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Abstract. The stochastic turbulence model developed by Professor Czibere provides a
means of clarifying the flow conditions in pipes and of describing the heat evolution caused
by shear stresses in the fluid. An important part of the theory is a consideration of the heat
transfer-diffusion caused by heat generation. Most of the heat is generated around the pipe
wall. One part of the heat enters its environment through the wall of the tube (heat trans-
fer), the other part spreads in the form of diffusion in the liquid, increasing its temperature.
The heat conduction differential equation related to the model contains the characteristics
describing the turbulent flow, which decisively influence the resulting temperature field, ap-
pear. A weak solution of the boundary value problem is provided by Bubnov-Galerkin’s
variational principle. The axially symmetric domain analyzed is discretized by a geomet-
rically graded mesh of a high degree of p-version finite elements, this method is capable
of describing substantial changes in the temperature gradient in the boundary layer. The
novelty of this paper is the application of the p-version finite element method to the heat
diffusion problem using Czibere’s turbulence model. Since the material properties depend
on temperature, the problem is nonlinear, therefore its solution can be obtained by iteration.
The temperature states of the pipes are analyzed for a variety of technical parameters, and
useful suggestions are proposed for engineering designs.

Mathematical Subject Classification: 76F10, 80A19, 65N30
Keywords: Stochastic turbulent flow model, heat diffusion problem, Galerkin method, p-
version finite elements

1. Introduction

In short, the calculation of turbulent flow in a long straight pipe based on the sto-
chastic turbulence model [1–3] will be summarized. In this model, the mechanical
similarity hypothesis was successfully extended to a three-dimensional turbulent flow
by confirming it with experimental results. The model is suitable for investigating
steady-state turbulent flow. An important result is the introduction of the eddy vis-
cosity tensor G instead of the Bousinesq scalar vortex viscosity factor, as well as an
extended interpretation of Prandtl’s length scale lmax. The latter could be derived
using the known dimensional analysis: (l = lmax/κ). Here l is the length scale of
turbulence, and κ is the Kármán constant.
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This paper does not aim to critically analyze different turbulence models [4–11].
Here, we focus primarily on the approximate solution of the thermal conduction prob-
lem related to Czibere’s turbulence model.

1.1. Fundamental assumptions. For an incompressible fluid flow in the stochastic
turbulence model, the governing equations of the transport of mass, momentum, in-
ternal energy and the turbulent kinetic energy equation are written in direct notation:

∇ · v = 0 , (1)

ρ

(
∂v

∂t
+ (v · ∇) v

)
= ρg −∇p−2

3
ρ∇k + η∆v + Div (ΘG) (2)

ρcp

(
∂T

∂t
+ (v · ∇)T

)
= ∇ · [(λ+ Λ)∇T ] + ρ (ϕD + ε) (3a)

ρ

(
∂k

∂t
+ (v · ∇) k

)
= ΘG : (∇ ◦ v)− ρε−∇ ·

{
Θ3/2t

2ρ1/2κ3
− Ck
κΩ

(Θρk)
1/2

}
+

+ υ

[
5

3
ρ∆k −∇ ·Div (ΘG)

]
, (3b)

where the interpretation of the different quantities can be found in the Nomenclature.
In addition, H and H∗ are the similarity tensor and its deviator of the stochastic
turbulence model, respectively:

H =

 α 1 0
1 β 0
0 0 γ

 , H∗ =

 α∗ 1 0
1 β∗ 0
0 0 γ∗

 ;
α∗ = 1

3 (2α− β − γ)
β∗ = 1

3 (2β − α− γ)
γ∗ = 1

3 (2γ − α− β)

where a2 = − 1
2 (α+β+γ), α = −3.28, β = −1.64, γ = −2.46×v are the three entries of

these tensors, according to Prandtl parameter Ck ≤ 1. Naturally, for fully-developed
turbulent flows, the terms of the time derivatives are omitted in equations (2) and
(3). G, the eddy viscosity tensor, is also defined as G = E ·H∗ ·ET , where E = [Eij ]
is the tensor of the transformation between the natural and the reference coordinate
systems, with ET = [Eji] being its transpose. The elements of the transformation
tensor E are given as:

Ei1 =
1√

1− S2

(
vi
v
−SΩi

Ω

)
, Ei2 =

1√
1− S2

(
vi+1Ωi+2−vi+2Ωi+1

vΩ

)
, Ei3 =−Ωi

Ω

v=
√
v2

1 +v2
2 +v2

3 , Ω=
√

Ω2
1+Ω2

2+Ω2
3, S =

1√
1−S2

(
v1Ω1+v2Ω2+v3Ω3

vΩ

)
,

i = 1, 2, 3
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Figure 1. Natural x′1, x
′
2, x
′
3 and reference x1, x2, x3 coordinate sys-

tems [1]

The base vectors of the natural coordinate system are defined by the velocity v and
vortex velocity vector Ω = ∇× v:

e′2 =
v ×Ω

|v ×Ω|
, e′3 = −Ω

Ω
= − ∇× v

|∇ × v|
, e′1 = e′2 × e′3.

Equations (1) to (3) consist of a total of five scalar differential equations. In this differ-
ential equation system there are six unknown functions: (v1, v2, v3, p, T,Θ), therefore
the system (1)-(3) is underdetermined, that is, it needs to be supplemented with one
equation.

