Journal of Computational and Applied Mechanics, Vol. 17, No. 2, (2022), pp. 125-155
DOI: 10.32973/jcam.2022.007

SOLUTIONS FOR THE VIBRATION AND STABILITY
PROBLEMS OF HETEROGENOUS BEAMS WITH THREE
SUPPORTS USING GREEN FUNCTIONS

L. Kiss, M. ABDERRAZEK AND G. SZEIDL
Institute of Applied Mechanics, University of Miskolc
3515 Miskolc-Egyetemvaros, Hungary
mechkiss@uni-miskolc.hu, |abderrazekmessoudil1995@gmail.com|,
gyorgy.szeidlQuni-miskolc.hu

[Received: November 22, 2022; Accepted: December 29, 2022]

Abstract. The goal of this study is to calculate the eigenvalues that provide the eigenfre-
quencies and the critical loads for two heterogeneous beams with three supports: the (first)
[second] beam is (fixed)[pinned] at the left end, the intermediate support is a roller while the
right end of the beams can move vertically but the rotation is prevented there. The beams
are referred to as FrsRp and PrsRp beams. Determination of the (eigenfrequencies) [critical
loads] leads to three point eigenvalue problems associated with homogeneous boundary con-
ditions. With the Green functions that belong to these eigenvalue problems we can transform
them into eigenvalue problems governed by homogeneous Fredholm integral equations. The
eigenvalue problems can then be reduced to algebraic eigenvalue problems that are solvable
numerically by utilizing effective solution algorithms.
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Keywords: Heterogeneous beams, three point boundary value problems, Green functions,
vibrations, eigenvalue problems, stability, critical load

1. INTRODUCTION

Since beam buckling can be a prevalent cause of failure in engineering applications,
it has been the focus of research for a long time. The Swiss mathematician Leonhard
Euler was a pioneer in this subject, publishing his well-known formula for the critical
(buckling) load of straight bars under compression in 1759. There are multiple sources
about shells, columns, arches and other structures [143]. For example, the books
(3l 4] provide extremely thorough information about solutions to a wide range of
engineering problems, as well as applications. Article [5] investigates experimentally,
analytically and numerically the static and dynamic stability problem of columns
under self-weight. In [6] both geometrical and load imperfections are considerred in
the buckling studies of columns.

Furthermore, the first concept of the Green function was published by George Green
in 1828. His book [7] presents, discusses, and demonstrates how to use the Green
function approach to electrostatic issues governed by partial differential equations.
In the publication [§], the Green function for two-point boundary value problems
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governed by ordinary differential equations was established. In 1926, the first book
[9] that comprehensively covered the notion of the Green function was published.

The results published in [10] were generalized for degenerated ordinary differential
equation systems in 1975 [11} [12].

In the publication [13], the existence proof for several three-point boundary value
issues linked to third-order nonlinear differential equations is presented by using Green
functions. The related Green functions for some three-point boundary value problems
governed by linear ordinary differential equations of order two are provided in article
[14].

The free vibration and buckling problems of two heterogeneous beams are solved
in this article based on the aforementioned literature. Cross-sectional inhomogene-
ity refers to the fact that the material is linearly elastic, isotropic, and the material
distribution can change throughout the cross-section. Free vibration and stability
equations are given for three-point boundary value issues. These are subsequently
replaced with Fredholm integral equations using the Kernel function. A formulation
of the Green function for three-point boundary value issues with homogeneous bound-
ary conditions is also included. The boundary element approach is used to provide
numerical solutions to integral equations, and algebraic equations are introduced in
this manner. The eigenvalues of free vibration and the linear buckling loads are af-
fected significantly by the location of the middle support in general. The results are
compared to the results of some finite element calculations and high correlation is
found.

2. DIFFERENTIAL EQUATIONS

2.1. Governing equations. The considerred heterogeneous FrsRp and PrsRp beams
are shown in Figure [I] The axial force N acting on the beams is compressive. The
cross section of the beams is uniform throughout their length. The axis & of the
coordinate system Z, 7, Z coincide with the E-weighted center line of the beams. Its
origin is located at the left end of the beam. The beams are symmetric with respect
to the coordinate plane zZ. It is assumed that the modulus of elasticity E satisfies
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Figure 1. FrsRp and PrsRp beams
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the condition F(y,2) = E(—9,2) over the cross section A, i.e., it is independent of
the coordinate 2. In this case the beam has cross sectional heterogeneity [15]. L is
the length of the beams while b gives the position of the middle roller support.

The E-weighted first moment )y is zero in this coordinate system:

Q= [ BG4 0. 2.1)

Equilibrium problems of beams with cross sectional heterogeneity — the axial force N
is zero — are governed by the ordinary differential equation [15]:

(2.2)

where w(z) is the vertical displacement of the material points on the E-weighted

center line, f, (z) is the intensity of the verical distributed load acing on the beam.
The E-weighted moment of inertia I, is defined by the equation

Iey:/AE(g),é)deA. (2.3)

If the beam is homogeneous the modulus of elasticity E is constant. Hence

I, =IE, I:/zsz
A

in which [ is the moment of inertia.

(2.4)

In what follows we shall use dimensionless variables defined by the following rela-
tions [16]

w=w/L,
Y dz dz’ / ) 3 ’

where ¢ is also a coordinate measured on the axis # with the same origin as for Z.
Applying dimensionless quantities to equation (2.2]) we have
L*f
(CHa- aw — . — z
w = f,, = Gk (k=1,...,4); f.=

ey

(2.6)
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Table 1.
Boundary conditions

FrsRp beams ‘ PrsRp beam
w(0) =0, wP0)=0 | w(0)=0, w?(0)=0
wD () =0, w®)=0]wH)=0, w® ¥ =0
Continuity conditions
wb—-0)=wb+0)=0,
w (b —0) =wM(b+0),
w® (b —0) =w?(b+0),

The ordinary differential equation (2.6); (ODE) is associated with the boundary
and continuity conditions presented in Table

The general solution for the homogeneous ODE

w® =0 (2.7)
is very simple:
n=4
w = Z AnWn = ap 4+ a1zt + asx® + asz® + agz?, (2.8)
n=0
in which ay (k=0,...,4) are undetermined integration constants.

