary value issues have been derived, which describe the mechanical behav-
ior of a beam fixed at the left end and rotation prevented at the right end, and pinned
beam at the left end and rotation prevented at the right end with an intermediate
roller support. It is assumed that the beams have cross sectional heterogeneity [15].

Utilizing the Green functions the free vibration and linear stability problems of
these beams are transformed into eigenvalue problems governed by the homogeneous
Fredholm integral equation:

w(x) = λ

∫ ℓ=1

ξ=0

G(x, ξ)w(ξ) dξ,

y(x) =

∫ ℓ=1

0

K(x, ξ)y(ξ)dξ,

K(x, ξ) =
∂2G(x, ξ)

∂x ∂ξ
, y(x) =

dw(x)

dx

(6.1)

It is clear from [Figure 4 – FrsRp beam] (Figure 7 – PrsRp beam) that the smallest
eigenvalue λ1 reaches its maximum if [b ≈ 0.7125] (b ≈ 0.667). It is also clear from
Figure 14 – PrsRp beam – that the critical force has a maximum if b ≈ 0.674.

The eigenvalue problem (6.1) is replaced by algebraic eigenvalue problems using the
boundary element technique. The numerical solution of stability problems is com-
pared to the solutions obtained numerically solving the corresponding characteristic
equations presented for completeness in the Appendix A, The two solutions coincide
with each other with the accuracy of four to five digits.

Appendix A. Characteristic equations

In this Appendix we present the characteristic equations. It is worthwhile to direct the
reader to Table 2.8. in book [3].

If the axial force is not zero (N ̸= 0) but a compressive force then, according to equations
(2.13), the stability problem of beams are governed by the differential equation

w(4) + p2w(2) = 0 , p2 = N = L2N/Iey . (A.1)

The general solutions are

wr = a1 + a2x+ a3 cos px+ a4 sin px x ∈ [0, b] (A.2a)



Vibration and stability of heterogeneous beams with three supports 153

and
wℓ = c1 + c2x+ c3 cos px+ c4 sin px x ∈ [b, ℓ = 1] (A.2b)

where ak and ck (k = 1, . . . , 4) are undermined integration constants. For FrsRp beams
equation (A.1) is associated with the following boundary and continuity conditions:

wr(0) = 0 , w(1)
r (0) = 0 ; w

(1)
ℓ (ℓ) = 0 , w

(3)
ℓ (ℓ) = 0 , (A.3a)

wr(b− 0) = 0, , wℓ(b+ 0) ,

w(1)
r (b− 0) = w

(1)
ℓ (b+ 0) ,

w(2)
r (b− 0) = w

(2)
ℓ (b+ 0) ,

.

(A.3b)

Differential equation (A.1), boundary and continuity conditions (A.3) determine a self
adjoint eigenvalue problem with p as eigenvalue. Boundary and continuity conditions (A.3)
lead to the following homogeneous equation system:

Boundary conditions if x = 0:

a1 + a3 = 0 ,

a2 + pa4 = 0 .

Continuity conditions at x = b:

a1 + a2b+ a3 cos pb+ a4 sin pb = 0,

c1 + c2b+ c3 cos pb+ c4 sin pb = 0,

a2 − pa3 sin pb+ pa4 cos pb− (c2 − pc3 sin pb+ pc4 cos pb) = 0,

−a3 cos pb− a4 sin pb− (−c3 cos pb− c4 sin pb) = 0,

Boundary conditions at x = ℓ = 1:

c2 − pc3 sin p+ pc4 cos p = 0,

p3c3 sin p− p3c4 cos p = 0.

Since this equation system is homogeneous non-zero solutions for the integration constants
a1, . . . , a4 and c1, . . . , c4 exist if and only if the determinant of the coefficient matrix vanishes,
i.e., it holds that

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb 0 0 0 0
0 0 0 0 1 b cos pb sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
0 0 0 0 0 1 −p sin p p cos p
0 0 0 0 0 0 p3 sin p −p3 cos p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
p4 (cos (p− 2bp)− 4 cos p (b− 1) + 3 cos p) + bp5 sin p = 0 . (A.4)

If b = 1 the solution for p is 2π. If b −→ 0 the solution for p is π.

As regards PrsRp boundary condition (A.3a)2 changes to w
(2)
r = 0. Then the character-

istic equation assumes the form:

1

2
sin p− 1

2
sin (p− 2bp)− bp cos p = 0 (A.5)

If b = 1 the solution for p is 4.4934. If b = 0 the solution for p is π.
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