
Journal of Computational and Applied Mechanics, Vol. 15, No. 2, (2020), pp. 115–133

DOI: 10.32973/jcam.2020.008

CONVERGENCE THEOREMS FOR THE NELDER-MEAD
METHOD

Aurél Galántai
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1. Introduction

We study the Nelder-Mead simplex method [1] for the solution of the unconstrained
minimization problem

f (x)→ min (f : Rn → R) ,

where f is continuous. Since 1965, the Nelder-Mead algorithm and its later variants
have become highly popular in various application areas and derivative-free optimiza-
tion [2–6]. Although the original paper [1] has a lot of citations (over 31 000 in
Google Scholar on August 3, 2020), notably few theoretical results are known on the
convergence (see Kelley [7] and Lagarias at al. [8, 9]).

In the paper we develop a matrix form of the Nelder-Mead method, discuss the
concept of convergence and its consequences, prove a general convergence theorem
under plausible assumptions and demonstrate the convergence of the algorithm for
low dimensional spaces. This approach partially answers some of the questions raised
by Wright [10] concerning the Nelder-Mead method.

Section 2 contains the description of the algorithm. The next section summarizes
the most important earlier results on the convergence. The matrix reformulation of
the Nelder-Mead method is given Section 4. The concept of convergence and some
of its consequences are developed and discussed in Section 5. The spectra of the
occurring matrices is investigated in Section 6. The general convergence theorem
is developed in Section 7. Finally, the convergence of the Nelder-Mead method is
demonstrated for n = 1, 2, 3 in the last section.

©2020 Miskolc University Press
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2. The Nelder-Mead simplex method

We use the following form of the original method [8]. The vertices of the initial
simplex are denoted by x1, x2, . . . , xn+1 ∈ Rn. It is assumed that vertices x1, . . . , xn+1

are ordered such that

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1) (2.1)

and this condition is maintained during the iterations of the Nelder-Mead algorithm.
Define xc = 1

n

∑n
i=1 xi and x (λ) = (1 + λ)xc−λxn+1. The related evaluation points

are

xr = x (1) , xe = x (2) , xoc = x

(
1

2

)
, xic = x

(
−1

2

)
.

Then one iteration step of the method is the following.

Operation Nelder-Mead simplex method
0. Ordering f (x1) ≤ · · · ≤ f (xn+1)
1. Reflect if f (x1) ≤ f (xr) < f (xn), then xn+1 ← xr and goto 0.
2. Expand if f (xr) < f (x1) and f (xe) < f (xr),

then xn+1 ← xe and goto 0.
If f (xe) ≥ f (xr), then xn+1 ← xr and goto 0.

3. Contract outside If f (xn) ≤ f (xr) < f (xn+1) and f (xoc) ≤ f (xr),
then xn+1 ← xoc and goto 0.

4. Contract inside If f (xr) ≥ f (xn+1) and f (xic) < f (xn+1)
then xn+1 ← xic and goto 0.

5. Shrink xi ← (xi + x1) /2, f (xi) (for all i) and goto 0.

There are two rules that apply to reindexing after each iteration. If a nonshrink
step occurs, then xn+1 is discarded and a new point v ∈ {xr, xe, xoc, xic} is accepted.
The following cases are possible:

f (v) < f (x1) , f (x1) ≤ f (v) ≤ f (xn) , f (v) < f (xn+1) .

If

j =

{
1, if f (v) < f (x1)
max2≤`≤n+1 {f (x`−1) ≤ f (v) ≤ f (x`)} , otherwise

.

then the new simplex vertices are

xnewi = xi (1 ≤ i ≤ j − 1) , xnewj = v, xnewi = xi−1 (i = j + 1, . . . , n+ 1) . (2.2)

This rule inserts v into the ordering with the highest possible index. If shrinking
occurs, then

x′1 = x1, x′i = (xi + x1) /2 (i = 2, . . . , n+ 1)

plus a reordering takes place. By convention, if f (x′1) ≤ f (x′i) (i = 2, . . . , n), then
xnew1 = x1.

Lagarias at al. [9] also investigated a restricted version, where expansion steps are
not allowed.
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We adopt the following notations. The simplex of iteration k is denoted by S(k) =[
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
with vertices that satisfy the condition

f
(
x
(k)
1

)
≤ f

(
x
(k)
2

)
≤ · · · ≤ f

(
x
(k)
n+1

)
(k ≥ 0) .

The initial simplex is S(0). The reflection, expansion and contraction points of simplex

S(k) are denoted by x
(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic , respectively. The function values at the

vertices x
(k)
j and the points x

(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic are denoted by f

(
x
(k)
j

)
= f

(k)
j

(j = 1, . . . , n + 1), f
(k)
r = f

(
x
(k)
r

)
, f

(k)
e = f

(
x
(k)
e

)
, f

(k)
oc = f

(
x
(k)
oc

)
and f

(k)
ic =

f
(
x
(k)
ic

)
, respectively.

3. A review of the earlier convergence results

In 1998 McKinnon [11] constructed a function f , which is strictly convex and has
continuous first derivatives for certain parameters. He showed that for this f , the
Nelder-Mead simplex algorithm may fail to converge.

Lagarias et al. [8] proved several convergence properties of the simplex method for
one and two-variable strictly convex functions by giving a deep insight look of the
method. They summarize their main results as follows (see p. 114 of [8]):

1. In dimension 1, the Nelder-Mead method converges to a minimizer, and con-
vergence is eventually M -step linear.

2. In dimension 2, the function values at all simplex vertices in the standard
Nelder-Mead algorithm converge to the same value.

3. In dimension 2, the simplices in the standard Nelder-Mead algorithm have
diameters converging to zero.

In 1999 Kelley [7, 12] developed a sufficient decrease condition for the average of the
object function values (evaluated at the vertices) and proved that if this condition is
satisfied during the process, then any accumulation point of the simplices is a critical
point of f . For similar results on other variants of the Nelder-Mead algorithm, see
Tseng [13], Nazareth and Tseng [14], Pryce at all. [15].

For the restricted Nelder-Mead method, Lagarias at al. [9] significantly improved
the results of [8]. Let F denote the class of twice-continuously differentiable functions
R2 → R with bounded level sets and everywhere positive definite Hessian. Lagarias
at al. proved that if the restricted Nelder-Mead algorithm is applied to a function
f ∈ F , starting from any nondegenerate simplex, then the algorithm converges to the
unique minimizer of f .

