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Abstract. In this paper, a nonlinear vibrational and rotational analysis of microbeams in
nanobiomaterials using Galerkin Decomposition (GDM) and Differential Transform Methods
(DTM) is presented. The dependency of cell migration and growth on nanoscaffold porosity
and pore size architecture in tissue regeneration is governed by a dynamic model for the
nonlinear vibration and rotation of the microbeams of nanobiomaterials and represented
by a set of nonlinear partial differential equations. The solutions of the governing model
are obtained by applying GDM and DTM and good agreement is achieved with numerical
Runge-Kutta method (RK4). From the results, it is observed that an increase in Duffing term
resulted in the increase of the frequency of the micro-beam. An increase in the foundation
term also resulted in a corresponding increase in the frequency of the system for both free
and forced dynamic responses. This study will enhance the application of tissue engineering
in the regeneration of damaged human body tissues.

Mathematical Subject Classification: 35M86
Keywords: Nonlinear vibration, rotation, microbeams, nanobiomaterials, Galerkin Decom-
position Method (GDM), Differential Transform Method (DTM)

1. Introduction

Cellular structured nanobiomaterials with extremely restrained micro-architectures
have a wide range of applications which includes bone-substituting biomaterials in
orthopaedics [1]. In these applications, the size and size distribution of the
biomaterials are important [2]. The production of these biomaterials has been enabled
by applying additive manufacturing techniques in engineering principles to produce
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one or multiple types of unit cells. One of the most recent applications of the unit
cell in the production of porous biomaterials is the diamond lattice unit cell [1, 3]. In
the application of additively manufacturing to porous titanium implants as replace-
ments for bone, it is observed that the excellent biocompatible properties of titanium
are preserved, which shows that the stiffness of titanium is quite small when com-
pared with that of the natural bones [4]. The porosity and permeability of materials
have been linked to fractal dimensions through imbibition model for petro-physical
applications [5].

Nanoporous biomaterials such as Metal-Organic Frameworks (MOFs) consist of
metal ions joined by organic connective ligands which have unique chemical and
physical characteristics. The application of MOFs in biological systems, drug de-
livery, material science, and nanotechnology is being explored [2]. The importance
and applications of biomaterials with more recent findings of smart biomaterials can-
not be overemphasized, as uses are being found in the medicine and healthcare sector;
as implants for body organ replacements, tissue regeneration, drug delivery systems,
medical devices, and immune engineering [6–9].

Mathematical models for size dependent dynamics of biomaterials have been de-
veloped for three-layered beams based on the hypothesis of the Grigolyuk–Chulkov
and the modified couple stress theory. The governing model and its boundary/initial
conditions for beam displacement are applied for motion of layers’ beams on the micro
and nano-scales [10]. Nanobeams with axially immovable ends and the geometrical
nonlinearity caused by mid-plane stretching are considered in the developed model.
In the Euler-Bernoulli beam model, the nano-device dynamic equation of motion is
applied in the model kinematics [11]. The mathematical models of the nanoparticle
are also affected by size and architecture, as shown in the normalized center deflec-
tions obtained in the study of size dependent composite laminated skew Mindlin plate.
The Raleigh-Ritz method was applied to obtain a numerical solution to the model
and it was observed that the normalized center deflections are always smaller than
those obtained by the classical one [12, 13]. The mechanisms of the nanoparticles
will aid the understanding of cell and nanoparticle size dependent toxicity. The elec-
tromechanical response of a nanostructure is observed to be influenced by the size of
its element. This property of the nanostructure has been exhibited and it is further
shown that the stability of the nanotweezers will be affected by the element size [14].
In the modeling of size effects of nanobeams, Reddy’s shear deformation beam the-
ory was applied to vibration characteristics of functional graded piezoelectric (FGP)
nanobeams. Eringen’s nonlocal elasticity theory was adopted to capture the small
size effect. The obtained results showed that the applied Reddy’s shear deformation
model presented accurate frequency results of the FGP nanobeams [15].

