
Journal of Computational and Applied Mechanics, Vol. 14, No. 1-2, (2019), pp. 5–23

DOI: 10.32973/jcam.2019.001

ANALYTICAL INVESTIGATIONS OF TEMPERATURE
EFFECTS ON CREEP STRAIN RELAXATION OF

BIOMATERIALS USING HOMOTOPY PERTURBATION AND
DIFFERENTIAL TRANSFORM METHODS

Olurotimi Adeleye, Olakanla Abdulkareem
Department of Systems Engineering, University of Lagos

Akoka, Lagos, Nigeria

rotimiadeleye1711@gmail.com, olaks1@live.com

Ahmed Yinusa and Gbeminiyi Sobamowo
Department of Mechanical Engineering, University of Lagos,

Akoka, Lagos, Nigeria

mynotebook2010@yahoo.com, mikegbeminiyi@gmail.com

[Received: February 14, 2019; Accepted: August 22, 2019]

Abstract. In this paper, the effect of temperature on relaxation of creep strain in bio-
materials is modeled and analyzed with homotopy perturbation and differential transform
methods. Polymeric biomaterials used as implants undergo both geometric and material
nonlinear deformation when subjected to different loading conditions. The present study
is concerned with the effects of temperature on the geometric nonlinear deformation of the
relaxation of creep strain in these materials. Polymeric biomaterials exhibit time dependent
response as observed in viscoelastic materials and this is represented by a one-dimensional
rheological material model with constant material parameters. This model is then extended
to capture the effects of temperature and the resulting final governing model is a nonlin-
ear differential equation which cannot be easily solved by the standard analytic techniques.
Here, two efficient special nonlinear analytic techniques, the homotopy perturbation and
differential transform methods, are applied to obtain the solution of the developed nonlinear
differential equation. The obtained analytical solutions are validated with the fourth-order
Runge-Kutta numerical method. An error analysis shows that good agreement exists be-
tween the solutions obtained with these methods. The effects of some parameters on the
model were investigated. As observed from the study, it can be shown that an increase in
thermal conductivity and viscosity resulted in an increase in resistance to deformation of
the material, while an increase in the material stiffness resulted in an increase in the rate of
deformation and relaxation.

Mathematical Subject Classification: 80A20, 80M25
Keywords: Creep, relaxation, temperature, alginate hydrogel biomaterials, homotopy per-
turbation method, differential transform method

1. Introduction

Polymers have a wide range of applications such as: automobile, aviation, electronics,
and packaging industries. But in the past few decades, polymers have been extended
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to biomedical applications. The polymers used for biomedical applications as a re-
sult of their biocompatibility, controllable biodegradation rate and their biofunctional
properties, include natural polymers, which are polysaccharides (i.e. starch, glyco-
gen) and synthetic polymers, which are: poly(glycolic acid) (PGA) and poly(hydroxyl
butyrate) (PHB) [1]. Several devices and implants have been studied and observed
throughout the medical field, and they have been developed for various applications
in the human body (Figure 1). These ranges from artificial support, such as synthetic
blood vessel, hip replacement and knee/joint implants, to applications that alleviate
the human organ functions, e.g. pacemaker. These applications also tend to vary
according to their positions and placement within the body. The areas of application
of these devices include regions with high chemical, electrical and mechanical activity,
such as when they are used in regions of high mechanical stress for the replacement of
bone. Biomaterials tend to undergo deformation over time especially when tempera-
ture around the material increases beyond the normal temperature, hence there is a
need to investigate the effects of this increase in temperature on relaxation of creep
strain in order to avoid failure of these materials before replacement.

  

 

Figure 1. Biomaterial applications: Lumbar artificial disc replace-
ment, Hip liner replacement

Nonlinear behaviors have been observed in the deformation of the biomaterials as
shown in the stress-strain curve of an alginate hydrogels [2] which are extremely de-
pendent on the strain rate. This is also noticed in tensile tests of ligaments and
tendons [3, 4]. Notable successes have been obtained in the use of nonlinear models
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for the behavior of biomaterials [5, 6]. It has also been observed that most polymeric
biomaterials exhibit viscous tendencies and these behaviors are nonlinear in nature
[5]. There are different requirements for the device and implant which are important
for the continued existence of the implants and the comfort of the user, which are
chemical, electrical, thermal and mechanical characteristics of the substrate for im-
plants and packaging for devices [7]. Stress relaxation tests have often been used as a
convenient technique for determining the rheological behaviors of several viscoelastic
materials. As a result of differences in material characteristics, several linear and
nonlinear viscoelastic models exist which represent the relationship between the time
and the stress modulus [8–10].