Wright [10] raised several open questions concerning the Nelder-Mead method such
as

• Why is it sometimes so effective (compared to other direct search methods)
in obtaining a rapid improvement in f?
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• One failure mode is known (McKinnon [11]) – but are there other failure
modes?

• Why, despite its apparent simplicity, should the Nelder-Mead method be dif-
ficult to analyze mathematically?

Our purpose is to analyze and prove the convergence of the method using a matrix for-
malism. This technique will also shed light on these questions, even if only, partially.
The failure modes are the subject of paper [16].

4. The Nelder-Mead simplex method in matrix form

Assume that simplex S(k) =
[
x
(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
is such that

f
(
x
(k)
1

)
≤ f

(
x
(k)
2

)
≤ · · · ≤ f

(
x
(k)
n+1

)
.

If the incoming vertex v is of the form

x (α) =
1 + α

n

n∑
i=1

x
(k)
i − αx

(k)
n+1

for some α ∈
{

1, 2, 12 ,−
1
2

}
, we can define the transformation matrix

T (α) =

[
In

1+α
n e

0 −α

] (
e = [1, 1, . . . , 1]

T
)
.

Since S(k)T (α) =
[
x
(k)
1 , . . . , x

(k)
n , x (α)

]
, we have to reorder the matrix columns ac-

cording to the insertion rule (2.2). Define the permutation matrix

Pj = [e1, . . . , ej−1, en+1, ej , . . . , en] ∈ R(n+1)×(n+1) (j = 1, . . . , n+ 1) .

Then S(k)T (α)Pj is the new simplex S(k+1). Particularly, we have the following
cases.

1. If the reflection point x
(k)
r is the new incoming vertex, then

S(k+1) = S(k)T (1)Pj (j = 2, . . . , n) .

2a) If the expansion point x
(k)
e is the new incoming vertex, then

S(k+1) = S(k)T (2)P1.

2b) If the expansion point is the reflection point x
(r)
r , then

S(k+1) = S(k)T (1)P1.

3) If the outside contraction point x
(k)
oc is the new incoming vertex, then

S(k+1) = S(k)T

(
1

2

)
Pj (j = 1, . . . , n+ 1) .

4) If the inside contraction point x
(k)
ic is the new incoming vertex, then

S(k+1) = S(k)T

(
−1

2

)
Pj (j = 1, . . . , n+ 1) .
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5) In the case of shrinking, the new vertices before reordering are

x′i =
(
x
(k)
1 + x

(k)
i

)
/2 (i = 1, 2, . . . , n+ 1) .

Hence
[
x′1, x

′
2, . . . , x

′
n+1

]
= S(k)Tshr, where

Tshr =


1 1

2 · · · 1
2

0 1
2 · · · 0

...
. . . 0

0 · · · 0 1
2

 =
1

2
I +

1

2
e1e

T .

Since the new vertices are subject to the ordering

f
(
x
(k+1)
1

)
≤ · · · ≤ f

(
x
(k+1)
k

)
≤ · · · ≤ f

(
x
(k+1)
n+1

)
,

the new simplex is defined by

S(k+1) = S(k)TshrP,

where P ∈ Pn+1, which is the set of all possible permutation matrices of order n+ 1.

There are only n+ 1 permutation matrices of the type Pj , while there are (n+ 1)!
possible permutation matrices of the type Pn+1

Hence in any of the above cases the new simplex S(k+1) is given by

S(k+1) = S(k)TkP
(k),

where Tk is either T (α) (α ∈
{
− 1

2 ,
1
2 , 1, 2

}
) and P (k) ∈ {P1, . . . , Pn+1} or Tk = Tshr

and P (k) ∈ Pn+1. The number of different TiP
(i) matrices is at most 3n+3+(n+ 1)!

indicating an increasing complexity if n increases.

Observe that matrices T (α), Tshr, T (α)P and TshrP , for any P ∈ Pn+1, have the
property that their column sums are 1. We exploit the following simple results.

Claim 1. (i) If A ∈ Rn×n is a matrix whose column sums are 1, then A has an
eigenvalue λ = 1 and a corresponding left eigenvector x = eT . (ii) If A,B ∈ Rn×n
are two matrices whose column sums are 1, then C = AB also has this property. (iii)
If A ∈ Rn×n is a matrix whose column sums are 1, then ‖A‖ ≥ 1 in any induced
matrix norm.

Proof. By definition eTA = [
∑n
i=1 ai1, . . . ,

∑n
i=1 ain] = 1 ·eT . This implies eTB = eT ,

eTAB = eTB = eT . Since ρ (A) ≥ 1 and ‖A‖ ≥ ρ (A), (iii) also follows. �

Particularly, ‖T (α)‖1 = ‖T (α)P‖1 = |1 + α|+ |α| and ‖Tshr‖1 = ‖TshrP‖1 = 1.

A matrix A is called left stochastic if aij ≥ 0 for all i,j and the column sums are
1. A matrix is called stochastic if aij ≥ 0 for all i,j and both the column sums and
the row sums are 1.

Matrix T (α) is left stochastic for −1 ≤ α ≤ 0. The shrinking transformation

matrix Tshr = 1
2In+1 + 1

2e1e
T is a left stochastic matrix, T kshr = 1

2k
In+1 + 2k−1

2k
e1e

T

and T kshr → e1e
T .
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For any α, β, T (α)T (β) = T (−αβ). Hence T (α)
−1

= T
(
1
α

)
(α 6= 0) and

T (α)
k

= T
(

(−1)
k+1

αk
)

. If |α| < 1, then limk→∞ T (α)
k

= T (0). Matrix T (1)

is an involution (T (1)
2

= In+1). If T (1) is multiplied by a permutation matrix P ,
this property may change. For n = 2, T (1)P2 (reflection) is a 6-involutory matrix (for

k-involutory matrices, see Trench [17]). T (α)
k

is unbounded if |α| > 1 and uniformly
bounded if |α| ≤ 1.