Making use of the Green functions that belongs to the boundary value problems
determined by ODE ([2.6) and the corresponding boundary and continuity conditions
presented in Table [I] the solution for the dimensionless deflection w is given by the
integral

l
w(z) = /0 G, €)1.(€) de. (2.9)

where G(z,€) stand for the Green functions in question.
The Green functions we shall need are presented in Section

2.2. Vibration problem. The dimensionless amplitude for the free vibrations of
FrsRp and PrsRp beams will also be denoted by w. It should fulfill the the following
homogeneous ODE
dtw _ o, A= poAPLY
dl‘4 Iey
where ) is the eigenvalue sought, p, is the average density over the cross section while
w is the circular frequency of the vibrations.

Substituting Aw(&) for f(€) in (2.9) yields the homogeneous Fredholm integral
equation

(2.10)

r=1
wz)=A [ Gle.&w(e)de. (2.11)
£=0
In this approach, the three point eigenvalue problem determined by ODE ([2.10]) and
the boundary and continuity conditions presented in Table [1|is reduced to an eigen-
value problem governed by the homogeneous Fredholm integral equation (2.11]).
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2.3. Stability problem. If the uniform heterogeneous beams shown in Figure [I] are
subjected to an axial force N the corresponding equilibrium problems are governed
by ODE

N
w® t Nw?P =f, N= L2I—, (2.12)

€y

where the axial force N is constant (N > 0) while the sign of N is [positive] (negative)
if the axial force is [compressive] (tensile).

If the stability problem is considered the axial force is compressive and f, = 0. We
have, therefore, two eigenvalue problems (one for each beam shown in Figure [1)) — the
eigenvalue sought is NV — determined by ODE

Y= Nuw® (2.13)

and the boundary and continuity conditions in Table [I| If we write —A w® for f.

in (2.9) we get

_ Pw) Lo dw(©)
_N/Gx§ e §—J\/<G(,§) I

‘ 9G (x,€) dw(§)
- /é T

where

dw(é) [

=0
e,

G(x,¢8)

since G(z,0) is zero and the derivative dw(§)/d¢ is also zero if £ = ¢ = 1. Hence

z)N/ZWd“’(E)dg. (2.14)

d¢
Introduce the notations

dw 0?G(x,¢)

dr =Y, Taé:]c(x,f)

and derive equation (2.14) with respect to z. In this way we get a homogeneous
Fredholm integral equation:

¥/
=NAK@@M®%~ (2.15)

Consequently, the eigenvalue problems determined by ODE and the homoge-
neous boundary and continuity conditions presented in Table [I] are reduced to eigen-
value problems governed by homogeneous Fredholm integral equations. It should be
mentioned that the above line of thought is based on book [17] and paper [16].
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3. GREEN FUNCTION FOR THREE-POINT BOUNDARY VALUE PROBLEMS

3.1. Definition. In this subsection we present the definition that provides the main
properties of the Green function for ODEs. The definition is based on book [18].

Consider the inhomogeneous ordinary differential equation

2k
Lly@)] =Y pa(@)y™ (@) = r(z), (3.1)
n=0

where k is a natural number, the functions p,, (x) and r(x) are continuous and pa(z) #
0if x € [0,¢] (¢ > 0). Moreover let b an inner point in the interval [0,¢]: b = ¢y,
g*bzfg andél +€2:€

The inhomogeneous differential equation is associated with the following ho-
mogeneous boundary and continuity conditions:

2k
Zanr1y§n71)(0):07 7“:172,...7]6

n=0
2k 2k
S Burry TV ®) =D Brerryl V) =0, r=1,2,..,2k (3.2)
n=0 n=0

2%
vanyﬁ’}’”(ﬁ) =0. r=1,2,....k
n=0

The Roman numeral I and IT belong to the intervals [0,b] and [b,£]: y; and y; are
the solutions to the differential equation in the intervals I and II. It is assumed that
Qnrly Bnrls Burrr and vprrp are arbitrary constants.

The Green function G(z, £) that belongs to the three point boundary value problem
, and is defined by the following formulas and properties |18]:

Formulas:
x, &) if x,£€10,4],
) Gar(z, &) if xe bl and £ € 0,4,
G@.8) =9 & Ge) ifre0bandécpl
&) if a6 € b1

(3.3)

Properties:

1. The function G1;(z,€) is a continuous function of z and £ if 0 <z < & < b and
0 < ¢ <z <b. In addition it is 2k times differentiable with respect to x and the
derivatives

8n(;’ll (’JJ, 6)

ox™

are also continuous functions of z and £ in the triangles 0 <z < ¢ <band 0 < ¢ <
xz <b.
2. Let £ be fixed in [0,b]. Then the function G17(x,&) and its derivatives

_ 8nG1[(‘r7£)

oxm ’

:Gll(xag)(n)(xas)v n= 1527"'52k (34)

GYIL)(CU,@ n=12...,2k—-2 (3.5)
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should be continuous for z = ¢:

GIPE+0,6) ~G(€E-06=0, n=012,...2k2 (3.6a)
The derivative ngil)(a:, €) should, however, have a jump if z = &:
1
G (e +0,6) -G (e —0¢ : 3.6b
R T )
In contrast to this, Gor(x,&) and its derivatives
n "G (z,
G;g(x,g):%7 n=1,2,...,2k (3.7)
x
are all continuous functions for any z in [b, £].
3. Let & be fixed in [b,£]. The function Gyr7(z,€) and its derivatives
n oG ;
G\ (x,€) = %, n=12 .2 (3.8)
are all continuous functions for any z in [0, b].
4. Though the function Garr(z,€) and its derivatives
n oG ;
Géz}(xai):w, n=12,..2k-2 (3.9)
xz
should also be continuous for z = ¢:
the derivative Gézllfl)(ag ¢) should, however, have a jump if z = &:
G2k=1) k-1 1
srr (€406 = GV (E 0. = — . (3.10D)
P2k (§)

5. Let « be an arbitrary but finite non-zero constant. For a fixed £ € [0,4] the
product G(z, &)« as a function of x (x # £) should satisfy the homogeneous differential
equation

MIG(z,§)a] =0
6. The product G(z, &)« as a function of  should satisfy both the boundary conditions
and the continuity conditions

Zikzl Qnrl G(n—l)(o) :0, r = 1,...716
Ziil (ﬁnr[ G(n—l)(b_o) _ﬁnrll G(n—l)(b+0)) = 0; r= 1;,2k3 (311)
Zik:l’}/nrlla(n_l)(g):o~ 7“:1,...,]4;

The above continuity conditions should be satisfied by the function pairs Gir(z,¢),
Gor(x,€) and Girr(x,€), Garr(x,€) as well.

