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Abstract. Under the plane strain condition a mixed type boundary value problem of
a curved beam with rectangular cross section is investigated. The mixed type boundary
value problem describes a bending problem of the curved beam made of linearly elastic
polar orthotopic material. A minimum strain energy property is proven for the considered
bending problem. The solution is based on Castigliano’s principle. One- and two-layered
curved beams are analysed. The results obtained are compared with those computed by
commercial FEM software (Abaqus).
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1. Introduction

Figure 1 shows the linearly elastic curved beam of rectangular cross section. The
governing equations and boundary conditions are formulated in the cylindrical coor-
dinate system Orϕz. The plane z = 0 is the symmetry plane of the curved beam for
the geometrical and loading properties. The space occupied by the curved beam is
B = B ∪ ∂B. The points of B are given by the prescriptions:

B =
{

(r, ϕ, z)
∣∣ a < r < b, 0 < ϕ < π, −t < z < t

}
, ∂B =

6⋃
i=1

∂Bi,

∂Bi =
{

(r, ϕ, z)
∣∣ a ≤ r ≤ b, ϕ = ϕi, −t ≤ z ≤ t, i = 1, 2, ϕ1 = 0, ϕ2 = π

}
,

∂Bi =
{

(r, ϕ, z)
∣∣ r = ri, 0 ≤ ϕ ≤ π, −t ≤ z ≤ t, i = 3, 4, r3 = a, r4 = b

}
,

∂Bi =
{

(r, ϕ, z)
∣∣ a ≤ r ≤ b, 0 ≤ ϕ ≤ π, z = zi, i = 5, 6, z5 = −t, z6 = t

}
.

Unit vectors of the cylindrical coordinate system Orϕz are denoted by er, eϕ and ez
(Figure 1).

Since the beam is in plane strain the displacement vector is of the form u =
u(r, ϕ)er + v(r, ϕ)eϕ. It is assumed that the material of the curved beam obeys
Hooke’s law. Its inverse is given by the equations

εr =
∂u

∂r
= S11σr + S12σϕ, (1.1)
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Figure 1. Bending of an orthotropic curved beam of rectangular cross
section by radial loads

εϕ =
1

r

(
u+

∂v

∂ϕ

)
= S12σr + S22σϕ, (1.2)

γrϕ =
1

r

(
∂u

∂ϕ
− v
)

+
∂v

∂r
= S66τrϕ, (1.3)

where εr, εϕ, γrϕ are the strains, σr, σϕ, τrϕ are the stresses and S11, S12, S22 and S66

are material constants. S11, S12, S22 are called reduced flexibility coefficients. Their
determination is based on the equations [1, 2]

S11 = s11 −
s213
s33

, S12 = s12 −
s13s23
s33

, S22 = s22 −
s223
s33

in which s11, . . . , s33 are the stiffness components. We would like to emphasize that
all quantities, i.e., the displacements, strains and stresses, which appear in equations
(1.1), (1.2), (1.3) depend only on the polar coordinates r and ϕ.

We shall assume that there are no body forces. The considered bending problem
is defined by the following boundary conditions (Figure 1)

u(r, 0) = 0, σϕ(r, 0) = 0, a ≤ r ≤ b, (1.4)

u(r, π) =
π

2
C, σϕ(r, π) = 0, a ≤ r ≤ b, (1.5)

σr(a, ϕ) = σr(b, ϕ) = τrϕ(a, ϕ) = τrϕ(b, ϕ) = 0, 0 ≤ ϕ ≤ π. (1.6)

In equation (1.5), C is a given constant (C 6= 0).

The stress resultants at the end cross sections ϕ = 0 and ϕ = π should meet the
following conditions:

F ′ = 2t

b∫
a

τrϕ(r, π)dr, F ′′ = −2t

b∫
a

τrϕ(r, 0)dr. (1.7)

If the local equilibrium equations are all satisfied are then

F ′ = −F ′′ = F, (1.8)
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since there are no body forces and the surface segment ∂B3 ∪ ∂B4 is stress free. It
is also obvious that there exists a linear relationship between the stress resultant F
and displacement constant C.

