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Abstract. The main objective of this paper is the determination of the displacement field
and the associated stresses in spherical pressure vessels made of functionally graded ma-
terials which are subjected to axisymmetric thermal and mechanical loadings. The mate-
rial properties are arbitrary functions of the radial coordinate and the temperature field.
A numerical solution of this steady-state thermoelastic problem is presented which is based
on a multilayered approach. The developed method can be used as an analytical solution
for layered composite spherical bodies. The equations of the steady-state heat conduction
and field equations of thermoelasticity are used for the problem, furthermore the original
problem is solved as the superposition of two subproblems with simpler loads. The results
of the developed solution are checked by an analytical solution where the linear thermal
expansion is a specific function of the radial coordinate and the temperature, furthermore
the Young modulus depends on the radial coordinate. The numerical results for functionally
graded spheres under the action of constant pressure and temperature load are compared to
the results of finite element simulation.
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1. Introduction

In recent decades, laminated or layered composite and functionally graded materi-
als (FGM) have been widely used in numerous engineering applications due to their
excellent material behavior. The concept of FGM was first considered in Japan in
1984 during a hypersonic space plane project. The body of the spaceplane is exposed
to a very high temperature environment (about 2000 K), with a temperature gradient
of approximately 1000 K, between the inside and outside of the spaceplane. At that
time there was no uniform material able to endure such conditions. In a functionally
graded material the composition and structure gradually change, resulting in a corre-
sponding change in the material properties. These advanced materials have improved
thermal resistance and mechanical properties. The smooth transition between the
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material properties decreases the chance of cracking and debonding under thermal
and mechanical loads.

In recent years this concept has become more popular; papers and textbooks deal
with the determination of thermal stresses and displacements within simple structural
components (such as cylindrical and spherical vessels, disks) caused by axisymmetric
steady-state temperature field and mechanical loading.

Books by Boley and Weiner [1], Lekhnitskii [2] and Lomakin [3] give solutions
to many linearly elastic problem for non-homogeneous bodies. The analytical solu-
tions for the stresses and displacements in spheres and cylinders made of functionally
graded materials (radially graded) are given by Lutz and Zimmerman [4]. Their paper
considered thick spherical and cylindrical bodies under radial thermal loads where the
composition of the constituent materials was linear. The work by Tutuncu and Oz-
turk [5] derived closed-form analytical solutions for the stresses in functionally graded
cylindrical and spherical bodies, subjected to internal pressure alone. Radially vary-
ing inhomogeneous material properties were considered using material stiffness which
obeys a simple power-law and stress distributions depending on an inhomogeneity
constant.

There are a number of works where multilayered or heterogeneous structural com-
ponents are analysed, for example in [6–9]. The paper of Obata and Noda [10] studied
a one-dimensional steady-state thermal stress problem for functionally graded hollow
circular cylinders and hollow spheres by the use of a perturbation approach to achieve
the effect of the composition on stresses and to design the optimum FGM hollow cir-
cular cylinder and hollow sphere, under different assumptions of temperature distri-
butions. The unsteady-state thermal stress field of FG circular hollow cylinders based
on a multilayered method and Green functions was presented by Kim and Noda [11].

Gönczi and Ecsedi [12] dealt with the steady-state thermoelastic problem of func-
tionally graded disks where the material properties were arbitrary functions of the
radial coordinate. Eslami et al. [13] investigated the thermal and mechanical stresses
in hollow FGM spheres using a direct method to solve the heat conduction and Navier
equations, while the temperature distribution was assumed to be a function of the
radial coordinate.

Nayak et al. [14] developed an analytical solution to obtain the radial, tangential
and effective stresses within thick spherical pressure vessels made of FGMs subjected
to axisymmetric mechanical and thermal loads. The material properties of the vessel
are assumed to be graded in the radial direction based on the power-law function of
the radial coordinate but the Poisson ratio has constant value. A work by Bayat at
al. [15] dealt with the previously presented problem too and investigates the effect
of the power-law index on the stress distribution. However these papers neglect the
temperature dependence of the functionally graded materials.

The FGM concept can be applied to various structural components such as to
pressure vessels. This paper deals with the numerical analysis of FGM spherical pres-
sure vessels. We consider a spherical pressure vessel made of functionally graded
material which is subjected to axisymmetric thermal and mechanical loads on the
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Figure 1. The multilayered model of the functionally graded sphere.

inner and outer boundary surfaces. This hollow functionally graded spherical body
is subjected to unidirectional steady-state heat conduction with stress and thermal
boundary conditions of the first kind on the boundary surfaces.