In the present study, a nonlinear viscoelastic model has been developed by using the
stress decomposition theory to analyze the effects of temperature in the relaxation
of creep strain in biomaterials. The model is represented by a nonlinear differen-
tial equation whose solutions cannot be easily obtained with the standard analytical
techniques. There are special analytical techniques for solving nonlinear differential
equations. Two among them have been used to obtain the solution of the devel-
oped nonlinear differential equation; the homotopy perturbation and the differential
transform methods. The homotopy perturbation method (HPM) was first proposed
by Ji-Huan He [11] for solving integral and differential equations for both linear and
nonlinear models. It is a powerful analytical method which does not require any ap-
proximation. A number of studies have been carried out to establish the strength
of HPM by comparing the results obtained to other methods such as Adomian De-
composition Method (ADM)[12]. Remarkably, these studies have concluded that the
method is more accurate and effective than ADM. Other studies carried out with the
homotopy perturbation method (HPM) include its use for the analysis of heat transfer
in longitudinal fins [13], the use of HPM and collocation method (CM) for analysis
of thermal performances of porous fin with temperature-dependent heat generation
[14] and heat transfer analysis of non-Newtonian natural convective fluid flow using
homotopy perturbation and Daftardar-Gejiji and Jafari methods [15].

Another efficient method for determining exact solution in nonlinear phenomena
is the differential transform method (DTM). The differential transform method is an
approximate analytical method for solving linear and nonlinear differential equations.
The differential transformation method (DTM) was developed by Zhou in 1986 [16,
17]. It is also used in providing solutions to both linear and nonlinear partial differ-
ential equations [18]. It has a lower computational intensity than other approximate
methods and the accuracy is higher than those methods [19, 20]. The distinguishing
features of DTM have been emphasized in quite a number of studies [21]. Comparisons
have been made between the results of DTM and results obtained with other meth-
ods such as adomian decomposition method (ADM) [22] and finite element method
(FEM) [19]. In order to achieve better results, the efficiency of DTM has been com-
bined with other methods [20]. These methods include the Laplace transform, which
was used to overcome the deficiency that emanated from unsatisfied conditions [23].
DTM was used to solve the problems of phagocyte transmigration for foreign body
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responses to subcutaneous biomaterial implantations [24] and creep strain relaxations
in biomaterials [25].

Hence, the aim of this study is to investigate the problem of temperature effects on
relaxation of creep strain in polymeric biomaterials. This problem, which is governed
by a developed nonlinear differential equation, is solved using two efficient methods;
the homotopy perturbation method and differential transform method. The fourth-
order Runge-Kutta numerical method is then applied to validate the obtained solution
from the two methods. The effects of thermal conductivity, viscosity and material
stiffness on the deformation of these biomaterials are then considered.

2. Problem description

A nonlinear material model has been adopted due to the viscous nature of the poly-
meric biomaterials. This non-linear material has elastic, inertial nonlinearities and
viscous parameters as presented by Monsia [5]. A logarithm spring force law is used in
this model which describes the unloading response of a viscoelastic material perfectly
when subjected to constant loading.

ϕ(ε) = ln

(
ε0 −

ε(t)

ε0

)
(1)

ε0 6= 0 is a material constant. As expressed by Monsia [5] the function exists if and

only if ε0 >
√
ε(t). The function ϕ(ε) has a vertical asymptote at ε(t) = ε20, which

implies ϕ(ε) is not defined for ε > ε20. Therefore the nonlinear ordinary differential
equation from Bauer’s theory [26], by superposing inertial stresses, pure elastic, and
viscosity, for a nonlinear spring force function ϕ(ε) can be rewritten in the form

aϕ(ε)

c
+
bε̇ϕ′(ε)

c
+ ε̇2ϕ′′(ε) + ε̈ϕ′(ε) =

σt
c

ε(0) = εi ε̇(0) = 0
(2)

where a and b are the viscosity and stiffness time independent coefficients respectively,
c is the time independent inertia module, ε(t) denotes the time dependent strain, εi
is the initial strain, and σt denotes the total exciting stress acting on the material.
The relationship between the deformation temperature parameter, the flow stress (i.e.
exciting stress) and strain rate can be represented by hyperbolic sine Arrhenius type
equation [27].