Remarkably, mathematical models have provided the means to understand the
physiochemical and physiological features of the behavior of nanomaterial in biolog-
ical systems, as shown in the application of nanotechnology in inducing cytotoxic
agents in cancer-nanomedicine [16], for predicting pore size distribution, and for the
estimations of growth rates [17]. Nanomaterials of different shapes and sizes relate
with cells in various ways, passively and actively. Recent studies on size-dependent
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effects of nanomaterials have been done with spherical nanoparticles but special con-
sideration has been given to critical cellular interaction [13]. In order to enhance the
cellular interaction and nanoparticle internalization, it has been proposed that the
best size for the nanoparticle is 50 nm [13], though most experimental data show that
the approximate nanoparticle size preferred for cell internalization is 100 nm. Hence
nanoparticle size influences the endocytic pathway which is followed by cell internal-
ization. The microtubules and the actin filaments are biological elements in the living
cells which serve as block builders for functional nanomaterials and nanosurctures
used for manufacturing nature—inspired small-scale devices or systems [18].

Analytical solutions have been obtained for wave dispersion in anisotropic doubly-
curved nanoshells. The governing equation for the formulation was based on Hamil-
ton’s principles [19]. In a related study of free vibration of piezoelectric nanotubes,
Hamilton’s principles were applied to develop the governing equation and the enthalpy
energy [20–22]. The effects of size as well as the geometrical and electromechanical
effects on the nanotube and their effects on natural frequency of the vibration of the
piezoelectric nanotubes were investigated. An explicit expression obtained for me-
chanical properties of nanoporous biomaterials. The expression was made in terms of
the pore size from the lattice structure of the refined truncated cube by applying ad-
ditive manufacturing in order to obtain appropriate mechanical properties [23]. The
effectiveness, robustness and applicability of analytical solutions to complex prob-
lems cannot be overemphasized and this makes the analytical solution of the present
problem of utmost importance. The study is focused on investigating the problems
of nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials
using Galerkin Decomposition and Differential Transform Methods.

The developed nonlinear differential equations which describe the nonlinear vibra-
tional and rotational analysis of microbeams in nanobiomaterials do not have closed
form solutions, hence special analytical techniques are applied to obtain the solution:
the Galerkin Decomposition Methoid and the Differential Transform Method. The
Galerkin Decomposition Method is a numerical method which has proved to be ef-
fective in various applications, which include nonlinear elastic dynamics of a clamped
laminated composite [24] and solution of wide range of weighted residual problems
using Galerkin’s Method [25]. Galerkin’s method has also been applied to nonlinear vi-
brational problems in carbon nanotubes applications [26], and heat transfer problems
for temperature-dependent thermal conductivity of a porous fin in [27]. Galerkin’s
method has been combined with other methods to obtain more efficient results, such
as the Variational methods, in solving engineering problems in nonlinear ordinary dif-
ferential equations [28] and Petrov–Galerkin methods for nonlinear systems without
monotonicity [29].

In this study, the solution obtained by the Galerkin Decomposition Method is
compared with the solutions of the differential transform method. The differential
transform method (DTM) is an approximate analytical method for solving linear and
nonlinear ordinary and partial differential equations. It was proposed by Zhou in 1986
[30]. The DTM has been applied in free and forced convection flow about inclined
surfaces in porous media [31, 32], in Newtonian and non-Newtonian nanofluids flow
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analysis [33], and nonlinear ordinary differential matrix equations [34]. DTM has
proved to be effective when compared with the Adomian Decomposition Method
(ADM) and with the Variation Iteration Method (VIM) and Homotopy Perturbation
Method (HPM) [35, 36]. The DTM has some drawbacks which have been overcome
by combining it with Laplace transform in studies for nonlinear Duffing oscillator with
damping effect [37] and for non-linear oscillators by applying the multi-step differential
transform method [38]. Further works on vibration theories and applications have also
been presented [39, 40].

Therefore the main objective of this current study is to investigate the problem
of nonlinear vibrational and rotational analysis of microbeams in nanobiomaterials
using Galerkin Decomposition and the Differential Transform Methods. In replacing
damaged human body tissues, novel approaches are emerging in tissues engineering to
regenerate damaged tissues and the major elements in these approaches are the migra-
tion and growth of cells. These elements depend on the porosity of the nanoscaffolds
and the pore size architecture of the cell. In order to investigate this dependency
of the migration and growth of cell on pore size, the nonlocal strain gradient the-
ory of elasticity is applied to develop the dynamic model for the nonlinear vibration
and rotation of the microbeams made of nanobiomaterials. This dynamic model is a
set of nonlinear partial differential equations whose solutions require special analytic
techniques. The solutions are obtained by applying Galerkin Decomposition Method
or the Differential Transform Method. The effects of modal number on steady state
response, the effect of duffing term on stability response of the microbeam, the ef-
fect of elastic foundations on microbeam stability response, and the effect of elastic
foundation on microbeam free and forced dynamic responses are then investigated.