The additional differential equation is created considering the following as-
sumptions. Using the definition of the specific turbulent dissipation

ε = υ(v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′)

in case of stochastic turbulence it is written as [1]:

ε = −υκ2
[
a11A

2
1 + a22A

2
2 + a33A

2
3 + 2 (a12A1A2 + a13A1A3 + a23A2A3)

]
,

where v′ is fluctuation of the velocity, and (̄·) is the time-average value,

a11 = 2α+ β + γ, a22 = α+ 2β + γ, a33 = α+ β + 2γ,

a12 = α+ β + γ + 1, a13 = α+ β + γ, a23 = α+ β + γ,

Ai =
1

2κ (ρΘ)
1/2

[
Ei1

∂Θ

h1∂x1
+ Ei2

∂Θ

h2∂x2
+ Ei3

∂Θ

h3∂x3

]
, i = 1, 2, 3.

The π theorem of dimensional analysis states that every physical process can be
outlined by a relationship between a certain number of dimensionless characteristics.
The process of turbulent fluctuation is fundamentally determined by the length scale
l, the absolute value of the vortex vector Ω, the specific turbulent dissipation ε, and
the kinematic viscosity υ of the medium [1]. In view of the above, with the help of
the π theory of dimension analysis, the specific turbulent dissipation ε takes the form
of

ε = CEυ
N ΩN−1

(lΩ)
2(N−1)

= CEκ
2(N−1) η

N

ρ

ΩN−1

ΘN−1
,
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where 1 < N < 3 and CE is a suitably chosen coefficient. The additional differential
equation is obtained by combining the two equations for ε:

a11A
2
1 + a22A

2
2 + a33A

2
3 + 2 (a12A1A2 + a13A1A3 + a23A2A3) =

= −CEκ2(N−2)ηN−1 ΩN−1

ΘN−1
. (4)

As there is no unknown function in this differential equation, it is a good candidate
for supplementing the underdetermined system of differential equations (1) to (3),
forming a one-equation version of the stochastic turbulence model.

The following will address axisymmetric problems for a steady-state turbulent flow,
that is the problems are time-independent.

In the case of fluid flow in a long straight pipe, in the x1, x2, x3 coordinate system,
only the velocity component v1 depends on the radial coordinate x2, and it is different
from zero. In this case, the turbulence length scale l varies only in the radial direction,
and consequently the dominant turbulent shear stress Θ and the turbulent kinetic
energy k also depend only on radial direction: i.e., Θ(x2) and k(x2). However, pressure
and temperature depend on two coordinates: i.e., p(x1, x2), T (x1, x2). After that, the
vortex components are given as follows:

Ω1 = Ω2 = 0, Ω3 = − dv1

dx2
.

Entries of tensor E transforming between the natural and reference coordinate systems
are given as:

E11 = 1, E12 = 0, E13 = 0,

E21 = 0, E22 = −1, E23 = 0,

E31 = 0, E32 = 0, E33 = −1.

The entries of the vortex viscosity tensor G are as follows:

G11 = α∗, G22 = β∗, G33 = γ∗

G12 = G21 = −1, G13 = G31 = G23 = G32 = 0.

This means that in the case of fluid flow in a long straight pipe, the continuity equation
(1) is automatically satisfied; and the equation of linear momentum (2) develops in
this way by neglecting the gravity force in axial direction:

0 = − ∂p

∂x1
+ η

(
d2v1

dx2
+

1

x2

dv1

dx2

)
− dΘ

dx2
− Θ

x2
(5a)

in radial direction:

0 = − ∂p

∂x2
+

(
β∗ −

2a2

3

)
dΘ

dx2
+

Θ

x2
(β∗ − γ∗) (5b)

Deriving (5a) with respect to x1, ∂2p
∂x2

1
= 0 is obtained for the pressure p, and its

solution is given as p(x1, x2) = A(x2) +Bx1 , where constant B can be calculated by

a pressure drop ∆p = p1 − p2, which is measured in length L of the pipe B = −∆p
L ,
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p1 = p(0, x2), p2 = p2(L, x2). Then the momentum equations (5a) and (5b) can be
written in the following form:

η

(
d2v1

dx2
+

1

x2

dv1

dx2

)
− dΘ

dx2
− Θ

x2
= −∆p

L
, (6a)(

β∗ −
2a2

3

)
dΘ

dx2
+

Θ

x2
(β∗ − γ∗) = f

′
(x2). (6b)

Equation (6a) can be reshaped as follows:

η
d

dx2

(
x2
dx1

dx2

)
− d

dx2
(x2Θ) = −∆p

L
x2.

This equation is integrated with respect to x2, and the result is divided by x2:

η
dv1

dx2
−Θ = −∆p

2L
x2 +

C

x2
.

Taking into account that in the middle of the pipe (where x2 = 0) neither dv1/dx2 nor
the dominant turbulent shear stress Θ can be infinitely high, the integration constant
C is zero. Thus the momentum equation (6a) is finally written as follows:

η
dv1

dx2
−Θ = −∆p

2L
x2 (7)

In the case of fluid flow in a long straight pipe, the parameters Ai of equation (4) are
given as follows:

A1 = 0, A2 = − 1

2κ (ρΘ)
1/2

dΘ

dx2
, A3 = 0.

Finally, equation (4) takes the form of:

a22

4κ2ρΘ

(
dΘ

dx2

)2

= −CEκ2(N−2)ηN−1 ΩN+1

ΘN−1

After some manipulations we have the following form:

Θ
N−2

2
dΘ

dx2
= 2ρ

N
2

(
− CEυ

N−1

α+ 2β + γ

)1/2

κN−1Ω
N+1

2 . (8)

It is easy to see that from the point of view of determining the unknown functions v1

and Θ, differential equations (7) and (8) form a closed system. By solving them, the
functions can be numerically determined.