5. The concept of convergence and consequences

Simplex S(k) is given by

S(k) = S(0)Bk, (5.1)

where

Bk =

k∏
i=1

TiP
(i) (5.2)

and

TiP
(i) ∈

{
T (α)Pk : α ∈

{
−1

2
,

1

2
, 1, 2

}
, k = 1, . . . , n+ 1

}
(5.3)

or
TiP

(i) ∈ {TshrP : P ∈ Pn+1} . (5.4)

Note that each TiP
(i) is nonsingular and eTTiP

(i) = eT .

A simplex S is nondegenerate if the matrix

M = [x1 − xn+1, x2 − xn+1, . . . , xn − xn+1]

is nonsingular. Then S must be affinely independent, which is equivalent to (see, e.g.,
[18], [19]) that vectors [

1
x1

]
, . . . ,

[
1

xn+1

]
are linearly independent. Hence rank

([
eT

S

])
= n + 1.1 Assume that the initial

simplex S(0) is nondegenerate. Since eTBk = eT and[
eT

S(k)

]
=

[
eT

S(0)

]
Bk

is nonsingular, S(k) is also nondegenerate.

For the convergence of the Nelder-Mead algorithm, it is natural to require that the

simplex vertices x
(k)
j (j = 1, 2, . . . , n + 1) should converge to the same vector x̂ as

k →∞. In such a case
lim
k→∞

S(k) = [x̂, . . . , x̂] = x̂eT . (5.5)

Claim 2. If {Bk} is bounded, then
{
S(k)

}
converge to some S∞ if and only if {Bk}

converge to some B.

1It is assumed through the whole paper that the sizes of e and the unit vectors ei are compatible

with the operation and/or partition.
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Proof. If S(k) → S∞ (whatever S∞ is) and Bk → B, then S(0)Bk → S(0)B = S∞.
Assume that S(k) → S∞ and {Bk} has no limit point. Since {Bk} is bounded
it must have at least one accumulation point, say B∗ and there is a subsequence{
Bij
}
⊂ {Bk} such that Bij → B∗ and S(ij) → S(0)B∗ = S∞. Assume that there

exists a second accumulation point B∗∗ 6= B∗ and a subsequence
{
Bkj

}
⊂ {Bk} such

that Bkj → B∗∗. It follows that[
eT

S(ij)

]
→
[

eT

S(0)

]
B∗ =

[
eT

S(0)

]
B∗∗ ←

[
eT

S(kj)

]
.

Since

[
eT

S(0)

]
is nonsingular, we obtain that B∗ = B∗∗, which is a contradiction. It

follows that {Bk} converges. �

Hence it is enough to study the convergence of {Bk}, or more precisely the conver-
gence of the right infinite matrix product

B =

∞∏
i=1

TiP
(i). (5.6)

Let A be an n× n matrix. The 1-eigenspace of the matrix A is

E (A) = {x : xA = x} .

Lemma 3. Assume that Bk → B and TsP
(s) occurs infinitely often in the product∏∞

j=1 TjP
(j), then every row of B is in E

(
TsP

(s)
)
.

Proof. Since TsP
(s) occurs infinitely often in the product

∏∞
i=1 TiP

(i), there is a

subsequence of
{
Bij
}

with rightmost factor TP , say

Bi1TsP
(s), Bi2TsP

(s), . . . ,

where the Bij ’s are products of TiP
(i)’s. Since Bij → B, so does BijTsP

(s). Thus

BijTsP
(s) → BTsP

(s) = B. �

In fact the rows ofB, if not zero vectors, are the left eigenvectors of TsP
(s) belonging

to λ = 1. If several TsP
(s) occur infinitely often in the product

∏∞
i=1 TiP

(i), then the

rows of B belong to ∩E
(
TsP

(s)
)
, where the intersection is over all matrices TsP

(s)

that occur infinitely often in
∏∞
k=1 TiP

(i).

Each of the matrices TiP
(i) has at least one left eigenvector (eT ) belonging to

λ = 1. Hence eT ∈ ∩E
(
TsP

(s)
)
. If ∩E

(
TsP

(s)
)

=
{
λeT : λ ∈ R

}
, then B has the

form weT for some w ∈ Rn+1. However it is not always the case.

Example 4. Let n = 2, {dk}∞k=0 be a strictly monotone decreasing sequence, dk >

δ1 > δ2 for all k, and define f
(k)
1 = δ2, f

(k)
2 = δ1, f

(k)
3 = dk+1, f

(k)
r = dk+1 and

f
(k)
ic = dk+2. Then x

(k+1)
1 = x

(k)
1 , x

(k+1)
2 = x

(k)
2 , x

(k+1)
3 = x

(k)
ic , f

(
x
(k+1)
1

)
= δ2,
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f
(
x
(k+1)
2

)
= δ1 and f

(
x
(k+1)
3

)
= dk+2. Hence a repeated inside contraction occurs,

Bk =

[
T

(
−1

2

)]k
→ B =

 1 0 1
2

0 1 1
2

0 0 0

 6= weT .

Here x
(k)
1 → x

(0)
1 , x

(k)
2 → x

(0)
2 , x

(k)
3 → 1

2

(
x
(0)
1 + x

(0)
2

)
, and the simplex diameters do

not converge to 0. Note that B is not a rank one matrix.

Assume now that Bk → B = weT . Then S(k) = S(0)Bk → S(0)weT = ŵeT ,
diam

(
S(k)

)
= maxi,j

∥∥S(k) (ei − ej)
∥∥ and

diam
(
S(k)

)
≤ max

i,j

∥∥∥S(0)
∥∥∥ ‖Bk (ei − ej)‖ → 0. (5.7)

Since B (ei − ej) = 0, Bk (ei − ej) = (Bk −B) (ei − ej), we have the speed estimate

diam
(
S(k)

)
≤
√

2
∥∥∥S(0)

∥∥∥ ‖Bk −B‖ . (5.8)

Note again that in Example 4, where B is of rank 2, the simplex diameters do not
converge to 0.

If Bk converges to a rank one matrix weT , then all simplex vertices x
(k)
i (i =

1, . . . , n + 1) converge to the same limit x̂ = S(0)w implying that f
(k)
i → f

(
S(0)w

)
(i = 1, . . . , n + 1) and diam

(
S(k)

)
→ 0. In such a case the results of Lagarias et al.

[8] mentioned as 2. and 3. in Section 3, are direct consequences.

The next example indicates that the boundedness assumption on {Bk} is also
needed.