The paper is organized into five sections. The first one, i.e., the present section
considers the preliminary results and outlines the problem to be solved. Section 2
is devoted to the equations of motion which have a strongly non-linear character.
The solution algorithm is detailed in Section 3 where analytical approximations are
devised for the unknown quantities. The numerical results are evaluated and discussed
in Section 4. Our conclusions are presented in Section 5 which is a short summary of
our results. The last section is a Nomenclature. The readers are advised to refer to
this section for the fundamental notations.

2. Formulating the equation of motion

The degree of freedom of system for the microbeam’s unit cell as well as the im-
posed boundary conditions are represented by Figures 1 and 2. In this present study,
the biological system nanoporous microbeam is assumed to include the lattice struc-
ture of the refined truncated cube. With repeated cells, the unit cell is surrounded
by truncated cubes and hence, results in each membrane of refined truncated cube.
Consequently, analyzing a membrane of refined truncated cube is sufficient to obtain
the mechanical response of the unit cell. If η2 = 1, η1 = η3 and η4 = η5 = η6 = 0
it follows from Figure 1 that the point a1 (the vertices of links a1b1, a1b2, a1b3, a1b4
– the last three links are, however, not represented in Figure 1) displaces downwards
by unity.
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Figure 1. Cell unit with its degree of freedom
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Figure 2. The system condition considered (pinned-pinned)

According to the refined hyperbolic shear deformable beam model proposed by
Sahmani [41], the governing equations that capture the deflection and rotation are as
follows:

ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+ µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

− ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
= 0 , (1a)

ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2
= 0 . (1b)
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In this work, a nonlinear elastic foundation term will be incorporated. This makes
the fully coupled governing equation strongly nonlinear as presented below:

R1(x, t) = ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

−ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
+ k1w + k2w

3 = 0 ,

R2(x, t) = ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2
= 0 .

(2)

The non-linear differential equations (2) are associated with the following boundary
conditions valid for pinned-pinned beams [40]:

w (0, t) = w′′ (0, t) = 0 ,

w (L, t) = w′′ (L, t) = 0 .
(3a)

The initial conditions are of the form

w(t = 0) = a = lim
t→0

w̄

10−6m
cos ω̄t = Wmax cos ω̄t, ẇ (t = 0) = 0 ,

θ (t = 0) = b = lim
t→0

b cos ω̄t , θ̇ (t = 0) = 0 .

(3b)

Here, the initial deflection and rotation of the microbeam, which are a and b, tend
to zero [41]. Equation 2 will be solved using Galerkin Decomposition (DG) and
Differential Transform Method (DTM) in order to obtain the dynamic response and
rotation of the system under consideration.

3. Models and solutions

3.1. Application of the Galerkin decomposition. The Galerkin Decomposition
method is applied to convert the governing partial differential equations into ordinary
differential equations using an appropriate shape function that satisfies the boundary
conditions. This approach is expressed as

L∫
0

Ri (x, t)ϕ (x) dx = 0 , (i = 1, 2) (4)

where

w = w (x, t) = T (t)ϕ (x) , and θ = θ (x, t) = J (t)ϕ (x) , (5)
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while R1 and R2 are given by (2). Substituting them into (4) yields∫ L

0

(
ξ1
∂4w

∂x4
− ξ2

∂3θ

∂x3
− ξ3

∂6w

∂x6
+ ξ4

∂5θ

∂x5
− p+ µ2 ∂

2p

∂x2
− ξ5

∂2w

∂x2
+

+µ2ξ6
∂2w

∂x2
+ µ2ξ5

∂4w

∂x4
+ ξ7

∂2w

∂t2
−
(
µ2ξ7 + ξ8

) ∂4w

∂x2∂t2
+ ξ9

∂6w

∂x4∂t2
−

−ξ10
∂3w

∂x∂t2
+ µ2ξ10

∂5w

∂x3∂t2
+ k1w + k2w

3

)
ϕ (x) dx = 0 ,

∫ L

0

(
ξ1
∂3w

∂x3
− ξ11

∂2θ

∂x2
+ ξ12θ − ξ12

∂3w

∂x∂t2
− ξ13

∂2w

∂t2

)
ϕ (x) dx = 0 .

