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Abstract. Upper and lower bounds for the heat flow in nonhomogeneous circular bars
of variable diameter are presented. The thermal properties may depend on the axial and
radial coordinates and the boundary conditions of the considered heat conduction problem
does not depend on the polar angle. The analysed stead-state heat conduction problem is
axisymmetric. Equations of Fourier’s theory is used to formulate the thermal boundary value
problem of heat conduction in nonhomogeneous circular bars with nonuniform cross-section.
The computation of the heat flow is based on the concept of overall heat transfer coefficient.
The derivation of bounding formulae for the overall heat transfer coefficient is based on a
minimum principle and the Schwarz’s inequality. Six examples illustrate the applications of
the derived upper and lower bound formulae how one can use to estimate the heat flow in a
nonhomogeneous circular bar with nonuniform cross section.
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1. Introduction

The overall heat transfer coefficient in the steady-state heat conduction problem an
important structural property of a solid body in which the heat is flowing between its
two separated parts of its boundary surfaces. The exact (strict) value of the overall
heat transfer coefficient is known only with bodies of very simple shapes, wherefore
such principles and methods are of great significance with the application of which
lower and upper bounds may be created to the numerical value of the overall heat
transfer coefficient. From the higher temperature boundary part of body to the lower
temperature boundary part of the body the process of heat flowing is characterized
by the overall heat transfer coefficient according to the next equation Q = Λ(T1−T2),
T1 > T2 here Q is the heat flow in unit time, T1 and T2 are given temperature and
Λ is the overall heat transfer coefficient. There are several papers which formulates
upper and lower bounds for the heat flow in the case of steady-state heat conduction
problems. In paper [1] the author examines the problem of planar heat conduction
through an irregularly shaped body found as an inclusion in a perfectly insulating wall
between two half-planes maintained at different temperatures. He obtains upper and
lower bounds for the heat flow in terms of the temperature difference, conductivity
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and some global properties of the body. The presented method is based on the
Schwarz’s inequality. Paper [2] deals with the problem of determining the temperature
distribution for steady-state heat conduction in a long cylindrical pipe. The author
gives upper and lower bounds of the heat flow for the case of constant parameters
describing the conductivity and density. In paper [3] a heat conduction problem in
hollow three-dimensional body is considered and the author derives some inequality
relations by the application of which lower and upper bounds may be obtained for the
numerical value of the overall heat transfer coefficient. A linear problem of the steady-
state heat conduction is studied in isotropic inhomogeneous hollow rigid bodies in [4].
By the application of the Schwarz’s inequality upper and lower bounds are derived for
the overall heat conduction coefficient. Some mean value formula and bounds on the
thermal energy for the steady-state heat conduction in anisotropic three-dimensional
body are proven in [5]. The upper and lower bounds for the heat flux are derived
by the application of Schwarz’s inequality, avoiding the application of the minimum
principles of potential thermal energy and complementary heat flux energy which were
developed by Wojnar [6].

2. Governing equations

Let us consider a bar in the form of body of rotation. In cylindrical coordinates
(r, φ, z) the domain under consideration is z1 ≤ z ≤ z2, 0 ≤ r ≤ R(z), 0 ≤ φ ≤ 2π and
the axis of the bar is taken as the axis z (Figure 1). This body of rotation occupies
the region B = B ∪ ∂B, where the inner points of B is denoted by B and the set of
boundary points of B is denoted by ∂B. ∂B is divided into three parts as ∂B1 = A1,
∂B2 = A2 and ∂B3. It is obvious that ∂B = ∂B2 ∪ ∂B2 ∪ ∂B3.

The boundary surface ∂Bi (i = 1, 2, 3) is defined as

∂B3 =
{
(r, φ, z)

∣∣∣r = R(z), z1 ≤ z ≤ z2, 0 ≤ φ ≤ 2π
}
,

∂Bi =
{
(r, φ, z)

∣∣∣z = zi, 0 ≤ r ≤ Ri, 0 ≤ φ ≤ 2π
}

(i = 1, 2),

R1 = R(z1), R2 = R(z2).