REMARK 1. It can be proved — see paper [18] for details — that the solution of the
three-point boundary value problem (3.1)), and . has the form

/ Gz, &)r (3.12)
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REMARK 2. If the boundary value problem defined by (3.1]) and (3.2)) is self adjoint
then the Green function is symmetric [1§]:

G(z,8) =G, x). (3.13)

In Subsections 2]and [3.3] we present the Green functions that belong to differential
equation under the boundary and continuity conditions presented in Table 1
The calculations are detailed for FrsRp beams only. As regards PrsRp beams we shall
give the final formulae only.

3.2. Green function for FrsRp beams.

3.2.1. Calculation of the Green function if £ € [0,b]. We shall assume that Gy(z,§)
has the following form:

Gur(@,€) = Y (amr(€) + bnr(O)w(z),  z<¢

m=1
. (3.14)

Gur(@,€) = Y (amr(€) = b1 (O)wn(z),  z>¢

m=1

if z € [0,b]. On the contrary, we search GQI(x €) as

Goy(z,€) = Z Cm1(&)wpm (x (3.15)

m=1
if z € [b,£]. The coefficients a1 (§), b1 (€) and ¢y,s(€) are unknown functions, wy, (x)
is given by .
Note that representation and for Gi7(x,€) and Gor(x,€) ensure the
fulfillment of Properties 1 and 5 of the definition.

Continuity and discontinuity conditions (3.6]) result in the following equations

Z b1 (E)wiM (€) = 0, n=0,1,2 (3.16a)
and
: 1
> b (©wP (€ —5 (3.16b)
m=1

For FrsRp beams equations (3.16a)) and assume the form

1 ¢ & & blI 0
0 1 26 3¢ bor | _ | O
00 2 66 || by |~ | 0 (3.17)
00 0 6 bar —3
Hence
’ ’ ¢ b ! 18
biy=>, by=—> by=-= =, )
17 127 21 47 31 47 47 12 (3 )
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REMARK 3. Note that (a) the determination of b,,; ensures the fulfillment of Property
2 of the Green function; (b) the results obtained for b,,; are independent of the
boundary and continuity conditions.

According to Property 6 of the definition G1;(z, &) and Goy(z, £) should satisfy the
boundary and continuity conditions in Table [1] Utilizing them we get:

(a) Boundary conditions at 2 = 0:

4 4
Z QL] Wi (0) = — Z bk[wk (0) y (3193)
k=1 k=1
4
(1) (1)
Zamwk Zbk[’w ) . (3.19b)
k=1
(b) Continuity conditions at z = b:
4 4
Z arrwi(b) = Z brrwi(b) (3.19¢)
k=1 k=1
4
> crrwi(b (3.19d)
k=1
4 4 4
Z akjw Z c;dwk ) = Z bklw](cl)(b) , (3196)
k=1 k=1 k=1
4 4 4
Z akjwk Z Cklwk ) = Z bk[w]?) (b) . (319f)
k=1 k=1 k=1
(¢) Boundary conditions at x = ¢:
4
> e (0) =0, (3.19g)
k=1
4
> P () =0. (3.19h)
k=1

The previous linear equations can be given in matrix form as well:

100 000 0 0 | [ar] i e :
010000 0 0 ||ax 362

1066 ¥ 0 0 0 0 ass 53—3525—&-351)2—173

000 01 b 0 b ||ay| 1 0

012532 0 ~1 ~2b 312 | | ey | 12| -3246b-32 | 20
002 600 0 —2 —6b| | cy 6¢ — 6b

000 00 1 20 32 || ey 0

000 000 0 1 ||ecy) i 0 |
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After solving the linear equation system (3.20) the following relationship is obtained
for G1r(z,§):

4 ) )
GlI :E f Z aU :l:b[[ ))wz(x):_%g?) 753 (3152 + ( 3152 )) ot
=1

3¢

+ (12b2 (40 = 3b)

(8€D% — 12€bl + 44> — 26%b — 3b° + 46°¢) + % ) 22

_; 212 219 apd 3 3 ;1 3
+ < 1207 (40 = 30) (6670 — 1262b0 — 3b* + 4b°0 + 4487) + )T (321a)
As regards Goy(z,€) we have

(€—b) (x—b) (20— x —b)
20 (4 — 3b)

Gar(z,8) = ZCH we(x) =& (3.21b)

3.2.2. Calculation of the Green function if & € [b,¢]. The assumptions that are used
are similar to those presented in Subsection [3.2.1}

If z € [b, 4] then

NE

Gorr(z,§) = (mr1(&) + bmrr(§))wm (), T <§
e (3.22)
Gorr(x,§) = (@mr1(&) = bmrr(§))wm (), r>§
m=1
however, if z € [0,b] then
G1]] SL’ f Z Cm[[ wm ) (323)

Here the coefficients a,,r7(€), bmrr(€) and cmr1(€) are again unknown functions.
We remind the reader of the fact that the above representations for G1r7(x, &) and
Gayr(z, &) ensure the fulfillment of Property 1 and 5 of the definition.

Continuity and discontinuity conditions (3.10)) lead again to equation system ({3.17)
in which now the coefficients b,,17(§), m = 1,2,3,4 are the unknowns. Hence

bin11(§) = b ().