(6)

from where by inserting (5) we have

L∫
0

(
ξ1
∂4T (t)ϕ (x)

∂x4
− ξ2

∂3J (t)ϕ (x)

∂x3
− ξ3

∂6T (t)ϕ (x)

∂x6
+ ξ4

∂5J (t)ϕ (x)

∂x5
−

− p+ µ2 ∂
2p

∂x2
− ξ5

∂2T (t)ϕ (x)

∂x2
+ µ2ξ6

∂2T (t)ϕ (x)

∂x2
+ µ2ξ5

∂4 (T (t)ϕ (x))

∂x4
+

+ξ7
∂2T (t)ϕ (x)

∂t2
−
(
µ2ξ7+ξ8

) ∂4T (t)ϕ (x)

∂x2∂t2
+ξ9

∂6T (t)ϕ (x)

∂x4∂t2
−ξ10

∂3T (t)ϕ (x)

∂x∂t2
+

+ µ2ξ10
∂5T (t)ϕ (x)

∂x3∂t2
+ k1T (t)ϕ (x) + k2(T (t)ϕ (x))

3

)
ϕ (x) dx = 0 (7)

and

L∫
0

(
ξ1
∂3T (t)ϕ (x)

∂x3
− ξ11

∂2J (t)ϕ (x)

∂x2
+ ξ12J (t)ϕ (x)−

− ξ12
∂3T (t)ϕ (x)

∂x∂t2
− ξ13

∂2J (t)ϕ (x)

∂t2

)
ϕ (x) dx = 0 . (8)

By introducing new notations equations, (7) and (8) can be manipulated into the
following simple forms

M1T̈ +K1T +K2J + V T 3 = F ,

M2J̈ +K12J +K21T = 0 ,
(9)

where

M1 =

L∫
0

(
ξ7ϕ (x) −

(
µ2ξ7 + ξ8

) d2ϕ (x)

dx2
+ ξ9

d4ϕ (x)

dx4
+

+ ξ10
dϕ (x)

dx
+ µ2ξ10

d3ϕ (x)

dx3

)
ϕ (x) dx , (10a)
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K1 =

L∫
0

(
ξ1
d4ϕ (x)

dx4
− ξ3

d6ϕ (x)

dx6
− ξ5

d2ϕ (x)

dx2
+

+ µ2ξ6
d2ϕ (x)

dx2
+ µ2ξ5

d4ϕ (x)

dx4
+ k1ϕ (x)

)
ϕ (x) dx , (10b)

K2 =

L∫
0

(
−ξ2

d3J (t)ϕ (x)

dx3
+ ξ4

d5J (t)ϕ (x)

dx5

)
ϕ (x) dx , (10c)

V =

L∫
0

k2(ϕ (x))
3
ϕ (x) dx (10d)

and

M2 =

L∫
0

(ξ13ϕ (x))ϕ (x) dx , (11a)

M21 = −
L∫

0

ξ12
dϕ (x)

dx
ϕ (x) dx = 0 , (11b)

K12 =

L∫
0

(
ξ11

d2ϕ (x)

dx2
+ ξ12ϕ (x)

)
ϕ (x) dx , (11c)

K21 =

L∫
0

ξ1
d3ϕ (x)

dx3
ϕ (x) dx . (11d)

Equation (9) is the desired system of ODE from the Galerkin decomposition of the
PDEs which will be solved using DTM. However, the natural frequency and frequency
ratio of the system may be obtained as

ω =

√
K1

M1
(12)

and

Ω =
ωnl

ω
=

√
1 ± 3VW 2

max

4K1
(13)

which in an expanded form are given by

ω =

=

√√√√√√√√
L∫
0

(
ξ1

d4ϕ(x)
dx4 −ξ3 d6ϕ(x)

dx6 −ξ5 d2ϕ(x)
dx2 +µ2ξ6

d2ϕ(x)
dx2 +µ2ξ5

d4ϕ(x)
dx4 +k1ϕ (x)