2. Minimum strain energy property

We consider a new boundary value problem of curved beams made of orthotopic
linearly elastic material. The boundary conditions of the new problem are as follows:

ũ(r, 0) = 0, σ̃ϕ(r, 0) = σ̃ϕ(r, π) = 0, a ≤ r ≤ b, (2.1)

F = 2t

b∫
a

τ̃rϕ(r, π)dr, (2.2)

σ̃r(a, ϕ) = σ̃r(b, ϕ) = τ̃rϕ(a, ϕ) = τ̃rϕ(b, ϕ) = 0, 0 ≤ ϕ ≤ π. (2.3)

The radial displacement u at ϕ = π is not specified but the stress resultant at the
cross section ϕ = π is fixed. This boundary value problem has many solutions, it is
a relaxed version of the boundary value problem governed by equations (1.4), (1.5),
(1.6),(1.7). One solution of the relaxed boundary value problem (2.1), (2.2), (2.3)
is ũ = u, where u = u(r, ϕ) is the unique solution of the bending problem if the
boundary conditions are given by equations (1.4), (1.5), (1.6) and (1.7).

Denote U the strain energy of the curved beam. The next theorem formulates a
minimum strain energy property of the considered bending problem. Sternberg and
Knowles [3] characterized the Saint-Venant extension bending, torsion and flexures
problems in terms of certain associated minimum strain energy properties. Here,
a similar characterization is formulated for the considered bending problem of the
curved beam.

Theorem. For any F (F 6= 0) it holds that

U(u) ≤ U(ũ), (2.4)

where ũ = ũ(r, ϕ) is an arbitrary solution of the plane strain boundary value problem
determined by equations (2.1), (2.2) and (2.3).

Proof. From the definition of the strain energy [4] it follows that

U(ũ) = U(u) + U(ũ− u, u) + U(ũ− u). (2.5)

Here, U(ũ − u, u) denotes the mixed strain energy defined on the equilibrium dis-
placement fields û = ũ− u and u (see [4]).

According to Betti’s theorem [4] we have

U(ũ− u, u) =
π

2

∫
∂B2

[τ̃rϕ(r, π)− τrϕ(r, π)] C dr dz =

=
π

2

2t

b∫
a

τ̃rϕ(r, π) dr − 2t

b∫
a

τrϕ(r, π) dr

 C =
π

2
(F − F )C = 0. (2.6)
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Combination of equation (2.5) with equation (2.6) yields

U(ũ) = U(u) + U(ũ− u). (2.7)

Equation (2.7) is the proof of statement (2.4) since the strain energy is always
non-negative [4]. Hence U(ũ− u) ≥ 0.

3. Application of Castigliano’s principle

The local equilibrium equations for our problem are given by

∂σr
∂r

+
1

r

∂τrϕ
∂ϕ

+
σr − σϕ

r
= 0, a < r < b, 0 < ϕ < π, (3.1)

∂τrϕ
∂r

+
1

r

∂σϕ
∂ϕ

+
2τrϕ
r

= 0, a < r < b, 0 < ϕ < π. (3.2)

An equilibrated stress field can be obtained from formulae

σr =
V (r)

r2
sinϕ, σϕ =

1

r

dV

dr
sinϕ, τrϕ = −V (r)

r2
cosϕ (3.3)

in which V = V (r) is a stress function. Note that the stress boundary conditions
(1.4)2, (1.5)2 and the equilibrium equations (3.1), (3.2) are all satisfied. The stress
boundary conditions given by (1.6) are also satisfied if

V (a) = V (b) = 0 . (3.4)

Then the stress field in terms of V (r) is statically admissible. The total complemen-
tary energy of the curved beam can be written in the form [4, 5, 6]

Πc(V ) = U(V )−Wu, (3.5)

where

U(V ) =
πt

2

b∫
a

[
S11

(
V

r2

)2

+ 2S12
V

r3
dV

dr
+ S22

1

r2

(
dV

dr

)2

+ S66

(
V

r2

)2
]
r dr,

(3.6)

Wu =

∫
∂B2

u(r, π)τrϕ(r, π) dr dz = Cπt

b∫
a

V

r2
dr. (3.7)

According to the well known Castigliano’s principle [5, 6]

δΠc = 0 (3.8)

where the stress function V = V (r) is to be varied. We emphasize that the boundary
condition (3.4) should also be satisfied.

