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Abstract. The application of cellular structural materials provide new light-weight
capabilities in many engineering fields. But the microstructure significantly influences the
strength, the fatigue and fracture behavior as well as the life span of a structure made from
cellular materials. The current paper illustrates the general idea how to take into account the
cellular microstructure in the stress and strain analysis. The detailed geometry, including all
discontinuities in the microstructure is available, for instance from measurements provided
by the computed tomography (CT). The proposed simulation methodology is a combination
of the finite element method (FEM) and the finite cell method (FCM). The FCM approach
is applied in regions where discontinuities occur, avoiding a body-fitted mesh. As basis
of the FEM-FCM coupling the commercial FEA package Abaqus is used. The theoretical
background and the overall simulation workflow along with specific implementation details
are discussed. Finally, academic benchmark problems are used to verify the developed
coupling method.
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1. Introduction

The application of ultra-light-weight constructions contributes to a reduction of nat-
ural resources in many fields of engineering. There are several types of light-weight
materials available, such as cellular materials made of aluminium or plastic foam,
sandwich materials with a core layer from honeycomb, hollow spheres or foam, etc.
The increasing application of additive manufacturing technologies also allows the
production of complex light-weight components with a special designed porosity,
which can also be seen as a cellular structure as well. The general application of
cellular materials provides new design capabilities in several engineering fields, such
as in automotive and aerospace industries, electro engineering, wind power industries,
machine and plant engineering, container constructions, etc. Besides the application
of specially designed cellular materials there are other lightweight structures with
great advantages, particularly in mass production, e.g. aluminium die cast parts.
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Components produced with the die cast technology and with additive manufacturing
have local inhomogeneities, such as pores in die cast parts and voids in additive
produced parts, which are unavoidable. Such local porosities can be recognised with
help of computed tomography (CT).

The desired and also the undesired inhomogeneities in the microstructure have
to be taken into account in the simulation, because they significantly influence the
strength, the fatigue and fracture behavior and, consequently, also the life span of a
structure.

The main approach to analyse engineering structures is the application of the finite
element method [1–3]. The typical method to take into account the microstructure
in a global FE analysis is a homogenisation of the microstructure. Homogenisation
means, that with help of different methods the microstructure is smeared, resulting
in a homogenised reference material with the same global behavior as the original
material with the microstructure. One standard homogenisation approach is based
on the Hill theory [4]. There are several homogenisation methods available, such as
the Eshelby-based methods, the Mori-Tanaka method, the generalised self-consistent
method, the asymptotic homogenisation method, the representative volume element
approach (RVE) etc.; for an overview see [5–9]. Of course, the local behaviour, e.g.
the local stress-strain state, is lost when applying homogenisation methods. In FEM
the microstructure can be taken into account, e.g. by a substructure approach [10]
or by a multilevel finite element method (FE2) approach [11, 12]. In both cases the
microstructure has to be meshed in some detail, which results in an increase of the
computational effort.

One important problem is the generation of a high quality body-fitted mesh as
a basis for the FEM. This pre-processing step calls for an experienced designer and
can account for up to 80% of the overall analysis time [13]. In order to capture the
microstructure a refined finite element mesh is needed to ensure an accurate approxi-
mation of the geometry. Most cellular materials have a randomly sized and distributed
microstructure. To simplify the meshing procedure a reference microstructure can be
used, which is regular and statistically equivalent to the original microstructure. In
this case the finite element mesh can be generated automatically. The disadvantage
is the loss of the irregularity of the microstructure. Alternatively, the micro-structure
can be obtained from computed tomography (CT) images [14].