1.2. Preparation for numerical computations. Numerical computations are per-
formed with dimensionless physical variables. The dimensionless counterpart of ve-
locity v1 is the wall friction velocity v∗, which is defined by the viscous shear stress
on the wall τ(R0). The wall friction velocity is obtained as:

ρv2
∗ = |τR0| = η

∣∣∣∣ dv1

dx2

∣∣∣∣
x2=R0

=
∆pR0

2L
, v∗ =

√
∆pR0

ρ2L
,

where R0 is the inner radius of the pipe. The modified Reynolds number is calculated
with the wall friction velocity v∗: Re∗ = v∗R0/υ.
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Introducing the following notations

ξ =
x2

R0
, V (ξ) =

v1

v∗
, H(ξ) =

Θ

ρv2
∗

the momentum transport equation (7) takes the form of

dV

dξ
= Re∗(H − ξ). (9a)

Using the dimensionless parameters in differential equation (7) and substituting them
into equation (9a), the following differential equation is obtained:

dH

dξ
= CH

√
|H − ξ|N+1

HN−2
,CH = 2κN−1 Re∗

√
− CE
α+ 2β + γ

(9b)

where coefficient CH from the numerical experiment is [3]:

CH = 0.157 Re1.528
∗ for Re∗ < 1134, CH = 1.125 Re1.248

∗ for 1134 < Re∗ < 21553,

CH = 446 Re0.418
∗ for 21553 < Re∗

By solving the closed system of differential equations (9a) and (9b), the functions
V (ξ) and H(ξ) can be numerically determined. The boundary conditions at ξ = 0
are defined as:

H(0) = 0, V (0) =
vm
v∗

=
1

κ
ln Re∗+6.0,

where vm is the velocity maximum [3]. Differential equations (9a) and (9b) are solved
by the Runge-Kutta method.

For fluid flows in pipes, the relationship between the Reynolds number Re and its

modified value Re∗ is written as Re∗ =
√

f
2

Re
4 , where

Re =
2vaR0

υ

1√
f

=
1

2κ
√

2
ln
(

Re
√
f
)
− 0.8. (10)

Here va is the average velocity in the pipe section, f is the friction factor in the fluid
flow.

Differential equations (9a) and (9b), like the turbulence model itself, are based
on the already fully formed turbulence condition. They lose their validity in the
viscous boundary layer along the wall because the presence of the wall attenuates the
development of turbulence. Therefore, the slowing effect of the wall on the turbulence
in the pipe flow is represented by the following damping function D̃(ξ):

D̃(ξ) = exp

(
bξ

ξ − 1

)
, b =

3

Re∗
.

Multiplying the solution of differential equation (9b) by this damping function, the
result satisfies also the boundary condition H(1) = 0. Then differential equation (9a)
is solved with the attenuated distribution H(ξ) to determine the function V (ξ). In
order to satisfy the condition V (1) = 0, differential equation (9a) is solved with the
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help of the following multiplicative cutoff function, which makes the solution smooth
in the vicinity of the wall:

Y (ξ) = (Ã1ξ + Ã0)(ξ − 1), ξδ ≤ ξ ≤ 1

where ξδ = 1− 3/Re∗ denotes the location of the fitting; and the coefficients Ã1 and

Ã0 can be calculated as follows:

Ã1 =
V
′
(ξδ)

ξδ − 1
− V (ξδ)

(ξδ − 1)
2 , A0 = V

′
(ξδ)− (2ξδ − 1)Ã1

In case of stationary flow in a long straight pipe, using the divergence of the vector
function f(r):

∇ · f =
1

h1h2h3

(
∂

∂x1
(f1h2h3) +

∂

∂x2
(f2h3h1) +

∂

∂x3
(f3h1h2)

)
and taking into account that h1 = h2 = 1 and h3 = x2 the transport equation for
internal energy (3) will have the form

ρcpv1
∂T

∂x1
=

∂

∂x1

[
(λ+ Λ)

∂T

∂x1

]
+

∂

∂x2

[
(λ+ Λ)

∂T

∂x2

]
+

+
1

x2
(λ+ Λ)

∂T

∂x2
+ ρ (ϕD + ε) , (11a)

where the viscous and turbulent dissipations ϕD and ε are given by the expressions

ϕD = υ

(
dv1

dx2

)2

, ε = −υ a22

4ρΘ

(
dΘ

dx2

)2

.

Let us introduce dimensionless location coordinates s = x1/R0, ξ = x2/R0 and
dimensionless variables

ϕ =
R0ϕD
v3
∗

=
1

Re∗

(
dV

dξ

)2

, ψ =
R0ε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

, ϑ =
T

T0
,

where T0 is the reference temperature.

The former transport equation of internal energy (11a) with the dimensionless
coordinates and variables is formed as

Pr Re∗ V (ξ)
dϑ

ds
=

1

λ

[
∂λ

∂s
(1 +

Λ

λ
)
∂ϑ

∂s

]
+

1

λ

[
∂λ

∂ξ
(1 +

Λ

λ
)
∂ϑ

∂ξ

]
+

+
∂

∂s

[
(1 +

Λ

λ
)
∂ϑ

∂s

]
+

∂

∂ξ

[
(1 +

Λ

λ
)
∂ϑ

∂ξ

]
+

1

ξ
(1 +

Λ

λ
)
∂ϑ

∂ξ
+ Pr Re∗ Ec(ϕ+ ψ), (11b)

where Pr = ηcp/λ is the Prandtl number and Ec = v2
∗/(cpT0) is the Eckert number.