Example 5. Let n = 2, {dk}∞k=1 be a strictly monotone decreasing sequence, and
define

f
(k)
1 = d3+k, f

(k)
2 = d2+k, f

(k)
3 = d1+k

and

f
(k)
1 = d3+k > f (k)r =

1

2
(d3+k + d4+k) > d4+k = f (k)e .

This guarantees the selection of x
(k)
e as the incoming vertex for each iteration. The

sequences
{
f
(
x
(k)
1

)}
,
{
f
(
x
(k)
2

)}
and

{
f
(
x
(k)
3

)}
are strictly monotone decreasing,

while Bk = [T (2)P1]
k

is unbounded. For dk → d, the function values are converging
to d, while there is no convergence for the simplex vertices. A similar example can be

given for x
(k)
r if it is selected as an expansion point.

For a given S(0) and f , the sequence S(k) (Bk) is uniquely defined. In fact, S(k+1)

is determined by S(k) and the relative value distribution of f at the vertices of S(k)

and trial points x
(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic . Hence we study the convergence of the

matrix product Bk and the convergence of the simplex vertices as a consequence.
The selection of the initial simplex S(0) may also influence the convergence of the
Nelder-Mead algorithm but it is difficult to consider it within this approach (for
experimental observations on the initial simplex S(0), see [20], [21]).
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6. Eigenvalues of the transformation matrices

The eigenvalues of the matrices TiP
(i) play a key role in the convergence of the

infinite matrix product
∏∞
i=1 TiP

(i). For P (i) = In+1, we have the following simple
result.

Lemma 6. (i) Matrix T (α) has the eigenvalues λi = 1 (i = 1, . . . , n) and λn+1 = −α
and the diagonal Jordan form

T (α) =

[
In − 1

ne
0 1

] [
In 0
0 −α

] [
In

1
ne

0 1

]
.

(ii) The eigenvalues of Tshr are λ1 = 1 and λi = 1
2 for i = 2, . . . , n + 1. The

corresponding eigenvectors are x1 = e1, xi = −e1 + ei. Furthermore Tshr has a
diagonal Jordan normal form

Tshr = XΛX−1, (6.1)

where Λ =diag(λi) = 1
2

(
In+1 + e1e

T
1

)
and X = In+1 + e1

(
eT1 − eT

)
.

Lemma 7. The matrix T (α)Pk (1 ≤ k ≤ n) has k − 1 eigenvalues λ = 1. The
remaining n− k + 2 eigenvalues are the zeros of the polynomial

pn+2−k (λ) = λn+2−k − c
n+1−k∑
i=1

λi + α, (6.2)

where c = 1+α
n . If k = 1, then pn+1 (λ) has at least one eigenvalue λ = 1. If α = 1,

pn+1 (λ) has at least two eigenvalues λ = 1. If α = 2, pn+1 (λ) has an eigenvalue in
the interval (1, 2). For k ≥ 2, there are exactly k− 1 eigenvalues λ = 1. If 2 ≤ k ≤ n
and α < 0, pn−k+2 (λ) has all roots in the open unit disk.

Proof. For 1 ≤ k ≤ n,

T (α)Pk =

[
Ik−1 ceeT1

0 An+2−k

]
,

where

An+2−k =



c 1 0 · · · 0

c 0
. . .

. . .
...

...
...

. . .
. . . 0

c 0 · · · 0 1
−α 0 · · · 0 0

 .
Since An+2−k is a companion matrix (for this form, see, e.g. [22]), its characteristic
polynomial is

pn+2−k (λ) = λn+2−k − c
n+1−k∑
i=1

λi + α (1 ≤ k ≤ n)

and the characteristic polynomial of T (α)Pk is

det (T (α)Pk − λIn+1) = (1− λ)
k−1

pn+2−k (λ) .
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Note that pn+2−k (1) = k−1
n (α+ 1). If k = 1, pn+1 (1) = 0, that is λ1 = 1 (the

column sums of T (α)P1 are 1!). Since p′n+1 (λ) = 1−α
2 (n+ 1), there is a second

zero λ2 = 1 if α = 1 (expansion by reflection). For α = 2, p′n+1 (1) < 0 and

pn+1 (2) = 2n+1
(
1− 3

n

)
+ 2 + 6

n > 0 (n ≥ 2). Hence pn+1 (λ) has a zero in the
interval (1, 2) for α = 2 and n ≥ 2. If k ≥ 2, pn+2−k (1) 6= 0. If α < 0 and 2 ≤ k ≤ n,
the roots of pn+2−k (λ) are inside the unit disk since for |λ| ≥ 1,

|pn+2−k (λ)| = |λ|n+2−k

∣∣∣∣∣1− c
n+1−k∑
i=1

1

λi
+ α

1

λn+2−k

∣∣∣∣∣
≥ |λ|n+2−k

(
1− c

n+1−k∑
i=1

1

|λ|i
− |α| 1

|λ|n+2−k

)
≥ |λ|n+2−k

(1− (n+ 1− k) c− |nc− 1|)

≥ |λ|n+2−k
(k − 1) c > 0.

�

For α > 0, there is no estimate on the location of the roots of pn+2−k relative to
the open unit disk. However the Schur-Cohn test may help to decide if the roots of
pn+2−k (λ) are in the open unit disk.

For the eigenvalues of TshrP (P ∈ Pn+1), we cite the following result

Theorem 8. (Langville and Meyer [23, 24]). If the spectrum of the stochastic matrix
P is {1, λ2, . . . , λ3}, then the spectrum of

W = αP + (1− α) evT

is {1, αλ2, αλ3, . . . , αλn}, where vT is a probability vector2.

Corollary 9. Since the eigenvalues of W and WT coincide, we have the same result
for the transposed matrix

WT = αPT + (1− α) veT

as well.

Corollary 10. The spectrum of TshrP = 1
2P + 1

2e1e
T is

{
1, 12λ2,

1
2λ3, . . . ,

1
2λn+1

}
.

Since the eigenvalues of a permutation matrix are on the unit circle |λ| = 1, we have∣∣ 1
2λi
∣∣ = 1

2 for i = 2, . . . , n+ 1.