The temperature in the body is denoted by T = T (r, φ, z) (r, φ, z) ∈ B and k =
k(r, z) (r, φ, z) ∈ B denotes the thermal conductivity of the material of nonuniform
circular bar. The local heat transfer coefficient at cross section zi (i = 1, 2) is denoted
by hi = hi(r, zi) (r, φ, z) ∈ ∂Bi (i = 1, 2).

There is no distributed heat source in B and no heat flux across the boundary
surface segment ∂B3. The boundary surface segment ∂Bi is subjected to convective
heat exchange and “fluid” temperature Ti (i = 1, 2). It is assumed that T1 and T2

are constants and T1 > T2.

By the use of Fourier’s theory of heat conduction [7–9] it can be shown, that under
the conditions prescribed above the temperature field of nonuniform circular bar can
be obtained as

T (r, z) = (T1 − T2)θ + T2, (2.1)
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Figure 1. The body of rotation.

where the function θ = θ(r, z) is the solution to the next boundary value problem
(Figure 1)

∇ · (k∇θ) = 0 in B, (2.2)

n · ∇θ = 0 on ∂B3, (2.3)

kn · ∇θ + h1(θ − 1) = 0 on ∂B1, (2.4)

kn · ∇θ + h2θ = 0 on ∂B2. (2.5)

Here, the symbol ∇ = ∂
∂rer+

1
r

∂
∂φeφ+

∂
∂zez is the Hamilton-type vector differential

operator in cylindrical coordinate frame, n is the unit outward normal vector on ∂B,
dot between two vectors denotes their scalar product and er = er(φ) is the unit vector
in radial direction, ez is the unit vector in axial direction and eφ(φ) = ez × er(φ).
The cross between two vectors denotes their vectorial product.

We note that, the boundary value problem relating to the function θ = θ(r, z) is
“axisymmetric” and on the axis of revolution the next “boundary condition” follows
from the symmetry

∂θ

∂r
= 0 r = 0, 0 ≤ z ≤ L. (2.6)

From the cross section A1 through the circular bar of variable diameter to the cross
section A2 heat flows. This process is characterized by the equation

Q = Λ(T1 − T2), T1 > T2. (2.7)

In equation (2.7) Λ is a constant, which is called the overall heat transfer coefficient
and its value depends on the shape and the thermal properties of the nonuniform
circular bar, Q denotes the heat conducted within unit of time through the end
sections. Here, we note in the book by Carslaw and Jaeger [8] the thermal resistance
ρ is defined by the next equation ρΛ = 1. It is evident [7–9]

Q =

∫
A1

kn · ∇TdA = −
∫
A2

kn · ∇TdA = (T1 − T2)

∫
A1

kn · ∇θdA =
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(T2 − T1)

∫
A2

kn · ∇θdA. (2.8)

Starting from the equation

∇ · (θk∇θ) = k |∇θ|2 + θ∇ · (k∇θ) (2.9)

by integration and by the application of the Gaussian theorem of integral transform
and equations (2.2), (2.3), (2.4), (2.5) we obtain

0 =

∫
B

∇ · (kθ∇θ)dB −
∫
B

k |∇θ|2 dB =

∫
∂B

θkn · ∇θd∂B −
∫
B

k |∇θ|2 dB =

∫
A1

θkn · ∇θdA+

∫
A2

θkn · ∇θdA−
∫
B

k |∇θ|2 dB =

−


∫
B

k |∇θ|2 dB +

∫
A1

k2

h1
(n · ∇θ)2dA+

∫
A2

k2

h2
(n · ∇θ)2dA

+

∫
A1

kn · ∇θdA.

(2.10)

The combination of the formulae (2.7) and (2.8) with equation (2.10) gives

Λ =

∫
B

k |∇θ|2 dB +

2∑
i=1

∫
Ai

k2

hi
(n · ∇θ)2dA. (2.11)

From equation (2.11) it follows that, Λ > 0.