)
ϕ (x) dx

L∫
0

(
ξ7ϕ (x)−(µ2ξ7+ξ8) d2ϕ(x)

dx2 +ξ9
d4ϕ(x)
dx4 +ξ10

dϕ(x)
dx +µ2ξ10

d3ϕ(x)
dx3

)
ϕ (x) dx

,

(14)
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Ω =
ωnl

ω
=

=

√√√√√√√√1±
3W 2

max

L∫
0

k2(ϕ (x))
3
ϕ (x) dx

4
L∫
0

(
ξ1

d4ϕ(x)
dx4 −ξ3 d6ϕ(x)

dx6 −ξ5 d2ϕ(x)
dx2 +µ2ξ6

d2ϕ(x)
dx2 +µ2ξ5

d4ϕ(x)
dx4 +k1ϕ(x)

)
ϕ(x)dx

,

(15)

where ϕ = sin
nπ

L
x for the considered pinned-pinned beam, n is the modal number

and F is the Galerkin form of p – applying Galerkin decomposition to p yields F .

3.2. Analytical solution to the developed models and the basic concepts of
the differential transform method (DTM). Due to the presence of a nonlinearity
in the derived coupled governing equation of motion, a method capable of transforming
differential equations into another domain with a robust and easy way of inversion is
required. The differential transform method (DTM) possesses this attribute. DTM
maps a governing equation into an algebraic domain and then obtains an inversion
using a series summation method. This approximate analytical method generates a
solution with the controlling parameters adequately conserved. The recursive relations
that constitute DTM for transforming differential equation into the desired form are
shown in Table 1. As regards the notations used in this table we refer the reader to
[30] and [34] which detail the way they should be applied. By applying this scheme to
equations (9) we obtain the required analytical solutions of the governing equations.

Table 1. Recursive relations for the Differential Transform Method (DTM)

Z(t) = U(t)± V (t), Z(k) = U(k)± V (k);

Z(t) =∞U(t), Z(k) =∞U(k);

Z(t) =
dU(t)

dt
, Z(k) = (k + 1)U [k + 1];

Z(t) =
d2U(t)

dt2
, Z(k) = (k + 1)(k + 2)U [k + 2];

Z(t) =
dmU(t)

dtm
, Z(k) = (k + 1)(k + 2) · · ·U [k +m] = (k+m)!

k!
U [k +m];

Z(t) = U(t) ∗ V (t), Z(k) =
∑K

`=0 V (L)U [K − `] ;

Z(t) = tm, Z(k) = δ(k −m).

After applying the scheme in Table 1 to equations (9) we have

M1 (k + 1) (k + 2)Tk+2 +K1Tk +K2Jk+

+ V

k∑
q=0

(
q∑

l=0

TlTq−lTk−q

)
− Fωk sin (1/2kπ)

k!
= 0 (16)
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and
M2 (k + 1) (k + 2) Jk+2 +K12Jk +K21Tk = 0 , (17)

where with regard to the transformed initial conditions

T0 = a , T1 = 0 , J0 = b and J1 = 0 . (18)

Performing the iteration steps on equations (16) and (17) by utilizing equations (18)
leads to the following solutions for T2, J2, . . . , T7, J7:

T2 = −V a
3 +K1a+K2b

2M1
, (19)

J2 = −K12b+K21a

2M2
, (20)

T3 =
Fω

16M1
, (21)

J3 = 0 , (22)

T4 =
1

24M2
1M2

(
3M2V

2a5 + 4K1M2V a
3 + 3K2M2V a

2b+K2
1M2 a+

+K1K2M2b+K12K2M1b+K2K21M1a
)
, (23)

J4 =
K21M2V a

3 +K1K21M2a+K2
12M1b+K12K21M1a+K2K21M2b

24M1M2
2

, (24)

T5 = −Fω
(
M1ω

2 + 3V a2 +K1

)
/120M1

2 (25)

J5 = −K21Fω/120M1M2 , (26)

T6 = − 1

720M3
1M

2
2

(
27M2

2V
3a7 + 51K1M2

2V 2a5 + 45K2M
2
2V

2a4b+

+ 25K2
1M

2
2V a

3 + 42K1K2M
2
2V a

2b+ 3K12K2M1M2V a
2b+ 18K2

2M
2
2V ab

2+

+ 4K2K21M1M2V a
3 +K3

1M
2
2 a+K2

1K2M
2
2 b+K1K12K2M1M2+

+ 2K1K2K21M1M2a+K2
12K2M

2
1 b+K12K2K21M

2
1 a+K2

2K21M1M2b
)
, (27)