It’s worth noting that determining the coefficients b,,;; assures that the Green
function’s Properties 3 and 4 are satisfied. Making use of the boundary and continuity
conditions given in Table [1| equations again the following equations can be obtained
for the eight unknown coefficients a,,r7(€) and c¢prr(€):

(a) Boundary conditions at x = 0:

4
> errrwi(0) =0, (3.24a)
k=1

4
Z CkII w,(cl) (O) =0 s (3.24b)
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(b) Continuity conditions at z = b:
4
Z Cr1] Wik (b) = (324C)
k=1
4 4
Zak]] wk(b) = —Zbk[[ wk(b) (3.24d)
k=
4
Z az(glz)z w (b Z CkII wi (b Z bl(fll)l wi (b (3.24¢)
k=1
4
2 2
Z a’l(d)l wi (b Z Ckn wy(b) = — Z bl(cl)l wg(b) (3.24f)
k=1 k=1
(c) Boundary conditions at x = E.
4
Z a,(cll)l wy (¢ Z ka wg (¢ (3.24g)
4
Z a1(<31)1 wi (£ Z bl(cBI)I wi(£), (3.24h)
k=1
Since ¢177 = corr = 0 the ﬁnal equation system has the following form:
00O 0 b2 b3 aiyrr 0
1606 ¥ 0 0 aarr —&3 4 3b€? — 326+ b3
01 2b 3> —2b —3b2 asrr | 1 3¢2 — 6b¢ + 3b? (3.25)
00 2 6b —2 —6b asrr | 12 —6& + 6b :
012032 0 0 C3IT —3€2 + 660 — 302
000 1 0 0 carr -1

After having solved the previous equation system substitution of the results obtained

into equations (3.22)), (3.23)) and using some algebra yield:

Glll(x,f) = Zcéll(f)we(aj) —_ I2 (CE - b) ;él; (4;)_(?:;)) f - b)

{=1

and
4
Gorr(z,8) = Z (aerr(€) £berr(€)) we(z) =
=

3
AbP0 — 12b°E0 + 6670 + 408° — 3¢%) + %+

1
- 12(44 — 3b) (

3 2, 2 oy, —3&7
+<12(4€_3b)(4b£ 126b0 + 36°b + 44€7) + o)t

(3.26a)

3 2 2 35 2 1 3
+<1(( 2b% + 4€0 — 4% + 3¢b) + >a: +(j:12>x

2 (40 — 3b)
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Note that the calculation of the functions as;; and cgyr is based on Property 6 of
the definition.

Figure[2 depicts the Green function for an FrsRp beam. It is assumed that L = 100
mm, b =50 mm and f = 75 mm. The computed points are drawn by red diamonds
and the function itself is shown using a continuous line. This notation convention will
be applied to the other figures in the present paper. The Green function shown in
Figure [2] is the dimensionless displacement due to a dimensionless vertical unit force
exerted on the beam at the point £ = 0.75.

G(®,E=75mm)
1000
1071

9+ 2|W

8T £—X

T £-0.75

6T 1

5+
4+
3T

&= 75mm
Figure 2. The Green function of an FrsRp beam

3.3. Green function for PrsRp beams. Repeating the calculations steps pre-
sented in Subsection for PrsRp beams yields the following four elements for the
corresponding Green function — the calculation details are all omitted here.

4
Gur(e.6) = 3 (€)% b () wn(e) = (58 £ 156°) +
(=1

1
+< 12b(2b 30

1 —1
B 2 51,3 2 2 3 3
+ < mfi 125) x° + (1%2 = (—2b%+3b7E+ 300" —60bE+£7) + D > z3,
(3.27a)

)( 90°€+6b%E% +1200°¢ —3b€° —9LbE? + 6L€%) = (_3122))“
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Gor(z,8) = an we(z ﬁggf% (b—a) (=0 (b+x—20), (3.27h)
Girr(z,€) ch §)we(x 41b =7 f 5 (0= (22 —0%) (b+&—20), (3.27c)

4
Gorr(z,€) = Z aerr(§) £ berr(§)) ze(w) =
=1

1

3
_ 4 2¢p)  912¢2 93 3 3
_12(34—21;)( b+ 6b%E0 — 3b%¢ 3§€+2§b)i—12+

(2670 — 8bEL + 2b€% + 3€2() £ 352) T+

3
+ (12 (3¢ — 2b) 19

3 2 2 3¢\ 1 -1\

Figure [3| shows the Green function of a PrsRp beam under the same conditions as
Figure [2| depicts the Green function of an FrsRp beam.
G(R,E=75mm)
1000
121
11T 5

10 T
9
8 -

lw

b=L2
£=0.75

74+
61
5+
a4+
3+
24
14+
0 —t
1+
2+
3+
4+

>

&= 75mm

Figure 3. The Green function of an PrsRp beam

REMARK 4. The Green function given by equations (3.21]) and (3.26) (FrsRp beams),
(3.27) (PrsRp beams), should satisfy symmetry condition (3.13]). It can be proved by
paper and pencil calculations that this condition is really fulfilled. Note that for Gay
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and Gy a comparison of (3.21b)) and (3.26a)) as well as that of (3.27b]) and (3.27c)
clearly shows the fulfillment of the symmetry condition.

REMARK 5. The Green functions (3.21)), (3.26) and (3.27) are dimensionless quanti-
ties. By substituting b, L, & and & for b, ¢, x and¢ in (3.21), (3.26) and (3.27) we

obtain the Green functions for a selected length unit. Then the unit of the Green
function is the cube of the length unit selected.

4. NUMERICAL SOLUTIONS FOR THE FREE VIBRATION AND STABILITY PROBLEMS

4.1. The free vibration of FrsRp and PrsRp beams. Making use of the algo-
rithm detailed in Subsection 7.2 of the book 18] a Fortran 90 program was developed
for solving eigenvalue problem , i.e., for computing the eigenvalues A (the nat-
ural circular frequencies) of the freely vibrating FrsRp and PrsRp beams (the axial
force is now zero) shown in Figure Table [2[ and Table [3| present the values of
\i/4.7300422, (i = 1;2;3) for FrsRp and PrsRp against 21 uniformly increasing b
values in the interval [0.0, 1.0].