The primary purpose of this paper is to derive such inequality relations by the
applications of which lower and upper bounds may be performed for Λ. The exact
value of the overall heat transfer coefficient Λ might be given only with the knowledge
of the solution to the boundary value problem defined by equations (2.2), (2.3), (2.4)
and (2.5). The solution of the explicit form of the boundary value problem formulated
in equations (2.2), (2.3), (2.4) and (2.5) is known only for bodies B of very simple
shapes [7–9], therefore such principles and methods are of great significance with the
application of which lower and upper bounds may be produced to the numerical value
of Λ. On the other hand, some of the bounding formulae of Λ may be the theoretical
framework for the different types of finite element formulation of the heat conduction
problem described by the equations (2.2), (2.3), (2.4) and (2.5).

3. Upper bound

We introduce the symbol E[ϕ] by the definition

E[ϕ] =

∫
B

k |∇ϕ|2 dB +

∫
A1

h1(ϕ− 1)2dA+

∫
A2

h2ϕ
2dA, (3.1)

where ϕ = ϕ(r, φ, z) is such a function for which the integrals appear in (3.1) exist
and they have finite values.
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Theorem 1. Let F = F (r, z) be continuous in the domain M and in the domain M
at least once continuously differentiable, otherwise an arbitrary function of r and z.
The inequality relations

Λ ≤ E[F ] (3.2)

is valid.

The domain M = M ∪ ∂M is the meridian section of the body of rotation B. This
means that M = {(r, z) | 0 ≤ r ≤ R(z), z1 ≤ z ≤ z2} and ∂M = ∂M1 ∪ ∂M2 ∪ ∂M3 ∪
∂M4, where ∂M1 = {(r, z) | z = z1, 0 ≤ r ≤ R1}, ∂M2 = {(r, z) | z = z2, 0 ≤ r ≤ R2},
∂M3 = {(r, z) | r = R(z), z1 ≤ z ≤ z2} and ∂M4 = {(r, z) | r = 0, z1 ≤ z ≤ z2}.
Proof. Consider the function

η(r, z) = θ(r, z)− F (r, z). (3.3)

Using the expressions of E[F ] and E[ϕ] we obtain

E[F ] = E[θ] +

∫
B

k|∇η|2dB +
2∑

i=1

∫
Ai

hiη
2dA+ 2


∫
B

k∇θ · ∇ηdB+

∫
A1

h1(θ − 1)ηdA+

∫
A2

h2θηdA

 . (3.4)

By a lengthy, but elementary calculations which involve the application of the deriva-
tion of product function and Gaussian theorem of integral transformation the following
relationship may be deduced∫

B

k∇θ · ∇ηdB +

∫
A1

h1(θ − 1)ηdA+

∫
A2

h2θηdA =

∫
∂B

kηn · ∇θd∂B −
∫
B

η∇ · (k∇θ)dB +

∫
A1

h(θ − 1)dA+

∫
A2

h2θηdA =

∫
A1

η [kn · ∇θ + h1(θ − 1)] dA+

∫
A2

η [kn · ∇θ + h2θ] dA = 0. (3.5)

The combination of equation (3.4) with equation (3.5) leads to inequality relation
(3.2). From the demonstration it follows that equality in (3.2) can be reached only if
F = θ.

4. Lower bound

Theorem 2. In B the continuous vector field b = b(r, φ, z) differing from the
identically zero vector should satisfy the differential equation

∇ · b = 0 in B (4.1)

and the boundary condition

n · b = 0 on ∂B3. (4.2)
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The following inequality relation is valid

Λ ≥

(∫
A1

b · ndA

)2

∫
B

b2

k dB +
∫
A1

(b·n)2

h1
dA+

∫
A2

(b·n)2

h2
dA

. (4.3)

Proof. Let us have

D(e,f) =

∫
B

e · f
k

dB +
2∑

i=1

∫
Ai

(e · n)(f · n)
hi

dA, (4.4)

where e = e(r, φ, z) and f = f(r, φ, z) defined in B are two arbitrary continuous
vector fields. On the basis of the Schwarz’s inequality it may be written that

D(k∇θ, k∇θ)D(b, b) ≥ (D(k∇θ, b))
2
. (4.5)

It can easily be understood that

Λ = D(k∇θ, k∇θ). (4.6)