The most promising approach to avoid a finite element mesh fitting the geometry
of the cellular microstructure is the application of the finite cell method (FCM).
The FCM can also simply process CT data [15, 16]. The method can be automated
straightforwardly and thus reduces the required input data. In [17] we have success-
fully implemented the FCM in order to analyse the propagation of ultrasonic waves in
heterogeneous structures. The application of higher order finite elements increases the
accuracy and reduces the required computational effort [18]. In this case a rough finite
element approximation results in very accurate solutions even if a fine microstructure
has to be analysed. A first in-house code based on the higher order FCM has been
developed by S. Duczek [19, 20].
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The FCM has also great advantages for structures with a cellular microstructure,
which is often limited to small regions, such as in die cast parts [21]. The remaining
parts of a structure can be well approximated by the classical FEM. Consequently,
a combination of the FEM and the FCM, where the FCM is only applied in regions
with local heterogeneities, could be of great advantage. The regions with a local
microstructure known from CT scans can be simply meshed with hexagonal cells,
avoiding complicated body adapted mesh generation.

Most of the FE simulations in industry are performed with commercial FEA
tools, such as Abaqus, Ansy, Nastran and others. Therefore, it would be of a
great industrial interest if the FCM approach would be a part of commercial FEA
software [22]. In the following a concept of an overall workflow to combine the
FCM with the commercial FE software Abaqus is presented and tested, where also
specific implementation details and application problems are discussed. The paper is
organized as follows. In Section 2 the fundamental principles of the three-dimensional
finite cell method are briefly recalled. This also includes the main differences to the
classical finite element method. In Section 3 the coupling concept based on the
commercial analysis tool Abaqus is described. In Section 4 some information and
trouble shooting according to the STL data derived from CT measurements is given.
In Section 5 the developed coupling procedure is tested by analyzing an academic
test example, which demonstrates the capability of the developed simulation concept.
The paper finishes with conclusions in Section 6.

2. The finite cell method

In the following we briefly summarize the basics of the FCM, assuming that the FEM
is well known. The FCM slightly differs from the FEM, and, consequently, we start
with the typical basics from the FEM. We assume a linear elastic static boundary
value problem. The solution u in a region Ω is equivalent to the solution of the
variational form

B (u,v) = F (v) , ∀v ∈ V. (2.1)

This is the weak form of the equilibrium conditions of the problem. Here u is the
displacement vector and v represents the vector of arbitrary test functions in the
space V of admissible functions. The bilinear form B and the linear form F are given
as follows

B (u,v) =

∫
Ω

[Lv]
T
C [Lu] dΩ , (2.2)

F (v) =

∫
Ω

vT f̄ dΩ +

∫
ΓN

vT t̄dΓ . (2.3)

Here L denotes the linear strain-displacement operator, C stands for the Hook elas-
ticity matrix, f denotes the vector of body forces and t is the traction vector. A bar
over a variable signifies a prescribed value. The prescribed tractions are defined on
the Neumann boundary ΓN as

σn = t̄ on ΓN (2.4)
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where here σ denotes the stress tensor and n constitutes the outward normal vector of
unit length. Furthermore the displacements are prescribed on the Dirichlet boundary
ΓD, resulting in

u = ū on ΓD (2.5)

Equations (2.1)–(2.5) are the general basis of FEM [3]. In order to solve a problem
with the help of FEM a mesh of finite elements is required which approximately
coincides with the geometry of the structural region of interest Ω. But in FCM
the mesh in general must not fit the structural geometry. The physical domain Ω
is extended by a fictitious domain Ωfic. The union of these two domains forms the
extended domain Ωex – see Figure 1.

(a) Physical domain Ω (b) Fictitious domain Ωfic (c) Extended domain Ωex

Figure 1. Fictitious domain approach

Instead of equation (2.1) the weak form is now solved over the extended region

Bex (u,v) = Fex (v) , ∀v ∈ V. (2.6)

The main advantage of the fictitious domain approach is that the extended domain
is of a much simpler geometry and can, therefore, be simply meshed by regular non-
distorted finite elements. Quadrilateral and hexagonal elements and triangular and
tetrahedral elements can be used for 2D and 3D problems, respectively. During the
analysis it is imported to distinguish between normal (not cut) finite elements and
elements cut by the physical boundary. This differentiation is controlled by the so-
called indicator function α as