Table 2. Solutions for the eigenvalues A of FrsRp beams

b VA VA2 VA3
4.730042 4.730042 4.730042

0.000 | 0.2545 1.3707 3.3876
0.050 | 0.2751 1.4832 3.6692
0.100 | 0.2989 1.6159 4.0085
0.150 | 0.3264 1.7737 4.4165
0.200 | 0.3587 1.9626 4.9052
0.250 | 0.3970 2.1896 5.4794
0.300 | 0.4428 2.4631 6.0887
0.350 | 0.4983 2.7884 6.1999
0.400 | 0.5667 3.1487 5.3372
0.450 | 0.6520 3.3867 4.7648
0.500 | 0.7599 3.1710 5.0303
0.550 | 0.8973 2.7863 5.8037
0.600 | 1.0688 2.4707 6.2988
0.650 | 1.2566 2.2989 5.7913
0.700 | 1.3675 2.4086 5.1793
0.750 | 1.3348 2.9030 4.7797
0.800 | 1.2429 3.3735 5.1642
0.850 | 1.1494 3.2747 6.2815
0.900 | 1.0727 3.0380 6.0457
0.950 | 1.0203 2.8423 5.6192
1.000 | 1.0000 2.7568 5.4059

Polynomials (4.1)), (4.2) and (4.2) are fitted onto the computed discrete values of
VAR/4.730042 (k = 1,2, 3) presented in Table
Polynomials for the first eigenvalue:

VA
4.730042

= —30.475109 96° + 55.991 058 8b°> — 33. 778 406 3b* + 10. 464 803 2b3
—0.743 507 0226% + 0.443 726 955 b + 0.254099 177, b € [0,0.625] (4.1a)
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VAL

173008 = 4172.108 4465 — 20498. 081 76° + 41635. 160 7b* — 44700. 075 20>+

+ 26718. 075 5b% — 8418. 283 6b 4 1092. 096 96, b€ [0.625,1] (4.1b)

Polynomials for the second eigenvalue:

VA
V22 173518 714b° + 150. 076 835b° — 40. 246 420 1b* + 11.010 604 263+
4.730042
+2.870516 97b% + 2. 082056 16b + 1. 370 692 02, be[0,0.35] (4.2a)
VA .
m = —310557.518b°% + 845065. 5b° — 950123. 189b* + 564838. 656b° —
— 187284. 725b% + 32856. 293 2b — 2381. 762 03, b€ [0.35,0.55] (4.2b)
VA
m = —30502. 323 20% + 110600. 1026> — 166009. 8886* + 132140. 13853 —
— 58844. 558 6b% + 13891.813 16 — 1353.111 55, b€ [0.55,0.775]  (4.2c)
V )‘2 6 5 4
— Y2 — _11948.2 1424. 31 -1 672 232479. 3_
173008 948.296 5 b% + 7 3166 b 76869. 672 b* + 232479. 487 b

— 171191. 813 b* + 66992. 1274 b — 10883.393 7, be[0.775,1] (4.2d)

Polynomials for the third eigenvalue:

VA3 6 5 4
— Y72 —413332.6220° — 64 151 411344. - : 3
173008 3332. 62205 — 649900. 1516° + 411344. 981b* — 133672. 32463+
+23342.110 56 — 2033.367 18b + 70.5109770, be[0.25,04] (4.2)
VA
_ V3 48544.0853b% — 91571. 404 8b° + 48349. 687 5b* + 9960. 134 03b —
4.730042
— 18412.920 1b% + 6294. 346 68b — 702. 680 179, b e [0.4,0.55] (4.2f)
VA .
m = 2073702. 86b° — 7913552. 4425 + 12563013. 62* — 10618667. 12>+
+ 5039221. 8722 — 1272877. 152 + 133685. 395, be[0.55,0.7] (4.2g)
VA
_ V3 943505. 38025 + 882582, 9975° — 1246562. T1b* 4 831781. 698b3 —
4.730042
— 231920. 390b> — 1744. 473 18b + 9178. 324 82, b€ [0.7,0.825] (4.2h)
V A3 6 5 4
Y0 — _984198.684 1619914. 012° — 47. 4 . 53x%—
173008 284198. 6842°% + 1619914. 012° — 3845547. 04x* + 4867005. 53z
— 3463802. 0322 + 1314397. 422 — 207763. 794, be[0.825,1.0] (4.2i)

Figures and |§| show the graphs of the functions \/Ax(b)/4.73004%(k = 1,2, 3).
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For PrsPRp beams Table [3| contains the computational results.

Table 3. Solutions for the eigenvalues A\ of PrsRp beams

b VAL v X5
4.730042 4.730042 4.730042
0.000 | 0.2545 | 1.3707 | 3.3376
0.050 | 02729 | 14722 | 3.6446
0.100 | 0.2042 | 1.5951 | 3.9650
0.150 | 0.3191 | 1.7435 | 4.3553
0.200 0.3484 1.9225 4.8163
0.250 | 0.3836 | 2.1369 | 5.3049
0.300 | 04251 | 2.3877 | 54168
0.350 | 04756 | 2.6539 | 4.6226
0.400 | 05383 | 2.7983 | 4.0604
0.450 | 0.6153 | 25824 | 4.2051
0.500 0.7101 2.2442 4.7850
0.550 | 0.8229 | 1.9719 | 54203
0.600 | 0.9388 | 1.8167 | 5.2861
0.650 | 1.0050 | 1.8513 | 4.7224
0.700 0.9830 2.1426 4.2451
0.750 | 0.9163 | 2.6083 | 4.0641
0.800 | 0.8445 | 2.7945 | 4.7548
0.850 | 0.7819 | 2.6420 | 5.4909
0.900 | 0.7333 | 24480 | 5.1979
0.950 | 0.7012 | 22972 | 4.8356
1.000 | 0.6891 | 2.2338 | 4.6607
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Polynomials (4.3)), (4.4) and (4.5) are fitted onto the computed discrete values of
VAR/A.730042(k = 1,2, 3) presented in Table

Polynomials for the first eigenvalue:

VAL o . \ \
T —_4]. 2 .14 —33. . 262 020 48b° —
173004 080 096 2b°+63. 147 880 95> —33. 556 975 5b* + 9. 262 020 48b

—0.5103792195% 4 0.383 506 985b + 0.254 263 737, b € [0,0.575] (4.3a)
Py
% = 1322.696 25b° — 6268. 407 31b° + 12232. 936 9b* — 12555. 559 8b>+

+7129. 384 25b> — 2117. 638 81b 4 257.278 716, b € [0.575,1] (4.3b)

Polynomials for the second eigenvalue:

Py
% = —295.492865b% 4 201. 661 94b° — 47. 755 381 3b* + 10. 626 197 60>+
+3.19561334b% + 1.8487839b + 1.37070243, b <€ [0,0.3] (4.4a)
P\
% = —230912.083b% + 557 443.625b> — 554 657.434b* + 291 066.631b°—
— 84987.941 7b*+13104. 515 16—832.37911, b€ [0.3,0.5] (4.4b)
Py
% = —5813.45113b% + 18042. 657 96° — 22715. 726b* + 14807. 845 83—
— 5220.857 11b% + 918.110 040b — 55.8422642, b€ [0.5,0.75] (4.4c)
P\
% = 4928. 738 8905 — 22244. 172 9b° + 39776. 050 7b* — 34844. 077 66>+