The relationship

D(k∇θ, b) =

∫
B

∇θ · bdB +

∫
A1

k

h1
(n · ∇θ)(n · b)dA+

∫
A2

k

h2
(n · ∇θ)(n · b)dA =

∫
∂B

θn · bd∂B +

∫
A1

k

h1
(n · ∇θ)(n · b)dA+

∫
A2

k

h2
(n · ∇θ)(n · b)dA−

∫
B

θ∇ · bdB =

∫
A1

n · b
(
θ +

k

h1
n · ∇θ

)
dA+

∫
A2

n · b
(
θ +

k

h2
n · ∇θ

)
dA =

∫
A1

n · bdA (4.7)

further, inequality (4.5) and formula (4.6) by their combination directly yield the
lower bound formula (4.3) to be proven. In deriving the relationship (4.7) the rule of
differentiation of the product function as well as the Gaussian integration theorem,
equations (2.4), (2.5), (4.1) and (4.2) have been applied.

By some discussion it may be pointed out that in relation (4.3) the sign of equality
is valid only in the case when

b = αk∇θ, (4.8)

where α differs from zero, however, otherwise being an arbitrary real constant.
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5. Examples

5.1. Example for upper bound. We assume

F (r, z) = C1

z∫
z1

dζ

K(ζ)
+ C2, (5.1)

where

C1 =
1

I + 1
H1

+ 1
H2

, C2 =
1 + 1

H2

I + 1
H1

+ 1
H2

, (5.2)

K(z) =

R(z)∫
0

rk(r, z) dr, I =

z2∫
z1

dz

K(z)
, Hi =

Ri∫
0

rhi(r)dr (i = 1, 2). (5.3)

Inserting the function given by formula (5.1) into inequality relation (3.2) we obtain

Λ ≤ ΛU = 2πC1 =
2π

I + 1
H1

+ 1
H2

. (5.4)

5.2. Example for lower bound. In order to get the lower bound for Λ, we use in
(4.3) the next divergence free vector field

b =
1

R2

[
r

R

dR

dz
er(φ) + ez

]
. (5.5)

This vector field satisfies boundary condition (4.2) and the condition

b · er = 0 r = 0, z1 ≤ z ≤ z2. (5.6)

We introduce the following function and constants

M1(z) =

R(z)∫
0

r3

k(r, z)
dr, M2(z) =

R(z)∫
0

r

k(r, z)
dr, (5.7)

N1 =

z2∫
z1

M1

(R(z))6

(
dR

dz

)2

dz, N2 =

z2∫
z1

M2

(R(z))4
dz, N = N1 +N2, (5.8)

1

Si
=

1

R4
i

Ri∫
0

rdr

hi(r)
(i = 1, 2). (5.9)

Putting the vector field given by the formula (5.7) into the inequality relation (4.3)
we get

Λ ≥ ΛL =
π

2(N + 1
S1

+ 1
S2

)
. (5.10)
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5.3. Example for circular bar with uniform cross section. Let us apply for-
mulae (5.4) and (5.10) to the circular cylindrical bar. We assume that the thermal
conductivity depends only on the axial coordinate z and h1, h2 are constants. In this
case the upper and lower bounds formulated in (5.4) and (5.10) give the same result
which is the exact value of Λ. The computations yield the next value of Λ:

Λ =
c2π

L∫
0

dz
k(z) +

1
h1

+ 1
h2

z1 = 0, z2 = L. (5.11)

In equation (5.11) the constant c is the radius of the considered circular bar, that is
R(z) = c, 0 ≤ z ≤ L.

5.4. Example for homogeneous circular cone. In this section, we deal with the
homogeneous conical bars. Setting R(z) = a + bz, where a and b are constants and
z1 = 0, z2 = L. We find, from (5.4) and (5.10)

ΛU =
π

L
ka(a+bL) +

1
h1a2 + 1

h2(a+bL)2

, ΛL =
π

(1+ b2

2 )L

ka(a+bL) +
1

h1a2 + 1
h2(a+bL)2

. (5.12)

In equation (5.12) it has been assumed that k, h1 and h2 are constants.

In the case hi → ∞ at the end cross section Ai, the Robin type boundary condition
will be replaced by Dirichlet type boundary condition, this means that, the cross
section Ai is subjected to constant temperature Ti (i = 1, 2).