J6 = − 1

720M2
1M

3
2

(
3K21M

2
2V

2a5 + 4K1K21M
2
2V a

3 +K12K21M1M2V a
3+

+ 3K2K21M
2
2V a

2b+K2
1K21M

2
2 a+K1K12K21M1M2 a+

+K1K2K21M
2
2 b+K3

12M
2
1 b+K2

12K21M
2
1 a+ 2K12K2K21M1M2b+

+K2K
2
21M1M2a

)
, (28)

T7 =
Fω

5040M3
1M2

(
M2

1M2ω
4 + 3M1M2V a

2ω2 + 69M2V
2a4 +K1M1M2ω

2+

+ 66K1M2V a
2 + 60K2M2V ab+K2

1M2 +K2K21M1

)
, (29)

J7 =
K21Fω

(
M1M2ω

2 + 3M2V a
2 +K1M2 +K12M1

)
5040M2

1M
2
2

. (30)
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With T0, J0, . . . , T7, J7 we have the following analytical approximations

T (t) =

7∑
k=0

Tkt
k , J (t) =

7∑
k=0

Jkt
k . (31)

Equations (31), in which the coefficients are given by (18),. . . ,(30), are the desired
analytical solutions for T (t) and J(t). In order to find the unknown deflections for a
longer time history, the above technique is applied and the results obtained are utilized
to analyze the dynamic behavior of the system in the present study. Furthermore,
the computations require 16 iterations for achieving good accuracy.

4. Results and discussions

In this study, the nonlinear vibration and rotation of microbeams in presented. The
migration and growth of a cell depends on the porosity of the nanoscaffolds and
the pore size architecture. In order to investigate this dependency of the cell mi-
gration and growth on pore size, the nonlocal strain gradient theory of elasticity
is applied to develop a dynamic model for the nonlinear vibration and rotation of
microbeams made of nanobiomaterials. This dynamic model, which is a set of cou-
pled nonlinear ordinary differential equations, was solved by applying an approximate

Table 2. Validation of the Galerkin Decomposition Method with the Dif-
ferential Transform Method

Time Deflection (nm) Rotation (radian)

(Secs) GDM DTM Residual GDM DTM Residual

1 0.3000 0.3000 0.0000 0.1000 0.1000 0.0000

2 0.2384 0.2385 0.0001 0.0921 0.0921 0.0000

3 0.0787 0.0790 0.0003 0.0711 0.0711 0.0000

4 -0.1150 -0.1144 0.0006 0.0441 0.0440 0.0001

5 -0.2649 -0.2645 0.0004 0.0198 0.0197 0.0001

6 -0.3104 -0.3105 0.0001 0.0051 0.0050 0.0001

7 -0.2327 -0.2335 0.0008 0.0025 0.0023 0.0002

8 -0.0628 -0.0641 0.0013 0.0088 0.0087 0.0001

9 0.1316 -0.1302 0.0014 0.0173 0.0172 0.0001

10 0.2732 -0.2724 0.0008 0.0199 0.0199 0.0000

11 0.3056 0.3059 0.0003 0.0110 0.1112 0.0002

12 0.2160 0.2175 0.0015 -0.0104 -0.0100 0.0003

13 0.0413 0.0435 0.0022 -0.0398 -0.0395 0.0003

14 -0.1482 -0.1461 0.0021 -0.0693 -0.0690 0.0003

15 -0.2764 -0.2753 0.0011 -0.0901 -0.0900 0.0001

16 -0.2912 -0.2919 0.0007 -0.0964 -0.0965 0.0001

17 -0.1865 -0.1889 0.0008 -0.0874 -0.0876 0.0002

18 -0.0046 -0.0078 0.0032 -0.0675 -0.0678 0.0003

19 0.1818 0.1790 0.0028 -0.0446 -0.0449 0.0003

20 0.2980 0.2969 0.0011 -0.0272 -0.0272 0.0000
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solution method; Galerkin Decomposition Method and an approximate analytical
approach the Differential Transform Method. The results are shown in Table 2 and
an excellent agreement is established between them.