This paper presents a numerical method which approximates the thermoelastic
problem of functionally graded spherical vessels with a problem of multilayered spher-
ical bodies (Figure 1). The constant pressure is denoted by pouter which acts on the
outer curved boundary surface while the uniformly distributed mechanical loading
exerted on the inner surface is denoted by pinner. The radial stresses, the heat-
flow and the temperature field are all continuous functions of the radial coordinate r;
furthermore the material properties are position- (radial coordinate) and temperature-
dependent.

In our model the layers are made of homogeneous materials and are perfectly
bonded, the material properties are constants within the layers but varying radially
between them. The more layers are considered, the more accurate the computation
will be (by FGMs: n → ∞). Both the boundary conditions and the field equations
[1, 16] are linear; therefore, the superposition principle can be used. This means
that we can add the stresses and displacements caused by mechanical loads to the
thermal stresses and displacements in order to solve this coupled problem. A spherical
coordinate system is used to solve this problem.

2. The functions of the material properties

Within the functionally graded material the volume fraction of the constituent mate-
rials gradually varies in the gradiation direction, thus the effective properties of FGMs
change along this direction. Since functionally graded structures are most commonly
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used in high temperature environment where significant changes in mechanical prop-
erties of the constituent materials are to be expected [17,18], it is essential to take into
consideration this temperature-dependency for accurate prediction of the mechanical
response. Thus, the effective Young’s modulus Ef , the Poisson ratio νf , the linear
thermal expansion coefficient αf and the thermal conductivity λf are assumed to be
temperature dependent.

There are several methods to calculate these effective properties, such as the
Mori–Tanaka scheme [19] for regions of the graded microstructure which have a well-
defined continuous matrix and a discontinuous particulate phase or the self-consistent
method [17], which assumes that each reinforcement inclusion is embedded in a con-
tinuum material and does not distinguish between matrix and reinforcement phases.

In many cases the effective material parameters can be expressed as nonlinear
functions of the temperature field [17,20].

M(T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (1)

In equation (1) M(T ) denotes the functions of the considered effective material prop-
erties (E, ν, α and λ), P0, P−1, P1, P2 and P3 are material dependent coefficients
of the absolute temperature (T [K]). Using these results we can present functions for
the temperature- and position-dependent functionally graded material properties of
FGM spherical bodies and plates [17]:

Mf (r, T ) = [M1(T )−M2(T )] [K]
N

+M2(T ) (2a)

where

KSphere(r) =
r − a
b− a

, or KPlate(z) =
2z − h

2h
. (2b)

The indices 1 and 2 denote the constituent materials (mostly metal and ceramic
components), a and b denote the inner and outer radii of the sphere, h is the thickness
of the plate, z is the thickness coordinate and N is the volume fraction of the FGM.

3. Determination of the temperature field

At first we need to deal with the determination of the temperature field when the
thermal conductivity is temperature- and radial coordinate-dependent λ(T, r). We
will approximate the temperature field of the functionally graded sphere for a tem-
perature field of a multilayered spherical body with n quasihomogeneous layers whose
thermal conductivities depend only on temperature. It is recommended to partition
the body according to the function of the material properties.

Rmi =
Ri +Ri+1

2
, λi(T ) = λ(r = Rmi, T ), i = 1... n . (3)

For this case the nonlinear differential equation for the temperature field of the i-th
layer Ti(r) has the following form:

1

r2
d

dr

[
λi(T (r)) · r2 dTi(r)

dr

]
= 0, Ri ≤ r ≤ Ri+1, i = 1, . . . , n . (4)
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Using the Kirchhoff integral transformation, this problem becomes linear

θ =

Ti∫
0

λ(ϑ)dϑ,
1

r2
d

dr

[
r2
dθ

dr

]
= 0 (5)

From the thermal boundary condition of first-kind the solution for the temperature
field within the i-th layer can be derived in the following implicit form:

Ti∫
ti

λi(ϑ)dϑ =

ti+1∫
ti

λi(ϑ)dϑ
Ri+1

Ri −Ri−1

(
Ri
r
− 1

)
, i = 1, . . . , n (6)

We assume that the surface temperatures ti of the adjacent layers are equal and the
radial heatflow q is constant

ti+1 = Ti(Ri+1) = Ti+1(Ri+1), i = 1, . . . , n, (7)[
λi(Ti(r))

dTi(r)

dr

]
r=Ri+1

= qi(Ri+1) = qi+1(Ri+1) =

=

[
λi+1(Ti+1(r))

dTi+1(r)

dr

]
r=Ri+1

, i = 1, ..., n− 1.