|ε̇| = AF (|σ|) exp[−Q/RT ] (3)

where F (σ) is a parameter function of stress, A is a material constant, ε̇ is the strain
rate, Q is the activation energy, R is the universal gas constant, and T is the absolute
temperature. The effects of the temperature and strain rate on the deformation can
be denoted by the Zener-Hollomon parameter Z [28]:

Z = |ε̇| exp[−Q/RT ] (4)

Using equation (4), and substituting the exponential law into equation (3), the strain
rate is obtained as

|ε̇| = A|σ|nexp[−Q/RT ] (5)

where n is a material constant.
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3. Solution for temperature effects on strain-rate

Utilizing equation (1) and (5) equation (2) can be rewritten as

a ln (ε0 − ε/ε0)

b
− bε̇

cε0 (ε0 − ε/ε0)
− ε̈

ε0 (ε0 − ε/ε0)
− ε̇2

ε20 (ε0 − ε/ε0)
=

=
ε̇

Ac
exp[Q/RT ] . (6)

The exponential function expQ/RT in equation (5) can be expanded as

eQ/RT ' 1 +
Q

RT
+

(Q/RT )2

2!
. . . (7)

Substituting equation (7) into (6) the evolution equation of deformation becomes

c(ε20 − ε)ε̈+ b(ε20 − ε)ε̇+ cε̇2

c(ε20 − ε)2
− ε̇

Ac
− ε̇Q

AcRT
− a ln (ε0 − ε/ε0)

c
= 0

ε(0) = εi ε̇(0) = 0

(8)

Equation (8) is the nonlinear evolution equation of deformation for material under
the effects of temperature.

4. Determining the time-deformation equation

In order to resolve (8), a change of variables is considered. By utilizing the transfor-
mation

ε0e
x = ε20 − ε, x = ln

(
ε20 − ε
ε0

)
(9)

for ε̇ and ε̈ we have ε̇ = −ẋε0ex and ε̈ = −ẍε0ex − ẋ2ε0ex. After substituting them
into (8) the nonlinear evolution equation of deformation has the form

e−2x(bε0e
x(−ẋε0ex) + c(−ẋε0ex)

2
+ cε0e

x(−ẍε0ex − ẋ2ε0ex))

c(ε20 − ε)2
−

− ax

c
+
ẋε0e

x

Ac
+
ẋε0e

xQ

AcRT
= 0 (10)

which can be simplified further to

−bẋ
c

+ ẋ2 − ẍ− ẋ2 − ax

c
+
ẋε0e

x

Ac
(1 +

Q

RT
) = 0 . (11)

Introducing the notations b/c = α, a/c = β and 1/(Ac) = γ equation (11) becomes

ẍ+ αẋ+ βx− γẋε0ex(1 +
Q

RT
) = 0 . (12)

Here α is the viscosity coefficient, β is the stiffness coefficient and γ is the thermal
coefficients, respectively.

Substituting the first four terms of the series ex ' 1 + x+ x2

2! + x3

3! + . . . into (12)
yields

ẍ+ αẋ+ βx− γẋε0(1 + x+
x2

3
+
x3

6
)(1 +

Q

RT
) = 0 . (13)
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Equation (13) can also be expanded and expressed as

ẍ+ αẋ+ βx− γẋε0 −
Qγẋε0
RT

− xγẋε0 −
Qxγẋε0
RT

− 1

3
x2γẋε0−

− Qx2γẋε0
3RT

− 1

6
x3γẋε0 −

Qx3γẋε0
6RT

= 0 . (14)

5. Method of solution 1

5.1. Homotopy perturbation method. Equation (13) is a nonlinear differential
equation which is can be solved using HPM. To apply HPM consider the equation

L(u) +N(u) = f(r) r ∈ Ω (15)

associated with the boundary conditions

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ . (16)

Here u(r) is the unknown, L(u) and N(u) are linear and nonlinear operators respec-
tively, f(r) is a known analytical function. Γ is the boundary of the domain Ω with
outward normal n.