+ 14431. 718 2b> — 1786. 725 11b — 259. 298607, b € [0.75,1] (4.4d)

Polynomials for the third eigenvalue:

VA
V3 9623.30596b° + 1237.63568b° — 231.339925b* 4 30.257 014 13+
4.730042
+ 10. 385009 6b + 4. 566 326 26b + 3.387 60046, b€ [0,0.2] (4.5a)
YAz 1.131 06148 x 10°0° — 20897. 459 2b° — 90629. 798b* + 66709. 594 1>
1730022 x - ' - ' + ' -

— 19457. 354 7h% + 2639. 576 61b — 134.025486, b € [0.2,0.35] (4.5b)



Vibration and stability of heterogeneous beams with three supports 143

N2
m = 29681. 777 8% — 36384. 972 8b° — 6235. 294 22b* + 30141. 818 96—
— 18135. 112 4b% + 4465. 631 98b — 399.021 738, b € [0.35,0.5] (4.5¢)
YAz 1479416.38b° + 500 694.406° — 7035 081.66b* 4+ 5252 557.83 x 10°p°
1730082 — . + . — . —+ .83 X —
—2197910.20b% 4 488 766.44b — 45129.13, b € [0.5,0.65] (4.5d)
YAz 743272.68b% + 3194 975.26 x 10°0° — 5713 572.25b* + 5 441 676.395>
1730012 — . + .20 X - . + . —
—2911437.16b% + 829 724.55b — 98399.24, b € [0.65,0.8] (4.5¢)
N2\
m = 372346.00° — 2006 546.656° + 4 496 069.4b* — 5360 883.7b>+

+ 3586 778.1b% — 1276523.3b + 188764.8 b € [0.8,1.0] (4.5f)
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Figure 7. Function /A1 /4.73004% against b
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Figures and |9| show the graphs of the functions /Ay (b)/4.73004%(k = 1,2, 3).
As regards Figures 6] and [J]the discrete point pairs are denoted by diamonds.

The continuous lines are drawn by using polynomials (4.1), (4.2), (4.2), (4.3)), (4.4)

and ([4.5) which fit onto the discrete point pairs with four digit accuracy.

4.2. Stability problems of FrsRp and PrsRp beams.

4.2.1. Solution procedures. There are various methods for calculating the critical load.
(a) Tt is possible to solve the eigenvalue problem determined by the homogeneous Fred-
holm integral equation numerically if we apply the boundary element technique.
See for instance [16] which uses this technique for other support arrangements. (b) It
is also possible to establish the nonlinear characteristic equations and then to solve
them for the critical load In the present paper the boundary element approach will
be preferred, and the numerical solution of the characteristic problem is used to val-
idate the findings obtained using this approach. As regards the boundary element
technique the solution steps are detailed in Subsection 8.15.2 in |12]. A Fortran 90
program was developed. The kernel in equation has the following form

Kll(xaf) if -T,€ € [076]7
Kor(z, if x€b,f and € €]0,4],

- )
Ko ) = Kirr(z,€) if z €[0,b] and € € [b, 4], (4.6a)
Korr(x, &) if z,& € [b, 4],
where i 2
Kir(z,€) = 5%1;2325)7 Kar(x, &) = a%i;[g?@’
(4.6b)
2 2
Kun(an§) = ZEIES Ko, = TR,

It is obvious from equations (4.6)) that the determination of the kernel K(x, §) requires
the calculation of second derivatives.

4.2.2. The kernel function for FrsRp beams. Making use of equations ,
and we get the elements of the kernel function for FrsRp beams in the following
form:

2

fute )= ignted = (F = (~556) )+

+ <—12b2(f€3b) (3> — 16b°¢ — 40b> + 6bE> + 240b¢ — 120€7) + g) 4
- %4@ £ = (12— 20 +e0) 2 (4.7a)
Kar(0,6) = e Gar (0,6 = 160 (2= ), (4.7

Korr(,6) = -0 Gl 6) = 222 =5 (¢ . (470

920¢ a0 — 3



146 L. Kiss, M. Abderrazek and G. Szeidl

0? 3 —6¢
Kari(z, &)= oz angn(ﬂC &) = (W%) (6b€ — 12b0 + 8£0) + B )—i—
6 6
+ (12 e G UE 12) (4.7d)

Figure [10] deplcts the kernel function of an FrsRp beam provided that
L =100 mm, b—50mmand§—75mm

Gk ot
1052 =10K(% &)
koS | e=75mm
16 T
e S
12+ :
b=L/2
10 + &=0.7
<—L>
8 -
6 ——
4 ——
2 ——
0 | | | | | | | | | L
1 2 4 5 6 7 8 9 10 10
2+
& =75mm ﬁ

Figure 10. The kernel function of an FrsRp beam

4.2.3. The kernel function for PrsRp beams. Making use of equations (3.27)) and (4.6 .
we can derive the elements of the kernel function for PrsRp beams:

82
Kir(x,§) = E agGu(Dﬂ &) =
1 6¢
<—12b(26_3@ (—9b% + 12b%¢ + 1206 — 9bE? — 18b¢ + 186€7) + (-12>>
6 6 3
+ <—12 + 12) T+ (1262(%3@ (3b” — 60b + 352)) z? (4.8a)
K o —G 1 362 — b2 ¢ 4.8b
21(2, &) = 910¢ 21(z,§) = m(f— )(95_)7 (4.8b)
2
Kui(0,6) = 5rgCini(o.€) =~ (2 1) (=0, (49
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2

_ 9 _ 3 _ —6¢
Karr(z,§) = 6‘x8§G2H(x’§> = (12 (30— 20) (4b€ — 8bl + 6£¢) + 2 ) +

6

Figure shows the kernel function of a PrsRp beam assuming that
L =100 mm, b =50 mm and £ = 75 mm.
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Figure 11. The kernel function of a PrsRp beam

REMARK 6. The kernel functions given by equations and (FrsRp beams),
(3-27) (PrsRp beams), satisfy the symmetry condition K(z,&) = K(&,z). It can be
proved by paper and pencil calculations that this condition is really fulfilled. As
regards Koy and /Cq7y, however, a comparison of and as well as that of
(4.8b) and clearly shows the fulfillment of the previous symmetry condition.