7. General convergence results for the Nelder-Mead method

For every T (α)Pk, the spectral radius is bigger than or equal to 1. Since eT ∈
E
(
TiP

(i)
)

for all TiP
(i) occurring here, we first block triangularize them by a com-

mon similarity transformation (for left infinite matrix products, see Theorem 6.10 of
Hartfiel [25]). We show that for

F =

[
1 −eT
0 In

]
, F−1 =

[
1 eT

0 In

]
(7.1)

2Vector v is such that vi ≥ 1 and eT v = 1.
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and for all possible TiP
(i),

F−1TiP
(i)F =

[
1 0T

bi Ci

]
, (7.2)

where bi ∈ Rn and Ci ∈ Rn×n depends on TiP
(i).

Lemma 11. For every T (α)Pk (α ∈
{
− 1

2 ,
1
2 , 1, 2

}
, Pk ∈ {P1, . . . , Pn+1}), the matrix

F−1T (α)PkF has the form (7.2).

Proof. For k > 1 we can write

T (α)Pk =

[
1 ceTk−1
0 W

] (
W ∈ Rn×n

)
,

and so

F−1T (α)PkF =

[
1 −eT + ceTk−1 + eTW
0 W

]
.

Since eTWek−1 = (n− 1) c− α = 1− c, eTW = [1, . . . , 1− c, 1, . . . , 1], we obtain the
form

F−1T (α)PkF =

[
1 0
0 W

]
.

For k = 1, we can write

T (α)P1 =

[
c eT1
z W

] (
W ∈ Rn×n

)
with z = [c, . . . , c,−α]

T
. Hence

F−1T (α)P1F =

[
c+ eT z −ceT + eT1 − eT zeT + eTW

z −zeT +W

]
.

Since eTW = [0, 1, . . . , 1], eT z = 1− c, c+ eT z = 1,

−ceT + eT1 − eT zeT + eTW = −ceT + eT1 − (1− c) eT + eTW = 0.

The final result is

F−1T (α)P1F =

[
1 0
z −zeT +W

]
.

�

Remark 12. For k > 1, b = 0, and for k = 1, ‖b‖2 =
(

(1+α)2

n + α2
) 1

2

.

Lemma 13. For every TshrP (P ∈ Pn+1), the matrix F−1TshrPF has the form
(7.2).

Proof. Note that TshrP = 1
2P + 1

2e1e
T and P =

[
ei1 , . . . , ein+1

]
. If i1 = 1, then

TshrP =

[
1 1

2e
T

0 W1

]
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where W1 is an n× n permutation matrix multiplied by 1
2 . Hence eTW1 = 1

2e
T and

F−1TshrPF =

[
1 − 1

2e
T + eTW1

0 W1

]
=

[
1 0
0 W1

]
.

If i1 > 1 and TshrPej = e1, then

TshrP =

[
1
2

1
2e
T + 1

2e
T
j−1

1
2ei1−1 W2

]
,

where W2ej−1 = 0, eTW2ei = 1
2 (i 6= j − 1) and eTW2 = 1

2

(
eT − eTj−1

)
. Since

eT ei1−1 = 1,

F−1TshrPF =

[
1
2 + 1

2e
T ei1−1

1
2e
T
j−1 − 1

2e
T ei1−1e

T + eTW2
1
2ei1−1 − 1

2ei1−1e
T +W2

]
=

[
1 0

1
2ei1−1 − 1

2ei1−1e
T +W2

]
�

Remark 14. If i1 = 1, then the first column entries are 0 except for entry (1, 1). If
i1 ≥ 2, then entry (i1, 1) is 1

2 , while the remaining entries are 0 (` 6= 1, i1). Hence

‖b‖2 ≤
1
2 . The entries of submatrix C are only 0, 1

2 and − 1
2 . In column j, there can

be at most two nonzero elements. Theorem 8 and Corollaries 9 and 10 imply that
ρ (C) = 1

2 . Note that ‖C‖1 ≤ 1.

We also need the following simple results.

Assume that for i ≥ 1,

Ai =

[
1 0
bi Ci

]
∈ R(n+1)×(n+1)

(
Ci ∈ Rn×n

)
. (7.3)

It is easy to see that

Lk =

k∏
j=1

Aj =

[
1 0∑k

i=1

(∏i−1
j=1 Cj

)
bi

∏k
j=1 Cj

]
=

[
1 0

xk
∏k
j=1 Cj

]
. (7.4)

Lemma 15. Assume that
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ ck,
∑∞
k=1 ck is convergent (<∞) and ‖bk‖ ≤

γ for all k. Then Lk converges and

lim
k→∞

Lk =

[
1 0
x̃ 0

]
(7.5)

for some x̃.

Proof. If
∑∞
k=1 ck is convergent, then ck → 0. Hence

∏k
j=1 Cj → 0 as k →∞. Since

sk =
∑k
j=1 cj is convergent, for any ε > 0 there is a number k0 = k0 (ε) such that for
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m > k ≥ k0, |sm − sk| < ε. Thus for m > k ≥ k0, we obtain

‖xm − xk‖ ≤
m∑

i=k+1

∥∥∥∥∥∥
i−1∏
j=1

Cj

∥∥∥∥∥∥ ‖bi‖ ≤ γ
m∑

i=k+1

ci−1 ≤ γε.

Hence xk → x̃ for some x̃. �

Remark 16. If ‖Cj‖ ≤ q < 1 for j ≥ 1, then
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ qk and the series
∑∞
i=1 q

i

is convergent.

Remark 17. For the matrices Ci of (7.2), either ρ (Ci) < 1 or ρ (Ci) ≥ 1. Since in
any induced matrix norm ‖Ci‖ ≥ ρ (Ci), we cannot expect convergence improvement
from the latter matrices, unless their effect is compensated.

Assume now that for some indices j, 1 ≤ ‖Cj‖ ≤ Q, while for other indices i,
‖Ci‖ ≤ q < 1. Denote by t1 (k) the number of those Ci’s that satisfies ‖Ci‖ ≤ q < 1
(1 ≤ i ≤ k), and denote by t2 (k) those Ci’s that satisfiy 1 ≤ ‖Ci‖ ≤ Q (1 ≤ i ≤ k).
Clearly, 0 ≤ ti (k) ≤ k and t1 (k) + t2 (k) = k. Then∥∥∥∥∥∥

k∏
j=1

Cj

∥∥∥∥∥∥ ≤ qt1(k)Qt2(k).
Assume that κ ∈ N is such that 1

qκ−1 ≤ Q ≤ 1
qκ . Then

∥∥∥∏k
j=1 Cj

∥∥∥ ≤ qt1(k)−κt2(k).