The ratio of the turbulent and molecular heat conductivity factors Λ and λ is given
as:

Λ

λ
=
cp
λ

κ∗
κ

Θ

Ω
= Pr Re∗

κ∗
κ
H

∣∣∣∣ dξdV
∣∣∣∣ = Pr

κ∗
κ

H

|H − ξ|
The partial differential equation (11b) can be solved for the given initial and boundary
conditions when V (ξ) and H(ξ) are known. The similarity numbers Pr, Re∗, Ec and



136 I. Páczelt

Λ
λ depend on temperature T . An approximate solution of differential equation (11b)
will be proposed in the following.

2. Variational equation of thermal convection-diffusion problems

It should be emphasized that the variational discussion of the convection-diffusion
heat transfer problem of turbulent flow and then its p-version finite element solution
constitute a new contribution part of this work.

At the given average pipe velocity va, the value Ẽc = ν2
a/(cpT0) can be determined

by interpolating cp in Table 1 for a given temperature. According to equation (10),
Re∗ can be calculated, and using equation Re∗ = v∗R0/υ, v∗ will be known. Hence

Ec = v2
∗/(cpT0) and also Ec = Ẽc/(vav∗)

2 can be written.

Let us introduce the following value: C = 1 + Λ
λ .

Rewrite equation (11b) for coordinates x1, x2:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

∂

∂x1

[
C
∂T

∂x1

]
+
R2

0

T0

∂

∂x2

[
C
∂T

∂x2

]
+

R2
0

T0x2
C
∂T

∂x2
+

+ Pr Re∗ Ec(ϕ+ ψ). (12)

Then performing the derivations, equation (12) takes a new form:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

{
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+

1

x2
C
∂T

∂x2
+ C

[
∂2T

∂x2
1

+
∂2T

∂x2
2

]}
+

+ Pr Re∗ Ec(ϕ+ ψ). (13)

Using the Laplace differential operator for the axisymmetric case, the following is
obtained:

Pr Re∗ V (ξ)
∂T

∂x1

R0

T0
=

1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
R2

0

T0
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
R2

0

T0
+

+
R2

0

T0

{
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )

}
+ Pr Re∗ Ec(ϕ+ ψ) (14)

Taking into account the definitions at the beginning of this chapter

Λ

λ
=
cp
λ

κ∗
κ

Θ

Ω
=

Λ

λ
(x1, x2), (15)

this ratio depends on coordinates x1, x2. Therefore the following parameter will also
depend on x1, x2:

C = 1 +
Λ

λ
= C(x1, x2) (16)
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Thus, differential equation (14) is written in a new form

= = =(T ) =

=

{
1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )

}
−

− Pr Re∗ V (ξ)
∂T

∂x1

1

R0
+ Pr Re∗ Ec(ϕ+ ψ)

T0

R2
0

(17)

or which an approximate solution is to be sought. In order to obtain a specific solution
for (17) the following boundary conditions need to be prescribed.

The temperature of the inlet water on boundary Γ1 at x1 = 0 is given as

T = T (x1 = 0, x2) = T0 (18)

The outflow of heat flux is zero

∂T

∂x1
− qFL = 0, qFL = 0 on boundary Γ3 at x1 =∞. (19a)

There is heat transfer on boundary Γ2 in the cylindrical surface x2 = R0:

P = P (T ) =
∂T

∂x2
cx

2
=R0

+
h

λ
[T (x1, R0)− TK ] = 0, (19b)

where TK is the temperature of the environment, h is the heat convection coefficient
(convective heat transfer coefficient).

According to the Galerkin variation principle [12, 13] the weak form of the boundary
value problem is∫

Ω

δT=(T )dΩ +

∫
Γ2

δTP (T )dΓ−
∫

Γ3

δTC(
∂T

∂x1
− qFL)dΓ = 0, (20)

where δT is the variation of the temperature field, which is zero on the boundary Γ1,
δT = 0.

Based on the product derivation rule

[∇δT · C(∇T )] = (∇δT ) · C(∇T ) + δT (∇C) · (∇T ) + δTC
(
∇2T

)
. (21)

Using the Gauss theorem∫
Ω

δTC(∇2T )dΩ=

∫
Γ2+Γ3

δTC(∇T ) · ndΓ−
∫

Ω

{(∇δT ) · C(∇T )+δT (∇C) · (∇T )} dΩ.

(22)

For boundary value problems (17)-(19), the Galerkin principle takes the following
form:∫

Ω

δT

{
1

λ

[
∂λ

∂x1
C
∂T

∂x1

]
+

1

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2
+ C(∇2T )−

− Pr Re∗ V (ξ)
∂T

∂x1

1

R0
+ Pr Re∗ Ec(ϕ+ ψ)

T0

R2
0

}
dΩ+

+

∫
Γ2

δT

[
∂T

∂x2
+
h

λ
(T − TK)

]
dΓ−

∫
Γ3

δTC(
∂T

∂x1
− qFL)dΓ = 0. (23)
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Substituting (22) into (23) and using the following relation

δT (∇C) · (∇T ) = δT

[
∂C

∂x1

∂T

∂x1
+
∂C

∂x2

∂T

∂x2

]
(24)

after some manipulations the final variational equation is∫
Ω

{
−δT
λ

[
∂λ

∂x1
C
∂T

∂x1

]
− δT

λ

[
∂λ

∂x2
C
∂T

∂x2

]
+ (∇δT )C · (∇T )+

+ δT Pr Re∗ V (ξ)
∂T

∂x1

1

R0

}
dΩ−

∫
Γ2

δT (1 + C)
∂T

∂x2
dΓ−

∫
Γ2

δT
h

λ
TdΓ =

=

∫
Ω

δT Pr Re∗ Ec(ϕ+ ψ)
T0

R2
0

dΩ−
∫

Γ2

δT
h

λ
TKdΓ +

∫
Γ3

δTCqFLdΓ. (25)