4.3. Computational results.

4.3.1. FrsRp beams. Tables [] contain the values of the dimensionless critical force

vV Nais /7 as a function of b.
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Table 4. The critical forces of FrsRp beam

’ b Neig /71 /N (b) /7 H b Nerig /7 \/@/w‘

0.000 1.00000 1.00003 0.500 1.57277 1.57282
0.025 1.01910 1.01908 0.525 1.61363 1.61370
0.050 1.03895 1.03893 0.550 1.65509 1.6541
0.075 1.05958 1.05957 0.575 1.69675 1.69650
0.100 1.08104 1.08105 0.600 1.73809 1.73862
0.125 1.10336 1.10338 0.625 1.77845 1.77940
0.150 1.12659 1.12661 0.650 1.81707 1.81793
0.175 1.15078 1.15079 0.675 1.85313 1.85350
0.200 1.17599 1.17599 0.700 1.88580 1.88552
0.225 1.20226 1.20224 0.725 1.91439 1.91360
0.250 1.22964 1.22962 0.750 1.93846 1.93750
0.275 1.25819 1.25817 0.775 1.95784 1.95711
0.300 1.28796 1.28794 0.800 1.97270 1.97252
0.325 1.31898 1.31898 0.825 1.98350 1.98393
0.350 1.35131 1.35132 0.850 1.99086 1.99171
0.375 1.38496 1.38499 0.875 1.99550 1.99638
0.400 1.41996 1.41998 0.900 1.99812 1.99859
0.425 1.45630 1.45629 0.925 1.99940 1.99914
0.450 1.49394 1.49391 0.950 1.99989 1.99897
0.475 1.53281 1.53277 0.975 2.00000 1.99915
0.500 1.57277 1.57282 1.000 2.00001 2.00087

The dimensionless parameter b in the first column shows the location of the middle
roller support. The second column contains the critical value for the dimensionless

compressive force, more precisely, the quantity /Nt /7 against the discrete values of
b. The third column contains the approximations computed by using the polynomials

N (b) / fitted onto the point pairs taken from the first two columns of Table

Nowit (b) /7 = —1.930 307 9826 4 1.921 741 813b* — 0.156 388 723 6b°+
+0.637849 474 6b> 4 0.746 17097350 + 1.000037 785,  bin [0,0.5] (4.9a)

Neie (b) /m = —2.260967 6070° + 24.937 737 41b* — 62.207 343 07b%+
+ 61.907 897 88b% — 25.52223892b + 5.145794214. b in [0.5,1.0] (4.9b)

Figure [T2] depicts the dimensionless critical force against b. The discrete points are
depicted by diamonds, while the corresponding polynomials are drawn using contin-
uous lines.
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Figure 12. The dimensionless critical force for an FrsRp beam

4.3.2. PrsRp beams. Tables [5| contains the values of the dimensionless critical force
\/m /7 as a function of b. The schemes of these tables are the same as those for

Tables [

Table 5. The critical forces of PrsRp beam
’ b Noxit /7 N(b) /= H z=b A\ Nait/m /NO) /7 ‘

0.000 1.00000 1.00004 0.500 1.43029 1.43033
0.025 1.01694 1.01692 0.525 1.44907 1.44919
0.050 1.03446 1.03444 0.550 1.46537 1.46560
0.075 1.05258 1.05257 0.575 1.47877 1.47889
0.100 1.07130 1.07131 0.600 1.48897 1.48889
0.125 1.09063 1.09066 0.625 1.49581 1.49559
0.150 1.11060 1.11062 0.650 1.49935 1.49912
0.175 1.13120 1.13121 0.675 1.49984 1.49971
0.200 1.15243 1.15242 0.700 1.49768 1.49771
0.225 1.17428 1.17426 0.725 1.49334 1.49352
0.250 1.19673 1.19670 0.750 1.48736 1.48760
0.275 1.21973 1.21971 0.775 1.48025 1.48046
0.300 1.24323 1.24323 0.800 1.47251 1.47258
0.325 1.26715 1.26717 0.825 1.46456 1.46447
0.350 1.29137 1.29139 0.850 1.45679 1.45657
0.375 1.31573 1.31575 0.875 1.44954 1.44930
0.400 1.34002 1.34003 0.900 1.44311 1.44297
0.425 1.36398 1.36397 0.925 1.43776 1.43783
0.450 1.38728 1.38725 0.950 1.43371 1.43397
0.475 1.40954 1.40952 0.975 1.43117 1.43139
0.500 1.43029 1.43033 1.000 1.43029 1.42989
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The polynomials fitted onto the computational results are given below:

Nerio(b) /7 = —4. 332224 8920° + 2. 844 038 856h* — 0.646 783 773 5b°+
+0.551 935872422 + 0.661 558 617 6b + 1. 000046 948, bin[0,0.5] (4.10a)

Nerit(b) /7 = —18.118 635 592° + 68. 962 372 98z* — 99. 608 791 1123+
+ 66. 823638 2% — 20. 119893 78z + 3.491 203828,  bin[0.5,1.0] (4.10b)

Figure [13] depicts the dimensionless critical force against b. The continuous lines
belong to polynomials (4.10). Note that the dimensionless critical force reaches its
maximum if b € [0.65,0.68].

Nt I
155 T
150 T
145 T
1.40 T
1.35 T
130 T ZA
w

[ ! .