The homotopy perturbation method proposed by Ji-Huan-He [11] can be expressed
as

H(u, p) = (1− p)[L(u)− L(u0)] + p[L(u) +N(u)− f(r)] = 0 (17)

where p is an embedding parameter and uo is an initial approximation of u. The
solution is sought in the form

u = u0 + pu1 + p2u2 + p3u3 + p4u4 + p5u5 . . . (18)

In our case t corresponds to r, x to u and the left side of (13) corresponds to L(u) +
N(u) while f(t) = 0. Hence

H(x, p) = (1− p)
(
d2x

dt2
− d2x0

dt2

)
+

+ p

(
d2x

dt2
+ α

dx

dt
+ βx− γε0

dx

dt
(1 + x+

x2

3
+
x3

6
)(1 +

Q

RT
)

)
= 0 (19)

where

x ' x0 + px1 + p2x2 + p3x3 + p4x4 + p5x5 =

6∑
`=0

p`x` . (20)

Consequently

H(x, p) = (1− p) d
2

dt2

6∑
`=0

p`x` + p

{
d2

dt2

6∑
`=0

p`x` + α
d

dt

6∑
`=0

p`x` + β

6∑
`=0

p`x`−

−γε0

(
d

dt

6∑
`=0

p`x`

)1 +

6∑
`=0

p`x` +
1

3

(
6∑

`=0

p`x`

)2

+
1

6

(
6∑

`=0

p`x`

)3
 (1 +

Q

RT
)

 =

= 0 . (21)
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By making the coefficients of p` (` = 0, 1, . . . , 5) equal to zero we can obtain the
solutions for x`. Expanding and resolving equation (21) the coefficients of p` are as
follows:

p0;
d2x0
dt2

= 0, (22)

p1; βx0 + α
dx0
dt
− (1 +

Q

RT
)γε0

[
dx0
dt

+ x0
dx0
dt

+
1

2
x20x1

dx0
dt

+
1

6
x30
dx0
dt

]
+

+
d2x0
dt2

+
d2x1
dt2

= 0, (23)

p2; βx1 + α
dx1
dt

+
d2x2
dt2

− (1 +
Q

RT
)γε0

(
x1
dx0
dt

+ x0x1
dx0
dt

+
1

2
x20x1

dx0
dt

+

dx1
dt

+ x0
dx1
dt

+
1

2
x20
dx1
dt

+
1

6
x30
dx1
dt

)
= 0, (24)

p3; βx2+α
dx2
dt

+
d2x3
dt2

+α
dx3
dt
−(1+

Q

RT
)γε0

(
1

2
x21
dx0
dt

+
1

2
x0x

2
1

dx0
dt

+ x2
dx0
dt

+

+ x0x2
dx0
dt

+
1

2
x20x2

dx0
dt

+ x1
dx1
dt

+ x0x1
dx1
dt

+
1

2
x20x1

dx1
dt

+

+
dx2
dt

+ x0
dx2
dt

+
1

2
x20
dx2
dt

+
1

6
x30
dx2
dt

)
= 0, (25)

p4; βx3 +
d2x4
dt2

− (1 +
Q

RT
)γε0

(
1

6
x31
dx0
dt

+ x1x2
dx0
dt

+ x0x1x2
dx0
dt

+

+ x3
dx0
dt

+ x0x3
dx0
dt

+
1

2
x20x3

dx0
dt

+
1

2
x21
dx1
dt

+
1

2
x0x

2
1

dx1
dt

+

+ x2
dx1
dt

+ x0x2
dx1
dt

+
1

2
x20x2

dx1
dt

+ x1
dx2
dt

+ x0x1
dx2
dt

+

+
1

2
x20x1

dx2
dt

+
dx3
dt

+ x0
dx3
dt

+
1

2
x20
d2x3
dt2

+
1

6
x30
dx3
dt

)
= 0. (26)

The boundary conditions associated with the solution are as follows:

x0(0) = x1(0) = . . . = x4(0) = 0. (27)

Making use of equations (22)-(26) and the initial conditions (27) the following solu-
tions are obtained for x` (` = 1, . . . , 4):

x0 = lg

(
ε0 −

εi
ε0

)
, (28)

x1 = −t2βx0/2, (29)

x2 =
1

72RT
t3βx0

[
3RT (4α+ tβ)− 2γε0(Q+RT )