3. Approximation by finite element method

According to the finite element method [14, 15], the temperature field is approximated
in the following form:

T = Nq,
∂T

∂x1
= N,x1q,

∂T

∂x2
= N,x2q. (26)

Here N is the matrix of shape functions, its derivatives are:

∂

∂x1
N = N,x1,

∂

∂x2
N = N,x2

and q is the vector of the unknown parameters. Hierarchical shape functions will be
used in p-version finite elements [14].

In order to discretize functional (25) the following formulae should be evaluated:

∇T =


∂N

∂x1

∂N

∂x2

 =

[
N,x1

N,x2

]
q, (27)

∇T · n =
∂T

∂x1
nx1 +

∂T

∂x2
nx2 =

[
∂N

∂x1
nx1 +

∂N

∂x2
nx2

]
q = Γq, (28)

δqTKq = δqT

(∫
Ω

{[
NT
,x1N

T
,x2

]
C

[
N,x1

N,x2

]
+ Pr Re∗

[
NTVN,x1

] 1

R0

}
dΩ−

−
∫

Ω

NT C

λ

[
∂λ

∂x1
N,x1 +

∂λ

∂x2
N,x2

]
dΩ−

−
∫

Γ2

NT

[
(1 + C)N,x2 +

h

λ
N

]
dΓ

)
q, (29)

δqT f =δqT
(
T0

R2
0

∫
Ω

NT Pr Re∗ Ec(ϕ+ ψ)dΩ−
∫

Γ2

NT h

λ
TKdΓ +

∫
Γ3

NTCqFLdΓ

)
.

(30)
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The stiffness matrix K and the load vector f are produced by Gauss type numerical
integration element by element. In order to evaluate the above expressions the fluid
flow problem should be solved first, and accordingly the values of V , C, ϕ and ψ at
these points are taken. The rest of the parameters are interpolated from Table 1, the
Reynolds numbers can be taken from Figures 25 and 26 as a function of the fluid rate.

Due to arbitrary variation of δq, the following algebraic equation system needs to
be solved:

Kq− f = 0. (31)

Its solution is given as

q = K−1f . (32)

The temperature field is approximated by (26), the material constants are modified
accordingly, then by the repeatedly calculated stiffness matrix K and load vector f ,
equation (26) will be solved successively until the following tolerance has been met
as far as the following inequality:

eT = 100

√∑
i(q

(s)
i )2 −

√∑
i(q

(s−1)
i )2√∑

i(q
(s−1)
i )2

≤ 0.001, (33)

where s is the number of iteration.

4. Numerical results

Let us examine the flow of water in a rigid pipe. The temperature is given at the inlet
edge of the pipe. Our aim is to determine the frictional heat generation caused by
the turbulent flow, which will affect the water temperature. The following questions
can also be examined: How will the temperature change with different heat transfer
parameters, and how will the volume flow rate Q affect the resulting temperature
field? It is also a question whether the solution is sensitive to the diameter of the
pipe, i.e., whether it is significant or not.

Let the reference temperature and the environment temperature be T0 = 373 K
and TK = 293 K, respectively.

Material constants are independent of fluid velocity but depend on the temperature
in the case of water as given in Table 1.

Table 1.

T [◦C] 0 20 100

ρ [kg/m
3
] 1002.28 1000.52 960.63

cp [J/(kgK) 4118 4182 4216

υ = η/ρ [m2/s] 1.788× 10−6 1.116× 10−6 2.94× 10−7

λ [W/(mK)] 0.552 0.597 0.680

Pr 13.369 7.821 1.751
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In the solution process, first the functions V (ξ) andH(ξ) are determined by solving the
fluid flow problem. The viscous and turbulent dissipations depend on these functions:

ϕ =
R0ϕD
v3
∗

=
1

Re∗

(
dV

dξ

)2

, ψ =
R0ε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

. (34)

Dissipation leads to an increase in the temperature of the fluid. Two cases will be
demonstrated here. Let us take two different pipe diameters (D) with the same flow
rate Q. The results are shown in Figure 2.

a b

Figure 2. Functions V˜ and H along the radius, a) D = 0.1m,
b) D = 0.2 m

It can be seen that around the pipe wall (x2 ∼ R0, ξ ∼ 1 ), both functions change
abruptly, since the heat development is significant there.

Let us consider the pressure distribution. The following equations for the pres-
sure can be obtained by integrating differential equation (5a) using transformation
H(ξ) = Θ/(ρv2

∗) in it.

p̃ (ξ)− p0̃ =
p(ξ)

ρv2
∗
− p0

ρv2
∗

=

(
β∗ −

2a2

3

)
H + (β∗ − γ∗)

∫ ξ

0

1

ξ̃
Hdξ̃ (35a)

p(x1, x2) = A(x2) +Bx1 = p̃ (
x2

R0
)− ∆p

L
x1. (35b)

From Figure 26 at Q = 0.1 m3/s, va = 3.1831 m/s, Reynolds numbers are Re =
570448, Re∗ = 12680 and taking D = 0.2 m, it follows that

v∗ =
Re∗ υ

R
=

12680× 1.116

105
= 0.1415 m/s.