If ϕ (k) := t1 (k) − κt2 (k) is a monotone increasing sequence converging to infinity,

then
∏k
j=1 Cj → 0 as k → ∞. Note that ϕ (k) ≤ k. The root test of infinite series

guarantees that if for some k0 > 0,

q
ϕ(k)
k ≤ r < 1 (k ≥ k0) ,

then
∑∞
i=1 q

ϕ(i) is convergent. This condition is certainly satisfied if ϕ(k)
k ≥ µ, where

0 < µ < 1 is a fixed number. Observe that in such a case k ≥ t1 (k) ≥ µk + κt2 (k)
and t2 (k) ≤ 1−µ

κ k. If Q = 1, then κ = 1.

We can also give an estimate for the speed of convergence. For
∏k
i=1 Cj → 0,

we have the estimate
∥∥∥∏k

j=1 Cj

∥∥∥ ≤ qϕ(k) ≤ qµk. For the speed of the convergence∑k
i=1

(∏i−1
j=1 Cj

)
bi → x̃, we have the estimate

‖x̃− xk‖ =

∥∥∥∥∥∥
∞∑

i=k+1

i−1∏
j=1

Cj

 bi

∥∥∥∥∥∥ ≤ γ
∞∑
i=k

qϕ(i) ≤ γ
∞∑
i=k

qµi ≤ γqµk

1− qµ
.

We have just proved the following

Corollary 18. Assume that ‖Ck‖ ≤ Q and ‖bk‖ ≤ γ for all k. Denote by t1 (k) the
number of those Ci’s that satisfies ‖Ci‖ ≤ q < 1 (1 ≤ i ≤ k), and denote by t2 (k)
those Ci’s that satisfies 1 ≤ ‖Ci‖ ≤ Q (1 ≤ i ≤ k). Define κ ∈ N by the inequality
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1
qκ−1 ≤ Q ≤ 1

qκ . If for some k0 ∈ N and µ ∈ (0, 1), t1 (k) ≥ µk + κt2 (k) holds

(k ≥ k0), then Lk converges and

lim
k→∞

Lk =

[
1 0
x̃ 0

]
= L̃ (7.6)

for some X̃. For the speed of the convergence we have the estimate∥∥∥Lk − L̃∥∥∥ ≤ Γqµk, (7.7)

where Γ > 0 is a suitable constant depending on µ and γ.

Remark 19. If t2 (k) = 0 for k ≥ 1, then t1 (k) = k and µ = 1. If there are only
a finite number of cases, when 1 ≤ ‖Ci‖ ≤ Q holds, we can omit it in the sense that
if after iteration, say k0, only ‖Ci‖ ≤ q < 1 occurs, then t2 (k) ≤ k0, t1 (k) ≥ k − k0
and we can set µ = 1 in the above Corollary 18.

Given n, we have a finite set of matrices TiP
(i), say, T that may occur in the

infinite product (5.6) if the Nelder-Mead method is applied to some function f . For
each TiP

(i), we have the representation

TiP
(i) = F

[
1 0T

bi Ci

]
F−1. (7.8)

Hence Bk =
∏k
i=1 TiP

(i) = FLkF
−1 and Bk is convergent if and only if

Lk =

k∏
i=1

[
1 0T

bi Ci

]
is convergent. For some of the Ci’s, ρ (Ci) ≤ q ≤ 1, while for the others ρ (Ci) ≥ 1.
Define the sets

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
∪ {TshrP : P ∈ Pn+1}

and

W2 = {T (2)P1, T (1)Pj : j = 1, . . . , n}

∪
{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 3, . . . , n+ 1

}
.

If TiP
(i) ∈ W2, the matrix has a second eigenvalue |λ2| ≥ 1, and for the corresponding

Ci, ρ (Ci) ≥ 1 holds. Although Lemma 7 does not guarantee that for matrices TiP
(i) ∈{

T
(
1
2

)
Pj , T

(
− 1

2

)
Pj : j = 1, 2

}
, the second largest eigenvalue |λ2| < 1 or ρ (Ci) < 1,

a thorough computer check shows that it is the case, at least up to n = 20. However
|λ2|’s are approaching 1 as n increases. Hence we assume the following:

(A) If TiP
(i) ∈ W1, then ρ (Ci) < 1, and if TiP

(i) ∈ W2, then ρ (Ci) ≥ 1.
(B) There is a matrix norm ‖A‖w (induced by a vector norm ‖x‖w) such that if

TiP
(i) ∈ W1, then ‖Ci‖w < 1.
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Since the sets W1 and W2 are finite, there are numbers 0 < q < 1 ≤ Q such that for
TiP

(i) ∈ W1, ‖Ci‖w ≤ q < 1, and for TiP
(i) ∈ W2, 1 ≤ ‖Ci‖w ≤ Q. Also we can

assume that for every TiP
(i) ∈ W1 ∪W2, ‖bi‖w ≤ γ.

Theorem 20. Assume (A) and (B) are satisfied and the initial simplex S(0) is non-
degenerate. Let t1 (k) be the number of Nelder-Mead steps (operations TiP

(i)) that
belong to W1, and t2 (k) be the number of those steps (operations TiP

(i)) that belong
toW2 during the first k iterations of the Nelder-Mead method. Also assume that κ ∈ N
is such that 1

qκ−1 ≤ Q ≤ 1
qκ If for some k0 ∈ N and µ ∈ (0, 1), t1 (k) ≥ µk + κt2 (k)

holds (k ≥ k0), then the Nelder-Mead algorithm converges in the sense that for all

simplex vertices x
(k)
j → x̂ (j = 1, . . . , n+ 1) holds as k →∞ with a convergence speed

proportional to qµk. If f is continuous at x̂, then f
(
x
(k)
j

)
→ f (x̂) (j = 1, . . . , n+ 1)

holds as well.

Proof. Under the assumptions

Lk =

k∏
i=1

[
1 0T

bi Ci

]
→
[

1 0
x̃ 0

]
= L̃

with the speed ∥∥∥Lk − L̃∥∥∥
w
≤ Γqµk.