(
6 + 6x0 + 3x20 + x30

)]
, (30)

x3 =
1

4320R2T 2
t4βx0×
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6R2t2T 2β2 + 5

[
−6RTα+ (Q+RT )γ

(
6 + 6x0 + 3x0

2 + x0
3
)
ε0
]2

+

+ 6RtTβ
[
12RTα− (Q+RT )γ

(
12 + 30x0 + 24x0

2 + 11x0
3
)
ε0
]}
, (31)

x4 =
t5βx0
362880

{
9R3t3T 3β3 + 14

(
6RTα− (Q+RT )γε0

(
6 + 6x0 + 3x20 + x30

))3
+

+ 36R2t2T 2β2
[
6RTα− (Q+RT )γε0

(
6 + 42x0 + 69x20 + 49x30

)]
+

+ 42RtTβ
[
36R2T 2α2 − 6RT (Q+RT )αγε0

(
12 + 38x0 + 32x20 + 15x30

)
+

+ (Q+RT )2γ2ε20
(
36 + 228x0 + 384x20 + 360x30 + 203x40 + 71x50 + 14x60

)]}
(32)

With x0, x1, x3, x4 and x5 – x5 is not presented here – the solution for x is

x(t) '
5∑

`=0

x`(t) (33)

It follows on the basis of the strain equation (8) that

ε(t) ' ε20 − ε0ex . (34)

If ε0 = 1 we have

ε(t) ' 1− ex (35)

or

ε(t) ' 1− e
∑5

`=0 x`(t) . (36)

6. Method of solution 2

6.1. Differential transforms method. The second method applied to solving the
nonlinear differential equation (13) is called DTM. The fundamental definitions and
the operational characteristics of the method developed by Zhou in 1986 [16, 17] are
given below.

Let u(t) be an analytic function differentiable continuously in the domain T . Then
u(t) is differentiable continuously with respect to time t:

dpu(t)

dtp
= ϕ(t, p) ∀ t ∈ T (37)

For t = ti it holds that ϕ(t, k) = ϕ(ti, k), where k is a non-negative integer. Equation
(37) can, therefore, be rewritten as

U(k) = ϕ(ti, k) =
dku(t)

dtk

∣∣∣∣
t=ti

(38)

where U(k) is called the spectrum of u(t) at t = ti. Using Taylor series u(t) can be
expressed as

u(t) =

∞∑
k=0

(t− ti)k

k!
U(k) (39)
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Equation (39) is called the inverse of U(k). The differential transform of u(t) is defined
by the equation

U(k) =
Hk

k!

dku(t)

dtk

∣∣∣∣
t=0

k = 0, 1, 2, . . . (40a)

in which U(k) represents the transformed function and u(t) is the original function.
The function U(k) is confined in the interval t ∈ [0, H] where H is a given constant
number. The differential inverse transformation of U(k) is defined as

u(t) =

∞∑
k=0

(
t

H

)k

U(k). (40b)

6.2. The operational properties of the differential transformation method.
Let u(t) and v(t) be the functions of t. The transformed functions are denoted by
U(k) and V (k). It can be shown by using the fundamental mathematical operations
of DTM that for instance

i. If z(t) =
du(t)

dt
then Z(k) = (k − 1) U(k + 1);

ii. If z(t) = u(t)v(t) then Z(t) =
k∑

r=0
U(r)V (k − r) r = 0, 1, 2, . . . ;

iii. If z(t) = um(t) then Z(t) =
k∑

r=0
Um−1(r)U(k− r) m = 1, 2, 3, . . . .

6.3. DTM Solution Procedures. Hence, the differential transformation of equa-
tions (8) and (13) yields the following recursive equation:

xk+2 = − 1

(k + 1) (k + 2)

{
α (k + 1)xk+1 + βxk −

. . .

− yεo
(

1 +
Q

RT

)[
(k + 1)xk+1 +

k∑
l=0

(l + 1)xl+1xk−l+

+
1

3

k∑
p=0

(
p∑

l=0

(l + 1)xl+1xp−lxk−p

)
+

+
1

6

k∑
m=0

(
m∑

p=0

(
p∑

l=0

(l + 1)xl+1xp−lxm−pxk−m

))]}
(41)

The initial conditions are of the form:

x0 = ln

(
ε2o − ε
εo

)
x1 = 0.