α(x) =

{
1 ∀x ∈ Ω

a0 = 10−q ∀x ∈ Ωex\Ω
(2.7)

If x is in the fictitious region, the indicator function can be taken as zero. In order to
avoid numerical problems a small value a0 is used instead of zero. The exponent q is
typically taken in the range from 4 to 15, depending on the material properties [23].
With the value α equations (2.2) and (2.3) are modified as

Bex (u,v) =

∫
Ωex

[Lv]
T
αC [Lu] dΩ , (2.8)

Fex (v) =

∫
Ωex

vTα f̄ dΩ +

∫
ΓN

vT t̄dΓ . (2.9)
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The indicator function α allows distinguishing between points that are located in Ω
or in Ωfic, respectively. In Figure 2 a simple rectangular mesh is shown. This mesh is
not aligned to the physical boundary of the structure, marked with a dotted red line.

 

Figure 2. Finite cell discretization

The problem now arises that the numerical integration of the element matrices of
the cut elements has to be performed over discontinuous integrands. The usual applied
Gaussian integration of the element matrices is in such cases not accurate enough.
Therefore, an adaptive Gaussian integration rule is recommended [15], which can be
applied automatically in 2D as well as in 3D finite elements without any extra manual
input. For this purpose a space tree partitioning (e.g. a quadtree in 2D and an octree
in 3D) of the integration domain is executed, and in each cut element of the extended
region Ωex a Gaussian integration rule is used [1]. The partitioning is carried out
as long as the solution of the integral is sufficiently accurately approximated. Figure
3 shows such a partitioning of an element in integration subdomains. Alternatively
to the space tree subdivision in [24], an efficient integration scheme based on the
divergence theorem (Gauss–Ostrogradsky theorem) can be applied, which reduces
the dimension of the integrals by one, i.e. instead of solving the integral for the whole
domain only its contour needs to be considered.

Following the standard Bubnov-Galerkin procedure, the displacement field as well
as the test function in each finite element e is approximated as

ue = NeUe , (2.10)

ve = NeVe . (2.11)
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Figure 3. Adaptive subdivision of one element in integration cells

Here Ne contains the element shape functions, Ue represents the vector of unknowns,
and Ve stands for the coefficients of the test functions for one single finite element,
which in the context of FCM is usually named a finite cell. Inserting equations (2.10)
and (2.11) into the weak form of equation (2.6) finally yields the well known linear
system of equations

KU = F , (2.12)

where K denotes the global stiffness matrix and F represents the global load vector.
The most important difference of the finite cell method to the standard finite element
approach is the integration over the finite elements (finite cells), which are cut by the
boundary (Figure 3).

For a more detailed insight into FCM we refer the reader to the comprehensive
review article by Schillinger et al. [25] and the works by Düster et al. [15] and
Parvizian et al. [16]. Here also several methods to include Dirichlet and Neumann
types of boundary conditions are presented.

3. Application of CT data in FCM simulation

CT measurements result in a three-dimensional voxel data set containing all necessary
information with respect to the microstructure. The voxel data can be further
processed to obtain a boundary representation of the structure, e.g. via the surface
tessellation language (STL) representation [26]. The determination of the material
properties is based on the Hounsfield units (HU) of CT data. Both voxel data and
STL data can be used as input data for simulation purposes.

The data from CT scans, given in STL format, can be processed by almost every
CAD program. The file format can be either ASCII or binary. For processing STL
data it is important that the triangular surface is closed and unique. Unfortunately,
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Figure 4. Problems of identifying closed STL surfaces [22]: left: two
surfaces connected by a unit point; right; two surfaces connected by
a unit line

the simplicity of STL format using unstructured triangular facets means some trouble
shootings regarding the 3D finite element meshing process. The STL data often
describe unclosed surfaces, or overlapping facets and incorrect normal directions.
Additionally, sometimes two closed surface triangulations are connected to each other,
as for instance by a line segment or by a point (see Figure 4).