Putting in formula (5.12) h1, h2 → ∞ we obtain

ΛU

ΛL
= 1 +

b2

2
(5.13)

which shows that, there is a significant difference between ΛU and ΛL for sufficiently
large values of b.

Upper and lower bounds for Λ may be improved by means of Rayleigh-Ritz method
[10] and finite element method [11] which are based on the minimising (3.2) with
respect to F = F (r, z) and maximizing (4.3) with respect to b = b(r, φ, z).

5.5. Example for nonhomogeneous circular cylindrical bar of uniform cross
section. Let c be the radius of boundary circle of the considered bar. The material
properties are functions of the radial coordinate r. It is assumed that

k(r) = k0r, hi(r) = h0ir, (i = 1, 2), z1 = 0, z2 = L. (5.14)

Let Λ0 be defined as

Λ0 =
c3π

L
k0

+ 1
h01

+ 1
h02

. (5.15)

From the bounding formulae (5.4) and (5.10) the next result can be derived

λL =
ΛL

Λ0
=

1

2
≤ λ =

Λ

Λ0
≤ λU =

ΛU

Λ0
=

2

3
. (5.16)
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Denote the mean value of λL and λU λ = 0.5(λU + λL). It is evident that∣∣λ− λ
∣∣ ≤ 1

12
. (5.17)

5.6. Example for functionally graded circular cone. The points of the meridian
section of the circular cone are given by the next prescription

M =
{
(r, z)

∣∣∣ 0 ≤ r ≤ az, z1 ≤ z ≤ z2

}
and ∂M = ∂M1 ∪ ∂M2 ∪ ∂M3 ∪ ∂M4,

∂M1 =
{
(r, z)

∣∣∣ z = z1, 0 ≤ r ≤ az1

}
, ∂M2 =

{
(r, z)

∣∣∣ z = z2, 0 ≤ r ≤ az2

}
,

∂M3 =
{
(r, z)

∣∣∣ r = az, z1 ≤ z ≤ z2

}
, ∂M4 =

{
(r, z)

∣∣∣ r = 0, z1 ≤ z ≤ z2

}
,

The thermal properties are given functions of the radial coordinate according to the
next equations

k(r) = k0 exp(νr), h1(r) = h2(r) = h0 exp(νr), (5.18)

where k0, h0 and ν are material parameters. In the numerical example the following
data are used a = 0.5, z1 = 0.8m, z2 = 3m, k0 = 100 W

mK , h0 = 20 W
m2K , ν = 0.5 1

m .

Substitution of this data into equations (5.3), (5.4) and equations (5.7-5.10) gives

I = 0.05769894569
K

W
, H1 = 1.830223478

W

K
, H2 = 37.65999967

W

K
,

N1 = 0.001731450850
K

W
, N2 = 0.0145366169

K

W
, N = 0.01626806776

K

W
,

1

S1
= 0.1368991899

K

W
,

1

S2
= 0.006848732156

K

W
,

ΛU = 9.96328894
W

K
, ΛL = 9.816496019

W

K
.

If we approximate Λ the mean value of ΛU and ΛL then the relative error is less
as 0.7421%.

6. Conclusions

Upper and lower bounds for the heat flux in nonhomogeneous circular bars of vari-
able diameter are presented. Thermal properties may depend on the radial and axial
coordinates. The axisymmetric nonhomogenity considered includes those cases too,
when the bar is a composite of different homogeneous materials, so that the thermal
conductivity and surface conductivity are piecewise constants. The discontinuities of
the thermal properties should not effect the presented analysis. Here, we note that, for
compound bar the function F = F (r, z) is continuous on the whole meridian section
and its normal derivative computed on the curves which separate the different parts
of meridian section may have jump. Normal component of b remains continuous and
the tangential component of b may have jump across the common boundary curves
of different phases. Equations of Fourier’s theory of steady-state heat conduction are
used to formulate the field equations and boundary conditions of the heat transfer
problem analyzed. Examples illustrate the applications of the bounding formulae
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derived. Rayleigh-Ritz method and finite element formulation give possibilities to
improve the presented estimation of heat flux in circular bars of variable diameter.
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