Furthermore

ρv2
∗ = 1000.52× 0.14152 = 20.03

kg

ms2
= 20.03 Pa = 20.03× 10−5 bar.
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Pressure p̃ changes as shown in Figure 3a at p̃ = 1. If p0 > ρv2
∗ then the point (ξ = 0,

p̃ (0) = 1) shifts to a vertically higher position, and the function p̃ (ξ) will be parallel
to the current situation.

Computations are repeated for pipes of D = 0.1m and D = 0.3m, obtaining the
pressure distributions are shown in Figure 3b. For all the three different pipe diam-
eters, the pressures are similar and they increase slightly at the vicinity of the wall.
The larger the pipe diameter, the greater the rate of change ∆p̃ = 1− p̃ (ξ = 1). The
maximum rate of change of pressure with respect to its maximum value is ∼ 0.8(ρv2

∗).

When the friction factor f for the pipe is known, the pressure loss can be calculated
as follows [16]:

∆p = f
L

D

ρ

2
v2
a = 8f

L

D5π2
ρ Q2 [Pa]. (36)

Taking a pipe of D = 0.2m and f = 0.02, the pressure drop for one meter length is

∆p=8f
L

D5π2
ρ Q2 [Pa]=8× 0.02

1

0.25π2
1000.52× 0.12 = 506.87 Pa = 0.0050687 bar.

This means that the pressure drops are 5.068 bar for length L of 1 km, 25.34 bar
for 5 km and 50.68 bar for 10 km, resp.

The supply pressure is determined by the pressure drop along the pipe. For smaller
diameters, its value increases significantly, which will affect the performance of the
pump used.

a b

Figure 3. p̃ (ξ) pressure atp̃ (0) = 1, a) along the radius, b) in the
vicinity of the pipe wall

4.1. Examination of a five kilometer long pipe. If the diameter of the pipe is
D = 0.2m and its length is 5 km, the corresponding finite element mesh is indi-
cated in the figures for temperature. Thin lines that appear for each element corre-
spond to coordinate lines passing through Gaussian (Lobatto) numerical integration
points. The polynomial order of each element is p = 8. The elements applied are
ring elements, which are suitable for describing axially symmetrical relationships.
Small elements were taken to better approximate the flow in the boundary layer
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Figure 4. Resulting temperature distribution at R0 = 0.1 m,
Q = 0.009 m3, h = 7.71 W/(m2K)

a b

Figure 5. Resulting temperature for parameters Q = 0.03 m3/s, h =
2.22 W/(m2K), a) in case of turbulent flow (with heat generation),
b) without heat generation for diameter D = 0.1m

near the edge x2 = R0. The same dense mesh is applied in the direction of the
longitudinal axis at the entry cross-section.

Figures 25 and 26 show flows of fluids Q [m3/s], with average velocity va[m/s], and
the Reynolds number Re depending on the radius R0 of the pipe and the Re∗ number.
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Temperature changes are computed for two different convective heat transfer co-
efficients h [W/(m2K)] and for parameters R0 = 0.1 m, Q = 0.009 m3/s, h =
7.71 W/(m2K), shown in Figure 5. In Figure 6 the temperature of the fluid is shown
in turbulent flow under parameters: R0 = 0.1 m, Q = 0.04 m3/s, h = 2.22 W/(m2K)
with and without frictional heat generation. The length of the pipe is 5000 m. In all
figures temperature T is denoted by θ.

a b

Figure 6. Resulting temperature for parameters Q = 0.04 m3/s, h =
2.22 W/(m2K), a) in case of turbulent flow (with heat generation),
b) without heat generation for diameter D = 0.2m

a b

Figure 7. Temperature distributions in the case of pipe radius R0 =
0.05 m, as a function of volume current Q (-,–) with and without
heat generation (-*,–); a) h = 2.22 W/(m2K), b) h = 7.71 W/(m2K)
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It is very clear that in computations without heat generation, the temperature
changes along the radius of the pipe are significant, and the heat losses along the
length are much greater than in cases of frictional internal heat generation resulting

ba

Figure 8. Temperature distributions in the case of pipe radius R0 =
0.01 m, as a function of volume current Q (-,–) with heat generation,
and for cases without heat generation (-*,–); a) h = 2.22 W/(m2K),
b) h = 7.71 W/(m2K)

from the turbulence. Therefore, turbulence reduces the cooling of the water flowing
in the pipe; the higher the Reynolds number, the smaller the heat loss. It can also
be seen that the value of the heat transfer factor significantly affects the temperature
that develops. The high-efficiency thermal insulation of the pipe is very important
in order to provide the water temperature at the end of the transmission line that is
desired for heating.

Summarizing the computational results, in Figures 7 and 8, at the center of the
pipe x2 = 0, and at the outer radius of the pipe x2 = R0 curves are denoted with (-)
continuous, (–) dashed curves for turbulent flow, resp., while curves (-*) and (-.) are
associated with the case without heat generation. The temperatures are evaluated at
the cross-section points at the end of a pipe section x1 = 5000 m. The higher the
flow rate Q, the less water will cool along the length of the pipe.