(8)

After the manipulation of equations (5–8) the unknown ti(i = 2, ..., n) boundary
temperatures of the layers can be calculated from the following system of equations

const =

ti+1∫
ti

λi(ϑ)dϑ
Ri+1Ri
Ri −Ri−1

→ ti i = 2, ..., n, (9)

moreover t1 and tn + 1 temperatures are given. In the next step, instead of using
equation (6) to compute the function of the temperature we will fit a curve or curves
– for example with the least squares method – to the temperature values ti in order to
make the further calculations easier especially the integrations. The approximation
function has the following form:

Tappr(r) = θ−2r
−2 + θ−1r

−1 + θ0 + θ1r + θ2r
2. (10)

In order to make the approximation more accurate more polynomial curves can be
used to build the approximated temperature function. After the determination of the
temperature field, the temperatures in the middle of the different layers are calculated
for the approximation function of the material parameters.

tmi = Ti(r = Rmi), i = 1, ..., n. (11)

4. Approximation of the material parameters

The second step is the approximation of the material properties E(r, T (r)), α(r, T (r))
and ν(r, T (r)) and the computation of their discrete values for the different homo-
geneous layers of the multilayered spherical model. We assign the following material
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properties for the spherical layers according to the functions of the material parame-
ters M :

Liv =

∣∣∣∣M(a)−M(b)

n

∣∣∣∣ , M(a) + (i− 1)Liv = M(Ri)→ Ri, ı = 1... n+ 1

Ei = E(r = Rmi, T = tmi), νi = ν(r = Rmi, T = tmi),

αi = α(r = Rmi, T = tmi), i = 1... n.

(12)

This means that we will approximate the arbitrary functions of the functionally graded
material parameters with multistepped functions. To build the approximation func-
tion from the n step we can use for example the Heaviside function. Figure 2 indicates
a sketch of the i-th layer for the multilayered spherical body. The constant mechanical
loads exerted on the inner and outer surfaces of the i-th layer are denoted by fi and
fi + 1 respectively. The temperatures on the boundary surfaces are ti and ti + 1.

Figure 2. Sketch of the i-th layer with the mechanical and thermal loads

5. The solution of the thermoelastic problem

In the next step the problem will be calculated in two parts, then the principle of
superposition will be used to solve the problem. In the first case the i-th layer is under
thermal loading (ti, ti+1) and has the previously calculated steady-state temperature
field, the stresses on the boundary surfaces (fi = fi + 1 = 0) of the layers have zero
value. The thermal radial displacement uTi (r) and the thermal stresses σTir(r), σ

T
iϕ(r),



Thermoelastic analysis of thick FG spherical pressure vessels 115

σTiθ(r) have the following forms [1]:

uTi (r) =
1 + νi
1− νi

αi

[
1

r2

∫ r

R1

r2τi(r)dr +
2(1− 2νi)

1 + νi

r

R3
i+1 −R3

i

∫ R2

R1

r2τi(r)dr+

+
R3
i

R3
i+1 −R3

i

1

r2

∫ R2

R1

r2τi(r)dr

]
,

(13)

σTir(r) =
αiEi
1− νi

 2

r3
r3 −R3

i

R3
i+1 −R3

i

R2∫
R1

r2τi(r)dr −
2

r3

r∫
R1

r2τi(r)dr

 , (14)

σTiφ(r) = σTiϑ(r) =
αiEi
1− νi

 1

r3
2r3 −R3

i

R3
i+1 −R3

i

R2∫
R1

r2τi(r)dr −
1

r3

r∫
R1

r2τi(r)dr − τi(r)

 ,
i = 1, . . . , n,

(15)
where τi(r) is the function of temperature difference of the i-th layer compared to
a tref reference temperature. Because of the approximation of the temperature
field, the integrals of equations (13–15) contain fourth degree polynomials (r2τi(r) =
r2(Tappr − tref )) which can be easily calculated.