The above mentioned problems complicate the unique identification of surface
regions in an automated algorithm. Therefore a mesh repair or a remeshing procedure
is absolutely essential for an FCM application. This is a highly complex issue and the
topic of several publications [27, 28].

4. Integration of FCM into a commercial FE package

Initially we developed and applied FCM for the analysis of ultrasonic waves propa-
gating in heterogeneous materials. This development was part of an interdisciplinary
research project, which was aimed at new wave based methods for structural health
monitoring. The developed methods are focused on light-weight structures made
from fiber and particle reinforced structures for airplanes or the rotor blades of wind
power stations. Our FCM software development is a Matlab based in-house code, see
[19, 29]. But, the FCM approach is also an interesting approach in other fields of
applications, such as for the stress analysis of structures made from materials with
a cellular microstructure. One important industrial application is the evaluation of
aluminum die cast parts and their quality assurance by taking into account their
inevitable porosity [21, 22]. Today highly stressed parts are inline measured with CT
in order to eliminate manufactured parts that do not meet the quality standards of
the pore specification.

The FCM method cannot be well applied utilizing a university based in-house
software which was developed for scientific reasons only. With regard to practical
applications we are convinced that a robust implementation of the FCM methodology
within a wide-spread and established software tool like Abaqus would create higher
applicability to practical engineering problems. Therefore, we developed a software
concept to couple the FCM with the commercial software package Abaqus, including
open source software products for the pre- and post-processing tasks. The general
workflow of our software concept is illustrated in Figure 5.
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Figure 5. Workflow of the coupling of FCM with the FEM package
Abaqus; the numbers I-VI denote the sequence of the application of
the subprograms

For the coupling only free of access available software interfaces of Abaqus are used.
To this end, we have defined a user subroutine with help of the Abaqus routine UEL
that is able to incorporate the required functionality. In 3D the FCM can be applied
if the FEM basis elements are hexahedral as well as tetrahedral finite elements [30].
Details concerning the required input data and the necessary pre- as well as post-
processing tools – although not directly related to Abaqus – are provided as well.
Besides microstructural data from CT measurements, also virtual generated STL
data can be applied in the design process of the constructions under investigation.

The initial model is set up in the pre-processing module of Abaqus. Here, the
material properties and the element types are defined. In the next step an Abaqus
input file is generated. This file is further processed in MATLAB and adjusted to
incorporate the user defined element routine (UEL). At this stage the micro-structural
details from CT measurements are added to the analysis and also the necessary details
to perform the composed numerical integration are generated. During the solution of
the governing equations these data are read in by the UEL. For the post-processing
a geometry-conforming visualization mesh is created. This can be achieved using
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powerful mesh generators (e.g. Netgen [31]) or Abaqus itself. The analysis results
are accordingly interpolated onto the new visualization nodes using the finite element
shape functions of the coupled FEM-FCM model and saved in a vtk-file format. This
format can be processed by ParaView, which offers all capabilities of commercial FE
post-processing tools.

5. Test example

The developed coupled FEM-FCM concept based on Abaqus has been tested with
help of several simple test examples, where as reference solutions overkill pure Abaqus
solutions were used. The following test example demonstrates the capability of the
developed coupling procedure [22].

In Figure 6 a cube with an edge length of a = 10 m is shown. A tensile load
of p = 100 N/m2 is applied normal to the positive z-direction. On the opposite
surface the displacements in z-direction are constrained to zero. Additionally the
displacements at two edges are also constrained to zero in x- and in y-direction,
respectively. A Young´s modulus of 70000 N/mm2 and a Poisson ratio of 0.33 are
used.