4.2. Analyses of pipes with lengths of ten and fifteen kilometers without
heat generation.
4.2.1. Temperature in a ten kilometer long pipe:



Solution of the heat diffusion differential equation for turbulent flow 145

a b

Figure 9. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 10 km

a b

Figure 10. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 10 km

4.2.2. Temperature in a fifteen kilometer long pipe:

a b

Figure 11. Temperature that develop for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 15 km
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a b

Figure 12. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 15 km

4.2.3. Temperature in a twenty kilometer long pipe:

a b

Figure 13. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 2.22 W/(m2K), L = 20 km

a b

Figure 14. Temperature that develops for a) Q = 0.01 m3, b) Q =
0.006 m3 at D = 0.2 m if h = 7.71 W/(m2K), L = 20 km
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Figures 9-14 show the temperature distributions obtained in some of the numerous
cases examined.

Figure 15 shows the temperature for pipe diameter D = 0.1 m for different heat
transfer factors. Figure 16 demonstrates that for a low-value of volume flow rate
Q heat loss is very significant, especially for larger h = 7.71 W/(m2K). For Q =
0.006 m3, the water has practically taken on the temperature of the environment
already at x1 = 10 km distance.

For the larger diameter D = 0.2 m the results are more favorable as regards the
cooling process (see Figure 16), but the cooling of the water will be significant for a
small value of Q. Here the case without heat generation is also indicated. The effect
of heat generation is noticeable. For example with Q = 0.035 m3/s, the temperature
is about 7 ◦C higher at the output cross-section of the pipe than for a non-heat
generation assumption (see Figure 16a, b). The same can also be seen for Q =
0.1 m3/s (see Figure 16c, d).

a

b

Figure 15. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if diameter is D = 0.1 m and the pipe length is
L = 20 km, and there is no heat generation, a) h = 2.22 W/(m2K),
b) h = 7.71 W/(m2K)
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a

c d

b

Figure 16. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if D = 0.2 m, L = 20 km; a) and c) without
heat generation b) and d) with heat generation

a b

Figure 17. Temperature that develops for Q = 0.1 m3 at D = 0.2 m
if h = 2.22 W/(m2K); a) without heat generation b) with heat gen-
eration
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Figure 17 shows the temperature distribution for values of Q = 0.1 m3 and h =
2.22 W/(m2K). The results obtained for higher h = 7.71 W/(m2K) are shown in
Figure 19.

a b

c d

Figure 18. Temperature distribution at the edge of a pipe (x2 = R0)
for different Q values if D = 0.2 m, L = 20 km; a)c) without heat
generation b)d) with heat generation

As noted above, the higher the velocity of the water, the less it cools down.
Figure 19 shows the temperature distribution for values of Q = 0.1 m3 and h =
7.71 W/(m2K).

We can get an illustrative picture of how the final cross-sectional pipe wall tem-
perature changes as a function of the parameters Q and va depending on the two
heat transfer factors h = 2.22 W/(m2K) and h = 7.71 W/(m2K) (see Figure 20). For
h = 7.71 W/(m2K) , the pipe wall temperature changes will be small above certain
values of Q or va.
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a b

Figure 19. The resulting temperature for parameters Q = 0.1 m3,
h = 7.71 W/(m2K); at D = 0.2 m a) without heat generation b)
with heat generation

a

b

Figure 20. The resulting temperature at the boundary (x2 = R0)
of the cross section x1 = 20 km for parameters h = 2.22 W/(m2K),
h = 7.71 W/(m2K), D = 0.2 m a) as a function of Q b) as a function
of va [m/a]
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Finally, performing the computations for a pipe with a diameter of D = 0.3 m, the
results are shown in Figures 21-24.

c

a b

Figure 21. Temperature distribution at the edge of a pipe with tur-
bulent flow for different Q values for diameter D = 0.3 m and pipe
length L = 20 km; h = 2.22 W/(m2K) with heat generation taken
into account

ba

Figure 22. Temperature distribution obtained with heat generation
for turbulent flow for parameter h = 2.22 W/(m2K), in the case of
diameter D = 0.3 m; a) Q = 0.01 m3, b) Q = 0.1 m3
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a b

c

Figure 23. Temperature distribution at the edge of a pipe with tur-
bulent flow for different Q values for diameter D = 0.3 m and pipe
length L = 20 km ; h = 7.71 W/(m2K) with heat generation taken
into account

4.3. Comparison. The computed temperature results obtained for the same flow
rate Q = 0.1 m3/s but for different pipe diameters D are given in Table 2. Comparing
the temperatures for different diameters the following can be stated: the greater the
diameter, the higher the temperature drop for different values of h.

Table 2.

D [cm] T (x1 = 10) km T (x1 = 20) km

h = 2.22 W/(m2K)
D = 20 [cm] 96.5 93
D = 30 [cm] 95 91

h = 7.71 W/(m2K)
D = 20 [cm] 89 82
D = 30 [cm] 85 74

The longer the pipe, the lower the temperature of the fluid at the end of the
tube, and the slower the flow rate (i.e., Q is small), the greater the loss due to the
heat transfer between the pipe and the environment. In this case, the fluid cools
down significantly (see Figures 18b, 21a, and 23a). As Q increases, the temperature
function T (x1, R0) decreases virtually linearly along the length of the pipe. These
results are consistent with practical, engineering experience.



Solution of the heat diffusion differential equation for turbulent flow 153

ba

Figure 24. The resulting temperature at x1 = 20 km in the boundary
x2 = 20 km for parameters h, D = 0.3 m a) depending on Q. b)
depending on the average velocity va [m/s]

a b

Figure 25. Functions a) for Reynolds number, b) for Re∗ depending
on the flow rate Q of the current for different pipe diameters

a b

Figure 26. Functions a) for Reynolds number, b) for Re∗ depending
on the average velocity va [m/s] of the current for different pipe
diameters



154 I. Páczelt

4.4. Reliability of the FEM computations. It is important to be aware of the
error in the computations presented. A comprehensive analysis of the issue can be
found in [14]. A relatively simple way to do this is to check the accuracy of the
computed boundary conditions. The accuracy of the solution is expressed by the
extent to which the boundary conditions are satisfied. In this aspect, the tests will
be performed below. On the surface we will check the fulfillment of the boundary
condition.