6. Solution of the elasticity problem

In the second case it is assumed that the inner and outer boundary surfaces of the
i-th spherical layer is under constant mechanical loading (fi and fi + 1) without the
thermal loads. The differential equation for the radial displacement field uMi (r) can
be derived from the equilibrium equations. The solution of this equation and the
normal stresses have the following forms [1]:

uMi (r) = Air +
Bi
r2
, (16)

σMir (r) = 2Gi

(
1 + νi
1− 2νi

Ai −
2

r3
Bi

)
,

σMiϑ (r) = σMiφ (r) = 2Gi

(
1 + νi
1− 2νi

Ai +
1

r3
Bi

)
, i = 1, ..., n.

(17)

The unknown parameters Ai and Bi can be determined from the equations of the
boundary conditions (σMir (Ri) = fi, σ

M
ir (Ri+1) = fi+1) and we can use them to derive

the expressions of the normal stresses.

Ai =
(1− 2νi)(R

3
i+1fi+1 −R3

i fi)

2Gi(1 + νi)(R3
i+1 −R3

i )
, Bi =

R3
i+1R

3
i (fi+1 − fi)

4Gi(R3
i+1 −R3

i )
, (18)

σMir (r) =
R3
i+1fi+1 −R3

i fi

R3
i+1 −R3

i

−
R3
i+1R

3
i (fi+1 − fi)

R3
i+1 −R3

i

1

r3
, (19)

σMiφ (r) =
R3
i+1fi+1 −R3

i fi

R3
i+1 −R3

i

−
R3
i+1R

3
i (fi − fi+1)

2(R3
i+1 −R3

i )

1

r3
, i = 1, . . . , n. (20)
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7. The superposition of the thermal and mechanical loads

The principle of superposition can be utilized for this problem, because both the
previously used field equations and boundary conditions are linear. This means that
we can add the stresses and displacements caused by mechanical loads (16–20) to
the thermal stresses and displacements (13–15) in order to solve this problem. For
the computation of the radial displacement and radial and tangential stresses the
following equations are used:

ui(r) = uTi (r) + uMi (r), σir(r) = σTir(r) + σMir (r),

σiφ(r) = σTiφ(r) + σMiφ (r), i = 1, ..., n.
(21)

The unknown parameters fi(i = 2, . . . , n) in the equations of uMi (r), σMir (r), σMiϕ(r)
can be calculated from the following equations

ui(Ri+1) = ui+1(Ri+1), i = 1, ..., n− 1, (22)

which ensure the continuity of the radial displacement field and furthermore f1 and
fn+1 are given.

σ1r(R1) = f1 = −p1, σnr(Rn+1) = fn+1 = −pn+1. (23)

The system of equations (20) has the following form:

aifi + bifi+1 + cifi+2 = uTi+1(Ri+1)− uTi (Ri+1), i = 2, ..., n− 1. (24)

where the constants ai, bi and ci are

ai =
3R3

iRi+1

4Gi(R3
i+1 −R3

i )

(1− νi)
(1 + νi)

, (25)

bi = −
Ri+1

2Gi+1

(
R3
i+2 −R3

i+2

) [ (1− 2νi+1)

(1 + νi+1)
R3
i+1 +

R3
i+3

2

]
−

−
Ri+1

2Gi
(
R3
i+1 −R3

i

) [ (1− 2νi)

(1 + νi)
R3
i+1 +

R3
i

2

]
,

(26)

ci =
3R3

i+2Ri+1

4Gi+1(R3
i+2 −R3

i+1)

(1− νi+1)

(1 + νi+1)
, i = 2, . . . , n− 1. (27)

Using the previously determined parameters fi and equation (21) the radial displace-
ment and the normal stresses of the multilayered spherical body can be evaluated.
Due to the multilayered model the curve of the tangential normal stress may contain
significant steps, but the stress values in the middle of each layer have good accuracy.
Thus an approximate curve can be fitted to these points to increase the accuracy and
convergence of the method. The recommended form of the approximate curve when
15 > N > 0.15:

σφ−appr(r) = F−3r
−3 + F−2r

−2 + F−1r
−1 + F0 + F1r + F2r

2. (28)
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8. An analytical solution

An analytical solution is developed for the case when the Poisson ratio is constant, the
distribution of the Young modulus is assumed to be described with a power-law along
the radial coordinate [1], [15] the linear thermal expansion specifically depends on
the temperature and radial coordinate, furthermore the temperature field has special
form:

E(r) = P1

( r
a

)mE
, α(r, T (r)) = (P2 + P3T (r))

( r
a

)mα
, (29)

T (r) = H1 −
H2

r
, if λ = const. :

H1 = tinner − (touter − tinner)
b

a− b
, H2 = (touter − tinner)

ab

a− b
,

(30)

where P1, P2, P3, mE and mα are material parameters. The strain-displacement and
the stress-strain relations for spherical bodies can be expressed as [1], [16]:

εr =
du

dr
, εφ =

u

r
, (31)

σr(r) =
E

(1− 2ν) (1 + ν)
[(1− ν)εr + 2νεφ − α(1 + ν)T ] , (32)

σϑ(r) = σφ(r) =
E

(1− 2ν) (1 + ν)
[νεr + εφ − α(1 + ν)T ] . (33)

In this case the differential equation derived from the equilibrium equation for the
radial displacement is

(1− ν)
d2u

dr2
+ (mE + 2)

(1− ν)

r

du

dr
+ 2 [ν(mE + 1)− 1]

u

r2
=

= A1r
mα−1 +A2r

mα−2 +A1r
mα−3,

(34)

where the constants A1, A2 and A3 are

A1 =
1 + ν

amα
(−mE −mα)H1(P2 + P3H1), (35)

A2 =
1 + ν

amα
(mE +mα − 1)H2(P2 + 2P3H1), (36)

A3 =
1 + ν

amα
(−mE −mα + 2)P3H

2
2 . (37)

The solution of the (34) differential equation:

u(r) = C1r
λ1 + C2r

λ2 +
G1r

mα+1 +G2r
mα +G3r

mα−1

G4
, (38)

where C1 and C2 are unknown constants of integration and

λ1 =
1

2

(
−(mE + 1) +

√
m2
E + 9 + 2mE

1− 6ν + 5ν2

(ν − 1)2

)
, (39)

λ2 =
1

2

(
−(mE + 1)−

√
m2
E + 9 + 2mE

1− 6ν + 5ν2

(ν − 1)2

)
, (40)
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G1 = A1{2ν [ν(mE(3mE + 5) + 2)−mE(mE + 6)− 4] +

+m3
α(ν − 1)2(2mE +mα) + 2(mE + 2) +mα(ν − 1)[mα(mE(1−mE)+

+5 + ν(mE(mE − 5)− 5)−mE(5ν(mE + 1)− 5−mE)]},
(41)

G2 = A2{m3
α(ν − 1)2(mα + 2mE + 2) +mE [mE(2ν − 1)− 2] +

+mEν
2(3mE + 2) +mα(ν − 1)[−4mE(mE + 1) +mα(ν(mE(mE−

−2)− 5)−mE(mE + 2) + 5)]},
(42)

G3 = A3{m3
α(ν − 1)2(mα + 2mE + 4) + 2mE

[
ν2(mE + 1) +mEν − 1

]
+

+mα(ν − 1) · [mα(ν(mE +m2
E + 1)−m2

E − 5mE − 1)−
−(ν(mE + 1)(3mE + 6)−mE +m2

E − 6)]},
(43)

G4 = [mα(ν − 1)(mα +mE + 3)−mE(ν + 1)] [(ν − 1)(mα(mα +mE−
−1)− 2) +mE(1− 3ν)][(ν − 1)(mα(mα +mE + 1)− 2)− 2mEν].

(44)

Then the radial stress has the following form:

σr(r) = C1S1r
λ1+mE−1 + C2S2r

λ2+mE−1 + S0r
mα+mE+

+S−1r
mα+mE−1 + S−2r

mα+mE−2,
(45)

where

S1 = Z [(1− ν)λ1 + 2ν] , S2 = Z [(1− ν)λ2 + 2ν] , Z =
P1

amE (1− 2ν)(1 + ν)
, (46)

S0 = Z

{
G1

G4
[(1− ν)(mα + 1) + 2ν]− H1(1 + ν)(P2 + P3H1)

amα

}
, (47)

S−1 = Z

{
G2

G4
[(1− ν)mα + 2ν] +

H2(1 + ν)(P2 + 2P3H1)

amα

}
, (48)

S−2 = Z

{
G3

G4
[(1− ν)(mα − 1) + 2ν]− H2

2 (1 + ν)P3

amα

}
, (49)

The unknown constants C1, C2 can be obtained from the stress boundary conditions:

σr(a) = −pinner, σr(b) = −pouter, (50)

C1 =
bλ2+mE−1ca − aλ2+mE−1cb

S1 (aλ2+mE−1bλ1+mE−1 − aλ1+mE−1bλ2+mE−1)
,

C2 =
aλ1+mE−1cb − bλ1+mE−1ca

S2 (aλ2+mE−1bλ1+mE−1 − aλ1+mE−1bλ2+mE−1)
,

(51)

ca = amα+mE
(
S0 + S−1a

−1 + S−2a
−2
)

+ pinner,

cb = bmα+mE
(
S0 + S−1b

−1 + S−2b
−2
)

+ pouter.
(52)
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9. Analytical solution for the temperature field

An analytical solution is derived to check the accuracy of the method that calculates
the temperature field (Section 2). The thermal conductivity is temperature- and
coordinate-dependent and has the following special form:

λ(r, T (r)) = P1e
P2T (r)

( r
a

)mλ
, (53)

where P1, P2 and mλ are material constants. After solving equation (4) the temper-
ature field can be calculated and its constants can be evaluated from the first-kind
thermal boundary conditions:

T (r) =
1

P2
ln

(
P2C1

(mλ + 1)

r−mλ−1

a−mλ
− P2C1C2

)
, (54)

C1 =
ab (m+ 1)

(
etouterP2 − etinnerP2

)
P2

(
a
(
b
a

)−mλ − b) , C2 =
betouterP2 − aetinnerP2

(
b
a

)−mλ
a (m+ 1) (etouterP2 − etinnerP2) b

.

(55)

10. Numerical examples

This part of the paper deals with the verification of the developed methods. We
used the equations of the previously presented analytical solutions and finite element
simulation to verify the developed solutions. Furthermore, Maple 15 mathematical
software was used to create the program of the developed method. In the first numer-
ical example the accuracy of the calculation for the temperature field is investigated.
The following data were used for equation (22) to carry out the numerical computa-
tion:

a = 0.04m, b = 0.06m, P1 = 10
W

mK
, P2 = 1.34 · 10−3 1

K
,mλ = 1.9,

tref = 273K, tinner = 303K, touter = 623K

and the approximation function of the temperature field is built from two curves:

Tappr(r) =

[
Heaviside(r − a)−Heaviside

(
r − a+ b

2

)]
Tappr,1

+

[
Heaviside

(
r − a+ b

2

)
−Heaviside (r − b)

]
Tappr,2

where Tappr,1 and Tappr,2 have the forms according to equation (10); furthermore,
three cases with three different layer numbers (n1 = 5, n2 = 9, n3 = 17) are compared
to the analytical solution of Eq. (54-55). Figure 3 shows the temperature function
and the relative errors of the approximations when

eM (%) =

∣∣∣∣Manalytical −Mnumerical

Manalytical

∣∣∣∣ · 100, M(r) = T (r), u(r), σr(r), σφ(r). (56)
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Figure 3. The temperature field and the relative errors of the model

In the second example the developed numerical method is compared to the ana-
lytical method of Section 8. The following numerical data were used to check the
accuracy of the presented method:

a = 0.065m, b = 0.08m, P1 = 200GPa, P2 = 10−8 1

K2
, P3 = 2 · 10−8 1

K
,mα = 1.9,

mE = 2, λ = 58
W

mK
, tinner = 723K, touter = 298K, tref = 273K,

pinner = 20MPa, pouter = 0MPa.

Figure 4. The radial displacement field and the relative errors (n1 =
4: dots, n2 = 8: dash-dot line, n3 = 16: dashed line, n4 = 32: solid
line)

Figures (4–6) illustrate the radial displacement field, radial and tangential normal
stresses, the convergence of the developed method and the relative errors eu(r), eσr(r),
eσϕ(r) of the numerical model compared to the analytical solution. Four different layer
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numbers were used to build up the multilayered models: n1 = 4, n2 = 8, n3 = 16 and
n4 = 32. Figure 6 shows the advantage of the approximation – solid continuous line
– for the tangential stresses over the summarized – discontinuous line – curve.

r

Figure 5. The radial normal stress and the relative errors (n1 = 4:
dots, n2 = 8: dash-dot line, n3 = 16: dashed line, n4 = 32: solid
line)





Figure 6. The tangential stress and the relative errors (n1 = 4: dots,
n2 = 8: dash-dot line, n3 = 16: dashed line, n4 = 32: solid line)