Assuming that k = 2, 3, 4, 5 we have solved equation (41) for x2, x3, x4 and x5 – here
the results are presented for x2, x3 and x4 only:

x2 = −βx0/2, (42)

x3 =
1

6
αβx0 +

1

6
yεoβ

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

d6
x40

)
, (43)
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x4 = −1

4
α

[
1

6
αβx0 +

1

6
yεoβ

(
1− Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

)]
+

+
1

24
β2x0 +

1

12
yεo

(
1 +

Q

RT

)
− 1

2
yεoβ

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

)
+

+ 3

(
1

6
αβx0 −

1

6
yεoβx0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
+

+

(
1

6
αβx0 −

1

6
yεoβx

2
0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
+

+
1

2

(
1

6
αβx0 −

1

6
yεoβx

3
0

(
1 +

Q

RT

)(
x0 + x20 +

1

3
x30 +

1

6
x40

))
(44)

With x` the solution is of the form

x (t) '
5∑

`=0

x`t
` (45)

while the strain function is given by

ε (t) = ε2o − εoex(t) (46)

from where by substituting (45) we have

ε (t) ' ε2o − εoe
5∑̀
=0

x`t
`

. (47)

7. Results and discussion

The results obtained by applying the homotopy perturbation and differential trans-
form methods to the analysis of the problem of temperature effects on relaxation of
creep strain in polymeric biomaterials are presented in Table 1. In order to validate
these results, the fourth order Runge-Kutta numerical method is applied to solve the
same problem. The results are compared and shown in Table 1. This comparison
is also shown in Figures 2a and b. For Figure 2a, the HPM solution is obtained by
using four iterative terms (n = 4) while for Figure 2b the number of iterative terms
is increased to twelve (n = 12). This shows that the higher the number of terms in
the HPM model solution, the more accurate the solution will be. An error analysis
shows that minimal error exists in the solutions obtained with the methods DTM and
HPM.

The general description of how the material responds with an initial strain of 0.9
is also shown in Figure 2. The biomaterial does not exhibit an instant response
to loading, but rather undergoes relaxation before it begins to respond to loading.
In addition, as the temperature increases, the relaxation time increases, and the
deformation increases proportionally at different temperatures.
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Table 1. Comparison of HPM, DTM and numerical method results

Results obtained by the use of homotopy perturbation method if
εi =0.9, ε0 =1, α=2, β=0.5, γ=0.9, Q=5000J/mol, R=8.314J/molK, T =300K

HPM1 HPM2 DTM Numerical Error Error
Time (n = 4) (n = 12) Solution Solution Difference Difference
t Solution Solution (RK4) DTM-RK4 HPM2-RK4

Strain ε(t)

0.00 0.9000000 0.9000000 0.9000000 0.9000000 0.00000000 0.00000000

0.10 0.8995268 0.8995267 0.8995267 0.8995267 0.00000000 0.00000000

0.20 0.8984212 0.8984150 0.8984150 0.8984150 0.00000000 0.00000000

0.30 0.8970945 0.8970225 0.8970225 0.8970225 0.00000000 0.00000000

0.40 0.8961919 0.8957820 0.8957820 0.8957820 0.00000000 0.00000000

0.50 0.8970340 0.8954685 0.8954685 0.8954685 0.00000000 0.00000000

0.60 0.9019594 0.8974244 0.8974244 0.8974244 0.00000000 0.00000000

0.70 0.9139977 0.9035709 0.9035709 0.9035709 0.00000000 0.00000000

0.80 0.9348554 0.9158586 0.9158586 0.9158586 0.00000000 0.00000000

0.90 0.9612801 0.9348325 0.9348325 0.9348325 0.00000000 0.00000000

1.00 0.9842194 0.9578233 0.9578233 0.9578233 0.00000000 0.00000000

1.10 0.9963269 0.9789104 0.9789104 0.9789104 0.00000000 0.00000000

1.20 0.9996162 0.9926209 0.9926209 0.9926209 0.00000000 0.00000000

1.30 0.9999868 0.9984012 0.9984012 0.9984012 0.00000000 0.00000000

1.40 0.9999999 0.9998149 0.9998149 0.9998149 0.00000000 0.00000000

1.50 1.0000000 0.9999904 0.9999904 0.9999904 0.00000000 0.00000000

1.60 1.0000000 0.9999998 0.9999998 0.9999998 0.00000000 0.00000000

1.70 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

1.80 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

1.90 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

2.00 1.0000000 1.0000000 1.0000000 1.0000000 0.00000000 0.00000000

Thermal coefficient at varying temperatures. The response of the biomaterial to vary-
ing thermal coefficients is shown in Figure 2. It is observed that an increase in the
thermal coefficient resulted in a decrease in the deformation and an increase in the
rate of relaxation in the material. It is also observed that the material shows a high
resistance to deformation at high thermal coefficient.