Let us begin with the heat transfer boundary condition on (see (19b)):

− ∂T
∂x2

∣∣∣∣
x2=R0

=
h

λ
[T (x1, R0)− TK ] . (37)

Taking the derivative in the direction y = R0−x2, the following equation is obtained

∂T

∂y

∣∣∣∣
y=0

=
h

λ
[T (x1, R0)− TK ] . (38)

Let us define the following dimensionless quantities

T ∗ =
T − TK

Ty=0 − TK
, y∗ = y/(2R0). (39)

Using them, the heat transfer coefficient can be expressed as

h =
λ

Ty=0 − TK
∂T

∂y

∣∣∣∣
y=0

= λ
Ty=0 − TK
Ty=0 − TK

1

2R0

∂T ∗

∂y∗
=

λ

2R0

∂T ∗

∂y∗

∣∣∣∣
y∗=0

(40)

from which the Nusselt number can be defined [17, 18]

Nu =
h2R0

λ
=
∂T ∗

∂y∗

∣∣∣∣
y∗=0

. (41)

The derivative ∂T ∗/∂y∗|y∗=0 can be calculated from the FEM solution, and on the

other hand, its value h2R0/λ is easy to obtain. The difference between these values
provides a piece of information about the errors of the FEM computations.

A concrete example is taken for turbulent flow without heat generation (see Tem-
perature distribution in Figure 17a). The derivative is evaluated in the section x1 = 20
km.

Using the difference method, the derivative ∂T ∗/∂y∗|y∗=0 = 0.7. The formula

h2R0/λ can be calculated using the interpolation of λ in Table 1:

λ(80 ◦C) = 0.665 W/(m2K).

Then its value
h2R0

λ
=

2.22 ∗ 0.2

0.665
= 0.667.

Finally, the error is

eNu =
0.7− 0.667

0.667
100% ≈ 5%,

which confirms that the solution is fairly good. Similar errors are obtained for the
other solutions as well.
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5. Conclusions

A thermal convection-diffusion problem is investigated based on the turbulence model
developed by Professor Czibere [1–3], which is solved for pipelines by the finite element
approximation method in this paper. High-precision results can be obtained with the
chosen p-version finite elements [12]. The program developed is well suited for flow and
thermal design of pipelines. Using the computer program developed, the computations
can be performed at great speed using the actual geometrical and material data.
The results, i.e., radial and longitudinal distributions of temperature, are displayed
graphically, which helps the designer to consider the effects of the selected diameter
D of the pipe, the flow rate Q, and the heat transfer constant h in order to analyze
the implementation costs of the pipeline.
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Nomenclature

Latin notations
cP special heat at constant pressure [J/(kgK)]
D diameter of the pipe
Ec = v2

∗/(cPT0) Eckert number
f friction factor
h convective heat transfer coefficient [W/(m2K)]
H and H∗ similarity tensor and its deviator
G eddy viscosity tensor
g acceleration due to gravity [m/s2]

k = 1
2 (v′ · v′) = a2(κlΩ)2 = a2Θ/ρ turbulent kinetic energy [m2/s2]

l length scale of turbulence [m]
lΩ velocity scale of turbulence [m/s]
p pressure [Pa]
∆p pressure drop [Pa]
Pr = ηcP/λ Prandtl number
R0 inner radius
Re Reynolds number
Re∗ = v∗R0/υ factor
Q volume flow rate [m3/s]
t time [s]
T absolute temperature [K]
T0 reference temperature [K]
TK temperature of the environment [K]
v velocity vector with components v1, v2, v3 [m/s]
v′ velocity vector for turbulent fluctuations [m/s]
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v∗ wall friction velocity [m/s]
va average velocity [m/s]
x1, x2, x3 coordinates in the computation coordinate system

Greek notations
α, β, γ parameters in H similarity tensor

ε=υ (v′ ◦ ∇) : (v′ ◦ ∇+∇ ◦ v′)=−υα+2β+γ

4ρΘ

(
dΘ

dx2

)2

turbulent dissipation [m2/s2]

η dynamic viscosity [Pa]
Θ = ρ(κlΩ)2 dominant turbulent shear stress [Pa]
κ = 0.407 Kármán constant
κ∗ = 0.47
λ thermal conductivity [W/(mK)]
Λ = ρcPκκ∗l

2Ω turbulent thermal conductivity [W/(mK)]
υ = η/ρ kinematic viscosity [m2/s2]
ρ density of the fluid [kg/m3]

ϕD = υ (v ◦ ∇) : (v ◦ ∇+∇ ◦ v) = υ

(
dv1

dx2

)2

viscous dissipation [m2/s3]

φ =
RφD
v3
∗

=
1

Re∗

(
dV

dξ

)2

function for modified viscous dissipation [m2/s3]

ψ =
Rε

v3
∗

= −α+ 2β + γ

4 Re∗H

(
dH

dξ

)2

function for modified turbulent dissipation [m2/s3]

Ω = ∇× v vortex vector [1/s]
|Ω = ∇× v| absolute value of the vortex vector [1/s]

Dimensionless quantities

H(ξ) =
Θ

ρv2
∗

V (ξ) =
v1

v∗

ϑ =
T

T0

ξ =
x2

R
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