Hence

Bk → F

[
1 0
x̃ 0

]
F−1 =

[
1− eT x̃

x̃

]
eT = x̂eT = B (7.9)

with the speed
‖Bk −B‖w ≤ Γcond (F ) qµk. (7.10)

�

Corollary 21. diam
(
S(k)

)
→ 0 (k →∞) with a speed of O

(
qµk
)
.

For higher dimension, we can expect slower convergence, since q approaches 1.

8. The convergence of the Nelder-Mead method in low dimensions

Here we demonstrate the use of Theorem 20 for n = 1, 2, 3. The cases show an
increasing technical complexity and also the growth of max

{
ρ (Ci) : TiP

(i) ∈ W1

}
.

8.1. The Nelder-Mead method in one dimension. For n = 1,

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
and

W2 = {T (1)P2, T (2)P2, T (1)P1} .
Lemma 11 implies

F−1BkF =

k∏
i=1

[
1 0
bi ci

]
.
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Note that for TiP
(i) ∈ W1, |ci| = 1

2 = q, and for TiP
(i) ∈ W2, |ci| ≥ 1 and 1 ≤ |ci| ≤

2 = Q. Here the norm ‖·‖w = |·|. Hence Theorem 20 implies the convergence with
κ = 1.

8.2. The Nelder-Mead method in two dimensions. For n = 2, the six permu-
tation matrices of set P3 are

P1 = [e3, e1, e2] , P2 = [e1, e3, e2] , P3 = [e1, e2, e3] ,

P4 = [e2, e1, e3] , P5 = [e2, e3, e1] , P6 = [e3, e2, e1] .

Define

W1 =

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
∪ {TshrPj : j = 1, . . . , 6}

and

W2 = {T (1)P2, T (2)P1, T (1)P1} ∪
{
T

(
1

2

)
P3, T

(
−1

2

)
P3

}
.

The similarity transformation

F−1TPF =

[
1 0T

b C

]
(8.1)

on the elements of W1 ∪W2 yields matrices Ci for which ρ (Ci) < 1, while ‖Ci‖2 > 1.

Since all such Ci’s have diagonal Jordan forms, it would be an ideal situation if
for some norm ‖·‖w, every ‖Ci‖w would be close to ρ (Ci). Such thing is possible, if
the matrices Ci are simultaneously similar to diagonal matrices (see, e.g. [26–28]).
However, this requires that all matrices Ci must be pairwise commuting, which is
not the case here. Instead of this we look for a 2 × 2 matrix S such that ‖Ci‖w =∥∥S−1CiS∥∥2 (induced by the vector norm ‖x‖w =

∥∥S−1x∥∥
2
) is as close to ρ (Si) as

possible. So we try to solve the optimization problem

min
S

max

{∥∥S−1CiS∥∥2 : TiP
(i) ∈

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}}
. (8.2)

For the matrix

S =

[
2 − 4

5
0 8

5

]
(cond (S) ≈ 1.640 4) ,

we have the following numerical results.
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Case Operation Ci ρ (Ci) ‖Ci‖2
∥∥S−1CiS∥∥2

1 F−1T (1)P2F C1 1 1.6180 1.3765
2a F−1T (2)P1F C2 1.6861 3.1787 2.7043
2b F−1T (1)P1F C3 1 1.6180 1.3765

3a F−1T
(
1
2

)
P1F C4 0.8431 0.9056 0.8438

3b F−1T
(
1
2

)
P2F C5 0.7071 1.2892 0.8438

3c F−1T
(
1
2

)
P3F C6 1 1.2892 1.0

4a F−1T
(
− 1

2

)
P1F C7 0.7071 0.9056 0.8438

4b F−1T
(
− 1

2

)
P2F C8 0.8431 1.0399 0.8438

4c F−1T
(
− 1

2

)
P3F C9 1 1.0399 1.0

5a F−1TshrP1F C10
1
2 0.8090 0.6882

5b F−1TshrP2F C11
1
2 0.5 0.6882

5c F−1TshrP3F C12
1
2 0.5 0.5

5d F−1TshrP4F C13
1
2 0.8090 0.5

5e F−1TshrP5F C14
1
2 0.8090 0.6882

5f F−1TshrP6F C15
1
2 0.8090 0.6882

Here we can select the values q = 0.85 (q ≈ ρ (C4) , ρ (C8)), Q = 2.71 and κ = 7. Note
that for TiP

(i) ∈ W1, ‖Ci‖w ≤ q < 1, and for TiP
(i) ∈ W2, 1 ≤ ‖Ci‖w ≤ Q.

Hence Theorem 20 implies convergence with κ = 7.

The applied optimization technique (8.2) is somewhat similar to the joint approx-
imate diagonalization method (see, e.g., [29]).

8.3. The Nelder-Mead method in three dimensions. For n = 3, W1 has 28
elements, while W2 has 8. It can be checked that for TiP

(i) ∈ W1, ρ (Ci) ≤ 0.9275
and ‖Ci‖2 ≤ 1.2622. A numerical solution of the optimization problem (8.2) gives
the following matrix

S =

 −0.6012 1.5707 0.3968
1.4938 −0.0616 0.4419
−0.6500 −0.7949 0.7620

 ,
for which ‖Ci‖w =

∥∥S−1CiS∥∥2 ≤ 0.9293 (TiP
(i) ∈ W1) and ‖Ci‖w ≤ 2.7729 (TiP

(i) ∈
W2). Selecting q = 0.93 and Q = 2.78, we have κ = 15, and Theorem 20 holds for
n = 3, as well.

If we exclude the expansion steps, then we can set Q = 1.3725, resulting in κ = 5
and a faster convergence.

References

1. J. A. Nelder and R. Mead. “A simplex method for function minimization,” Com-
puter Journal, 7, (1965), pp. 308–313. doi: 10.1093/comjnl/7.4.308.

2. F. H. Walters, S. L. Morgan, L. R. Parker, and S.N. Deming. Sequential Simplex
Optimization. CRC Press LLC, 1991.

https://doi.org/10.1093/comjnl/7.4.308


132 A. Galántai

3. R. M. Lewis, V. Torczon, and M. W. Trosset. “Direct search methods: then
and now.” Journal of Computational and Applied Mathematics, 124, (2000),
pp. 191–207. doi: 10.1016/S0377-0427(00)00423-4.