125+ N 7 x X
b=Lr2
120 T L
‘
115 T
110 T
1.05
1.00 f f f f f f ; . . — b
0.0 01 0.2 03 04 05 06 07 08 0.9 10

Figure 13. The dimensionless critical force for an PrsRp beam

REMARK 7. The corresponding nonlinear characteristic equations are presented in
Appendix f see equations (A.4]) and (A.5). They are also solved numerically. The
results obtained coincide up to five to six digit accuracy with those presented in Tables

[ and B

5. EXAMPLE

Consider an FrsRp beam with the cross section shown in Figure It is assumed
that @ = ¢ = 100 mm, a; = a2 = a/3, E1 = Eauminium ~ 7.0 - 10 N/mm2 while
Ey = Egpeer =~ 2.1-10° N/mm2. The length L of the beam is 3000 mm.
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Figure 14. The cross section of an FrsRp beam

Under these conditions

1 2F) + E» 100% /2 x 0.71 + 2.0

a
Ie = — = 1 5 _
v 12( 3 ) 12 ( 3 )10
=95 x 10" Nmm? = 9.5 x 10" kgmm?®/ sec> (5.1)
and
1 (2p1 4+ pa) A1 (2 x 2710 + 7850) x 100 x 13

— A e = = .2
P A/Apd A 109 x 1002 (52)

= 4.423333 x 10~ kg/mm® (5.3)

According to Table [2| the dimmensionless critical load for b = 0.4 is given by the
equation /Nt /m = 1.41996 from where we get

Nopir = (1.41996 x 3.14)> = 19.879 (5.4)
With N..;; equation ([2.6]) yields

I N 9.5 x 101 x 19.879
Ncri = =T = = 2. 1 6 N .
" T2 30002 0983 x 10 (5.5)

As regards the first eigenvalue A\; concorning the free vibrations it follows from Table
2l that

VA1lb=0.4 = 0.5667 x 4.73004% = 12. 678 (5.6)

With \/A1|p=0.4 equation ([2.10) yields
VAtlp=04 |b 0.4

w1 =
pa
from where substituting (5.1)), (5.2)) and ( we obtain
12.678 9.5 x 1014 rad
= = 206. 4407 5.7
w1 30002 x \/4.423333 x 10—6 x 1002 (5.7)

The above results are validated by the commercial finite element program Ansys. 228
uniform hexahedral elements (SOLID185) were used to generate the geometry mesh.
Table [6] shows a comparison.
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Table 6. Comparison of the results

Our Ansys Relative
solution solution error
Critical load Nepit 2.0983 x 10° | 2.0731 x 10° | 1.2%
Eigenfrequency for the | , . .0
unloaded beam “on = 3285 3230 167%

There is a good agreement between our solutions and the finite element findings.

6. CONCLUDING REMARKS

Making use of the definition given in paper [18] the Green functions for the three
point boundary value issues have been derived, which describe the mechanical behav-
ior of a beam fixed at the left end and rotation prevented at the right end, and pinned
beam at the left end and rotation prevented at the right end with an intermediate
roller support. It is assumed that the beams have cross sectional heterogeneity [15].

Utilizing the Green functions the free vibration and linear stability problems of
these beams are transformed into eigenvalue problems governed by the homogeneous
Fredholm integral equation:

/=1
w@) = [ G u©d,
£=0
(=1
o) = [ K oue)de, (6.1)
Ko = To08 () = 24l

It is clear from [Figure[4 - FrsRp beam] (Figure[7]— PrsRp beam) that the smallest
eigenvalue A; reaches its maximum if [b ~ 0.7125] (b ~ 0.667). It is also clear from
Figure [[4] - PrsRp beam — that the critical force has a maximum if b ~ 0.674.

The eigenvalue problem is replaced by algebraic eigenvalue problems using the
boundary element technique. The numerical solution of stability problems is com-
pared to the solutions obtained numerically solving the corresponding characteristic
equations presented for completeness in the Appendix [A] The two solutions coincide
with each other with the accuracy of four to five digits.

APPENDIX A. CHARACTERISTIC EQUATIONS

In this Appendix we present the characteristic equations. It is worthwhile to direct the
reader to Table 2.8. in book [3].

If the axial force is not zero (N # 0) but a compressive force then, according to equations
, the stability problem of beams are governed by the differential equation

w(4)+p2w(2) :07 p2 :N:L2N/]ey. (Al)
The general solutions are

Wy = a1 + a2 + as cos pxr + a4 sin px z € [0, ] (A.2a)
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and
Wy = €1 + C2 + €3 COS P + ¢4 sin px z € [b,l=1] (A.2b)
where ar and ¢, (k = 1,...,4) are undermined integration constants. For FrsRp beams
equation (A.1]) is associated with the following boundary and continuity conditions:
we(0)=0, w(0)=0; wP@)=0, w©=0, (A.3a)

w,(b—0) =0,, we(b+0),
wi (b—0) = wi” (b+0), (A3b)
w(b—0) = wZ (b+0), '

Differential equation (A.1)), boundary and continuity conditions (A.3) determine a self
adjoint eigenvalue problem with p as eigenvalue. Boundary and continuity conditions (A.3)
lead to the following homogeneous equation system:

Boundary conditions if z = 0:
a1 +a3=0,

az +pas =0.
Continuity conditions at x = b:
a1 + azb+ as cospb + a4 sinpb = 0,
c1 + c2b + c3 cospb + ca sinpb = 0,
a2 — pas sin pb + pay cos pb — (c2 — pes sinpb + pey cos pb) = 0,
—agz cospb — a4 sin pb — (—c3 cos pb — ca sin pb) = 0,
Boundary conditions at x = ¢ = 1:
c2 — pcgsinp + pea cosp = 0,
p303 sinp — p304 cosp = 0.

Since this equation system is homogeneous non-zero solutions for the integration constants

ai,...,aq and ci, ..., cq exist if and only if the determinant of the coefficient matrix vanishes,
i.e., it holds that
1 0 1 0 0 0 0 0
0 1 0 D 0 O 0 0
1 b cos pb sinpb 0 O 0 0
0 0 0 0 1 b cos pb sin pb
|0 1 —psinpb pcospb 0 —1 psinpb —pcospb
0 0 —cospb —sinpb 0 O cos pb sin pb
0 0 0 0 0 1 —psinp pcosp
0 0 0 0 0 0 p’sinp —picosp
= 1104 (cos (p — 2bp) — 4cosp (b—1) + 3cosp) + bp°sinp = 0. (A.4)

2
If b = 1 the solution for p is 27. If b — 0 the solution for p is 7.

As regards PrsRp boundary condition (A.3a)2 changes to w® = 0. Then the character-
istic equation assumes the form:
1 1
3 sinp — 3 sin (p — 2bp) — bpcosp =0 (A.5)
If b =1 the solution for p is 4.4934. If b = 0 the solution for p is .
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