The effect of four thermal conductivity coefficients γ at different temperatures of
the material model is shown in Figure 4. The differences among the responses at
these different temperatures are minimal. Material exhibits longer relaxation before
it begins to deform at lower thermal conductivity coefficients than at higher thermal
conductivity coefficients. There is sharp increase in deformation at higher thermal
conductivity coefficients.
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(a)

 

(b)

Figure 2. Comparison of the numerical results obtained by using
the three methods; DTM, HPM and the fourth order Runge-Kutta
method (εi = 0.9, ε0 = 1, α = 2, β = 0.5, γ = 0.9, Q = 5000J/mol,
R=8.314J/mol K, T =300K); (a) n = 4, (b) n = 12
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(a)

 

(b)

 

(c)

 

(d)

Figure 3. Variation of thermal coefficients at different temperatures
(εi =0.9, ε0 =1, Q=50000J/mol, R=8.314J/mol K, α=0.5, β=0.5,
(a) T =300K, (b) T =305K, (c) T =310K, (d) T =315K)
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(a)

 

(b)

 

(c)

 

(d)

Figure 4. Temperature variation with thermal conductivity (εi =0.9,
ε0 =1, Q=50000J/mol, R=8.314J/mol K, α=2, β=0.5, (a) γ=0.5,
(b) γ=2, (c) γ=4, (d) γ=6)
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(a)

 

(b)

 

(c)

 

(d)

Figure 5. The effects of the viscosity coefficient on the developed
model (εi = 0.9, ε0 = 1, Q= 50000J/mol, R= 8.314J/mol K, α= 2,
β = 0.5, γ = 0.5, (a) T = 300K, (b) T = 305K, (c) T = 310K, (d)
T =315K)
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(c)

 

(d)

Figure 6. The effects of the stiffness coefficient on the developed
model (εi = 0.9, ε0 = 1, Q= 50000J/mol, R= 8.314J/molK, α= 2,
β = 0.5, γ = 0.5, (a) T = 300K, (b) T = 305K, (c) T = 310K, (d)
T =315K)
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Viscosity coefficient at varying temperatures. Figure 5 show the response of a
material at a varying viscosity coefficient α of 0.5, 2, 4 and 6. As the viscosity
coefficient increases, the difference in the deformation path between the high and low
temperature decreases. It is also observed that at a relatively low viscosity, material
tends to deform more compared to when it is high, i.e. there is an increase in resistance
to deformation as the viscosity coefficient increases. Similarly, at low viscosity, the
relaxation period takes a longer time before the material begins to deform.

Stiffness coefficient at varying temperatures. The response of the material to dif-
ferent stiffness coefficients β is shown in Figure 6. It is observed that the higher the
stiffness coefficient, the shorter time the material takes to deform. The relaxation
time was shorter for a material with higher stiffness and lower temperature, while
materials with lower stiffness as shown in Figure 6a tend to show higher resistance to
deformation than those with a lower stiffness coefficient.

8. Conclusion

In this study, the analytical solution of the effects of temperature on relaxation of
creep strain in polymeric biomaterials governed by a developed nonlinear differential
equation has been presented. The developed model was solved using two efficient
methods; the homotopy perturbation method and differential transform method. The
obtained results were validated with the fourth-order Runge-Kutta numerical method
and the error analysis showed good agreement among the results. The effects of
thermal conductivity, viscosity and material stiffness on the deformation of these
biomaterials were investigated. As the thermal conductivity and viscosity of the
material increase, its resistance to deformation increases, while an increase in the
material stiffness resulted in an increase in the rate of deformation and relaxation.
The analytical solution developed in this work provides a better understanding of the
relationship between the physical quantities of the problem investigated. The results
obtained in this theoretical investigation will assist in the analysis of the temperature
effects on relaxation of creep strain in biomaterials and in the handling of various
parameters in the developed model.
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