4. T. G. Kolda, R. M. Lewis, and V. Torczon. “Optimization by Direct Search: New
Perspectives on Some Classical and Modern Methods.” SIAM Review, 45(3),
(2003), pp. 385–482. doi: 10.1137/S003614450242889.

5. A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free
Optimizations. MPS-SIAM Series on Optimization. SIAM, 2009. doi: 10.1137/
1.9780898718768.

6. C. Audet and W. Hare. Derivative-free and Blackbox Optimization. Springer,
2017. doi: 10.1007/978-3-319-68913-5.

7. C. T. Kelley. “Detection and remediation of stagnation in the Nelder-Mead
algorithm using an sufficient decrease condition.” SIAM Journal of Optimization,
10, (1999), pp. 33–45. doi: 10.1137/S1052623497315203.

8. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence prop-
erties of the Nelder-Mead simplex method in low dimensions.” SIAM Journal on
Optimization, 9(1), (1998), pp. 112–147. doi: 10.1137/S1052623496303470.

9. J. C. Lagarias, B. Poonen, and M. H. Wright. “Convergence of the restricted
Nelder-Mead algorithm in two dimensions.” SIAM Journal on Optimization,
22(2), (2012), pp. 501–532. doi: 10.1137/110830150.

10. M. H. Wright. “Nelder, Mead, and the other simplex method,” Documenta Math-
ematica, Extra Volume: Optimization Stories, (2012), pp. 271–2766.

11. K. I. M. McKinnon. “Convergence of the Nelder-Mead simplex method to a
nonstationary point,” SIAM Journal on Optimization, 9(1), (1998), pp. 148–
158. doi: 10.1137/S1052623496303482.

12. C. T. Kelley. Iterative Methods for Optimization. Frontiers in Applied Mathe-
matics. SIAM, 1999. doi: 10.1137/1.9781611970920.

13. P. Tseng. “Fortified-descent simplicial search method: A general approach,”
SIAM Journal on Optimization, 10(1), (1999), pp. 269–288. doi: 10.1137/

S1052623495282857.
14. L. Nazareth and P. Tseng. “Gilding the Lily: A variant for the Nelder-Mead al-

gorithm based on golden-section search,” Computational Optimization and Ap-
plications, 22, (2002), pp. 133–144. doi: 10.1023/A:1014842520519.

15. C. J. Price, I. D. Coope, and D. Byatt. “A convergent variant of the Nelder-Mead
algorithm,” Journal of Optimization Theory and Applications, 113(1), (2002),
pp. 5–19. doi: 10.1023/A:1014849028575.

16. A. Galántai. “A convergence analysis of the Nelder-Mead simplex method.” Acta
Polytechnica Hungarica, (2020). Submitted.

17. W. F. Trench. “Characterization and properties of matrices with k-involutory
symmetries,” Linear Algebra and its Applications, 429, (2008), pp. 2278–2290.
doi: 10.1016/j.laa.2008.07.002.

18. J. G. Hocking and G. S. Young. Topology. Addison–Wesley, 1961.
19. J. Matousek. Using the Borsuk-Ulam Theorem. 2nd edition. Springer, 2008. doi:

10.1007/978-3-540-76649-0.

https://doi.org/10.1016/S0377-0427(00)00423-4
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1137/S1052623497315203
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/110830150
https://doi.org/10.1137/S1052623496303482
https://doi.org/10.1137/1.9781611970920
https://doi.org/10.1137/S1052623495282857
https://doi.org/10.1137/S1052623495282857
https://doi.org/10.1023/A:1014842520519
https://doi.org/10.1023/A:1014849028575
https://doi.org/10.1016/j.laa.2008.07.002
https://doi.org/10.1007/978-3-540-76649-0


Convergence theorems for the Nelder-Mead method 133

20. J. M. Parkinson and D. Hutchinson. “An investigation into the efficiency of vari-
ants on the simplex method.” Numerical Method for Non-linear Optimization.
Ed. by F. A. Lootsma. Academic Press, 1972, pp. 115–135.

21. S. Wessing. “Proper initialization is crucial for the Nelder-Mead simplex search,”
Optimization Letters, 13, (2019), pp. 847–856. doi: 10.1007/s11590- 018-

1284-4.
22. R. A. Horn and C. R. Johnson. Matrix Analysis. 2nd edition. Cambridge Uni-

versity Press, 2013. doi: 10.1017/9781139020411.
23. A. N. Langville and C. D. Meyer. “Deeper inside PageRank,” Internet Mathemat-

ics Journal, 1(3), (2005), pp. 335–380. doi: 10.1080/15427951.2004.10129091.
24. A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science

of Search Engine Rankings. Princeton University Press, 2006.
25. D. J. Hartfiel. Nonhomogeneous Matrix Products. World Scientific, 2001. doi:

10.1142/4707.
26. L. Mirsky. An Introduction to Linear Algebra. Oxford University Press, 1955.
27. S. Friedland. Matrices: Algebra, Analysis, and Applications. World Scientific

Publishing, 2015. doi: 10.1142/9567.
28. K. C. O’Meara, J. Clark, and C. L. Vinsonhaler. Advanced Topics in Linear

Algebra: Weawing Matrix Problems through the Weyr Form. Oxford University
Press, 2011.

29. X. Shi. Blind Signal Processing: Theory and Practice. Springer, 2011. doi: 10.
1007/978-3-642-11347-5.

https://doi.org/10.1007/s11590-018-1284-4
https://doi.org/10.1007/s11590-018-1284-4
https://doi.org/10.1017/9781139020411
https://doi.org/10.1080/15427951.2004.10129091
https://doi.org/10.1142/4707
https://doi.org/10.1142/9567
https://doi.org/10.1007/978-3-642-11347-5
https://doi.org/10.1007/978-3-642-11347-5

	1. Introduction
	2. The Nelder-Mead simplex method
	3. A review of the earlier convergence results
	4. The Nelder-Mead simplex method in matrix form
	5. The concept of convergence and consequences
	6. Eigenvalues of the transformation matrices
	7. General convergence results for the Nelder-Mead method
	8. The convergence of the Nelder-Mead method in low dimensions
	8.1. The Nelder-Mead method in one dimension
	8.2. The Nelder-Mead method in two dimensions
	8.3. The Nelder-Mead method in three dimensions

	References