The effects of modal number on steady state response are shown in Figures 3-
6. This analysis is vital as it shows clearly the locations of nodes and anti-nodes.
Based on the results obtained, an increase in modal number increases the number
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Figure 3. Steady state response for mode 1
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Figure 4. Steady state response for mode 2
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Figure 5. Steady state response for mode 3
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Figure 6. Super-imposed steady state responses

of nodes and anti-nodes. The locations of anti-nodes are very important during the
system’s vibration that may tend to resonance as reducing disturbances at these point
automatically reduces vibration throughout the entire beam length.

The effect of the Duffing term on micro Wmax is shown in Figure 7. From the plot,
it is obvious that when the system’s deflection is low, the nonlinear term possesses
negligible impact. However, at very large amplitudes, an increase in the Duffing term
increases the dimensionless frequency of the nano-porous micro-beam. Figure 8 shows
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

Wmax

Figure 7. The effect of the nonlinear term on Wmax

Wmax



Figure 8. The effect of the foundation term on Wmax

the effect of elastic foundation term m (also referred to as the linear Winkler coeffi-
cient k = k1) on on Wmax. From the plot, it is observed that when the micro-beam is
foundation free, it gives a very large frequency ratio. This may result in instable be-
havior. However, when the elastic foundation parameter is introduced, the frequency
ratio starts to decay even for high values of deflection. This reiterates the importance
of an elastic foundation. Figures 7 and 8 are included in the study for monitoring the
resonance of the microbeam.
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Figure 9. Effect of the foundation term on the free dynamic response
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Figure 10. Effect of foundation term on the forced dynamic response

5. Conclusion

In this study, the nonlinear vibrational and rotational analysis of microbeams in
nanobiomaterials using Galerkin Decomposition and the Differential Transform Method
has been presented. The degeneration of human body tissues caused by congenital
defects, diseases, trauma, etc. which were not replaced in times past, can now be
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replaced today with the novel approaches emerging in tissue engineering to regen-
erate such damaged tissues even after been replaced. The major element in one of
the novel approaches is the migration and growth of cells, which depends on the
porosity of the nanoscaffolds and the pore size architecture. In order to investigate
this dependency of the cell migration and growth on pore size, the nonlocal strain
gradient theory of elasticity is applied to develop a dynamic model for the nonlinear
vibration and rotation of the microbeams made of nanobiomaterials. This dynamic
model, which is a set of coupled nonlinear ordinary differential equations, was solved
by applying a decomposition scheme – Galerkin Decomposition Method and an ap-
proximate analytical technique, the Differential Transform Method. Good agreement
is established between the solutions. The effects of the modal number on the steady
state response, the effect of the Duffing term on stability response on microbeam,
the effect of the elastic foundations on the stability response of the microbeam, and
the effect of the elastic foundation on the free and forced dynamic responses of the
microbeam were investigated. It is observed that an increase in the modal number
increases the number of the nodes and anti-nodes. During system vibration that may
tend to resonance, the increased anti-nodes reduce disturbances at these nodal points
which automatically reduces the vibration in the entire beam length. An increase
in Duffing term also resulted in the increases of the dimensionless frequency of the
nano-porous micro-beam. When the elastic foundation is introduced and increased,
there is a decrease in the frequency ration of the microbeam. And for the free and
forced dynamic responses, an increase in the foundation term increases the frequency
of the system for both conditions. This study will enhance a parametric study in
vibration and rotation of nanobiomaterials and the application of tissue engineering
to regenerate damaged tissues in the human body.

6. Nomenclature

Latin notations
a1b1, . . . Links – see Figure 1 t Time
A Area T Temporal rotation
E Modulus of elasticity V Duffing term
F Galerkin force function w Deflection
G Shear modulus of elasticity Wmax Maximum dimensionless deflection
I Moment of inertia w̄ Deflection
J Temporal rotation x Independent variable
k1 Linear Winkler coefficient Greek notations
k2 Non-linear foundation coefficient θ Rotation
K Stiffness µ Nonlocal term
L Length of the microbeam ξ1 Flexural term
M Mass ξ2,...,13 Known coefficients [41]
Mb Bending moment ϕ Shape function
n Nodal number ω Natural frequency
p Distributed load ωn` Non-linear frequency
R Galerkin Function Ω Frequency ratio
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