In the next example a functionally graded spherical vessel is considered which is
made from a steel-silicon nitride FGM and the effective material properties can be
calculated by equations (1–2). In this case the results of the multilayered method are
verified by finite element simulation. The finite element model was created using a
commercial FE code, ABAQUS CAE. In the FEM model – due to symmetry – only
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a quarter of the spherical body is created. The variation of the material properties
was implemented by considering 30 layers with temperature-dependent material prop-
erties (Mi = M(r = ri, T (r)), i = 1, . . . , 30). An 8-node temperature-displacement,
quadrilateral element was used to mesh the vessel, the number of elements is 4201.

Figure 7. The finite element model and the displacement field

Figure 7 shows the mesh of the model on the deformed geometry with the displace-
ment field. The material parameters [17], [18] can be found in Table 1, the geometry
and the loads are:

a = 0.5m, b = 0.59m, tinner = 733K, touter = 303K, tref = 273K,

pinner = 90MPa, pouter = 0MPa.

Table 1. Material properties for the numerical example

material metal (stainless steel) ceramic (silicon nitrade)
property Pm0 Pm1(10

−3) Pm2(10
−3) Pm3(10

−3) Pc0 Pc1(10
−3) Pc2(10

−3) Pc3(10
−3)

(P )

λ(W/mK) 15.39 -1.264 20.92 -7.223 12.723 -1.032 5.466 -7.876

α(1/K) 12.33 · 106 0.8086 0 0 3.873 · 106 0.9095 0 0

E(Pa) 2.01 · 1011 0.3079 -6.5340 0 3.484 · 1011 -0.307 2.16 -8.946

ν! 0.3262 -0.1 3.797 0 0.24 0 0 0

Table 2 contains the results of the finite element simulation and the multilayered
method when the volume fraction is N = 3. In these case we note that if the tem-
perature dependency of the material parameters is neglected, the relative errors are
significant (for example if M = M(r, T = 298K) = M(r), then the maximum error is
200MPa).
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Table 2. Results of the developed method (ML) and the FE simula-
tions

N = 3 met- T (r)[K] u(r)[mm] −σr [MPa] −σϕ[MPa]

r(mm) hod n = 30 n = 180 n = 30 n = 180 n = 30 n = 180 n = 30 n = 180

500
ML 733 733 1.09865 1.09869 90 90 -330.17 330.23

FE 733 1.09741 90.1645 -332.17

518.04
ML 611.750 611.751 1.14211 1.14215 93.5435 93.5468 22.0908 22.142

FE 612.041 1.14084 98.8303 19.650

536.07
ML 510.297 510.297 1.16493 1.16497 78.1207 78.1263 233.905 233.923

FE 510.604 1.16352 78.3125 222.61

554.08
ML 426.717 426.718 1.17632 1.17636 54.3166 54.3210 341.202 341.216

FE 420.026 1.17497 54.5826 325.583

572.08
ML 358.392 358.393 1.17974 1.17977 27.7325 27.7378 405.913 405.937

FE 358.703 1.17846 28.0633 389.203

590
ML 303 303 1.17159 1.17161 7.6 · 10−7 4.3 · 10−8 465.324 465.262

FE 303 1.17049 4.8 · 10−4 476.651

In Figures (8–10) the normalized curves of the radial displacement, radial and tan-
gential stresses can be seen by 5 different volume fractions (N = 0.16, 0.3, 1, 3, 6).

Figure 8. The normalized radial displacements by different volume fractions

Figure 9. The normalized radial stresses by different volume fractions
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Figure 10. The normalized tangential stresses by different volume
fractions.

11. Conclusions

The main objective of this paper has been to presents a numerical solution for the
determination of the displacement field and normal stresses in functionally graded hol-
low spheres subjected to spherically symmetric thermal and mechanical loads. The
material properties of the FGM are arbitrary functions of the radial coordinate and
the temperature field. In the developed method the radially graded spherical pressure
vessel has been modeled as a multilayered spherical body, furthermore Fourier’s law of
heat conduction and the equations of thermal stresses with steady-state temperature
field have been used. Analytical solutions have been derived to check the accuracy of
the method and the results have been compared to finite element simulations. The
developed method can be utilized during the designing of the material composition
along the radial coordinate for FGM spherical pressure vessels or as benchmark solu-
tions to verify the accuracy of other numerical methods.
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