 

Figure 6. Cube with two types of inclusions: one centrally placed
ellipsoid, and four randomly distributed ellipsoids

In the solid cube two versions of pores are embedded, a centrally embedded ellipsoidal
pore in the first example and four randomly distributed embedded ellipsoidal pores
in the second example, where the pores have different volumes and size (see Figure
6).
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Cube with one central placed ellipsoid

The FE-FC model consists of 25×25×25 hexahedral elements of second polynomial
order (20 node hexahedrons). The cut elements are integrated with a subdivision
level k = 3 (for k see Figure 3). The overkill reference Abaqus model consists of
180,325 second order tetrahedral elements (764,424 DOFs). In Figure 7 the von Mises
stress results of the coupled FEM-FCM approach and the pure Abaqus solution are
compared. The results are in a very good agreement, with an error of about 0.6%.

  

Figure 7. Von Mises stresses in a cube with a central ellipsoid; left:
coupled FE-FC solution; right: overkill Abaqus reference solution

Cube with four randomly distributed ellipsoids

The FE-FC model consists again of 25×25×25 hexahedral elements of second poly-
nomial order (20 node hexahedrons). The cut elements are here integrated with a
subdivision level k=4 due to the smaller and more closely placed ellipsoids. The
reference Abaqus model consists of 300,864 tetrahedral elements (1,263,081 DOFs).
In Figure 7 the von Mises stress results of the coupled FEM-FCM approach and
the pure overkill Abaqus solution are compared. The results are again in a good
agreement, with a maximum error of 6%.

  

Figure 8. Von Mises stresses in a cube with a central ellipsoid; left:
coupled FE-FC solution; right: overkill Abaqus reference solution
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Regarding the convergence of FCM we refer to [16], where the convergence proper-
ties of FCM are investigated in detail. It is shown that the convergence properties of
the FCM can be directly derived from those of the associated finite element computa-
tion. In our case the FCM approach is coupled with the Abaqus software, where the
accuracy can be increased with h-refinements only. In this case the convergence rate of
the coupled FE-FC approach is algebraic and identical to the well known h-extension
of the applied finite elements. It is important that the stiffness matrices of the cut
finite elements are sufficiently accurately integrated, e.g. by an adaptive integration
approach (see Figure3). For more details regarding the numerical integration we refer
to [15, 24, 32]. If the mesh of the above given test examples is refined by increasing
the number of hexahedral elements, the solution will converge to the Abaqus reference
solution.

6. Conclusion

In the paper a concept for an implementation of the finite cell method (FCM) within
the commercial software Abaqus is presented. The FCM can be efficiently applied for
the stress and strain analysis of structures made from light-weight materials with a
cellular or porous microstructure. The great advantage is inherent automated mesh
generation with a quite regular hexahedron or tetrahedron mesh, which is not forced
to match with the physical geometry of the structure. The real geometry is taken
into account in the integration process of the element stiffness and load matrices of
the cut finite elements (finite cells). The uncut finite elements are processed as in the
standard FEM procedure. The cut elements are treated with an adaptive integration
algorithm, as shown in Figure 3. The FCM provides a fast convergence rate if high
order shape functions are used for the approximation of the displacement field in the
finite elements. This is especially important if a very fine microstructure has to be
taken into account with relative large finite elements/cells. In order to apply this
methodology for the solution of engineering problems the FCM should be coupled
with any standard commercial FEA software, such as Abaqus, Ansys, Nastran etc.,
which are powerful tools for solving complex engineering problems. In this paper the
concept of a coupled FEM-FCM methodology has been presented and realized by
using the Abaqus software. It is necessary to provide the microstructure in the form
of a STL data file. The STL data can be derived by the CT measurements or can
also be automatically generated. It is important that these STL data are unique and
provide closed surfaces. This is a great problem if CT data in form of voxel data are
used that are automatically transformed in STL data. Typically such data have to
be repaired to be usable for the coupled FEM-FCM simulation. The applicability of
the developed coupling method has been shown with academic test examples. The
coupled FEM-FCM approach can also be used to solve industrial problems.

With the proposed methodology to couple FCM with a commercial finite element
package like Abaqus, an important step has been taken towards a standardized
analysis method for light-weight structures made from materials with a cellular mi-
crostructure.
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