A detailed computation leads to the following boundary value problem

− S22r
2 d2V

dr2
+ S22r

dV

dr
+ (S11 + 2S12 + S66)V = C r, a < r < b, (3.9)

V (a) = 0, V (b) = 0. (3.10)
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The general solution of differential equation (3.9) is

V (r) = α1r
λ1 + α2r

λ2 +
C

S11 + 2S12 + S22 + S66
r (3.11)

where α1 and α2 are unknown integration constants and

λ1 = 1 +

√
S11 + 2S12 + S22 + S66

S22
, (3.12)

λ2 = 1−
√
S11 + 2S12 + S22 + S66

S22
. (3.13)

Substitution of equation (3.11) into (3.10) yields

α1 =
abλ2 − baλ2

(aλ2bλ1 − aλ1bλ2) (S11 + 2S12 + S22 + S66)
C , (3.14)

α2 =
aλ1b− abλ1

(aλ2bλ1 − aλ1bλ2) (S11 + 2S12 + S22 + S66)
C . (3.15)

The connection between the displacement constant C and stress resultant F can be
derived from the following equation:

F = 2t

b∫
a

τrϕ(r, π) dr = 2t

b∫
a

V

r2
dr. (3.16)

A detailed computation gives

F =
2tC

S11 + 2S12 + S22 + S66

{
ln
b

a
+

+
1

aλ2bλ1 − aλ1bλ2

[(
abλ2 − aλ2b

) (
bλ1−1 − aλ1−1

)
λ1 − 1

+

+

(
aλ1b− abλ1

) (
bλ2−1 − aλ2−1

)
λ2 − 1

]}
. (3.17)

Formulae for the stresses are as follows:

σr =

(
α1r

λ1−2 + α2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
sinϕ, (3.18)

σϕ =

(
α1λ1r

λ1−2 + α2λ2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
sinϕ, (3.19)

τrϕ = −
(
α1r

λ1−2 + α2r
λ2−2 +

C

(S11 + 2S12 + S22 + S66) r

)
cosϕ. (3.20)

If the beam is isotropic it holds that

S11 = S22 =
1− ν2
E

, S12 = −ν(1 + ν)

E
, S66 =

2(1 + ν)

E
, (3.21)
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where E is the Young’s modulus and ν is the Poisson number. A simple computation
gives

S11 + 2S12 + S22 + S66 =
4(1− ν2)

E
(3.22)

λ1 = 3, λ2 = −1. (3.23)

Inserting equations (3.22) and (3.23) into expressions (3.18), (3.19) and (3.20) set up
for the stresses, we obtain

σr =
(
α1r +

α2

r3
+
α3

r

)
sinϕ, (3.24)

σϕ =
(

3α1r −
α2

r3
+
α3

r

)
sinϕ, (3.25)

τrϕ = −
(
α1r +

α2

r3
+
α3

r

)
cosϕ, (3.26)

where

α3 =
E

1− ν2 C. (3.27)

Equations (3.24), (3.25) and (3.26) are identical to those which were derived by
Timoshenko and Goodier [7], and Lurje [6] for curved beams made of isotropic mate-
rials.

4. Two-layered curved beam

Figure 2 shows a two-layered curved beam made of two different linearly elastic or-
thotopic materials. The boundary conditions for this compound structure are given
by equations (1.4), (1.5) and (1.6). The elastic constants for material i (i = 1, 2),
which occupies the region Bi, are denoted by Si11, Si12, Si22 and Si66. The region Bi
is uniquely determined by the following relations:

Bi =
{

(r, ϕ, z)
∣∣∣ ai < r < bi, 0 ≤ ϕ ≤ π, −t ≤ z ≤ t; i = 1, 2;

a1 = a, b1 = c; a2 = c, b2 = b
}
.

F F

ϕ = π
2 ϕ = π

2

z

z = −t z = t

b

c

ϕ = π

1

2

O

ϕ = 0a

O

Figure 2. Two-layered curved beam of rectangular cross section.
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The connection between the beam components on the common cylindrical surface
r = c is perfect, i.e. neither the displacements u, v nor the stresses σr, τrϕ have jumps
if r = c. Consequently

u1(c, ϕ) = u2(c, ϕ), v1(c, ϕ) = v2(c, ϕ), 0 ≤ ϕ ≤ π, (4.1)

σ1r(c, ϕ) = σ2r(c, ϕ), τ1rϕ(c, ϕ) = τ2rϕ(c, ϕ), 0 ≤ ϕ ≤ π. (4.2)

We can obtain a solution to the boundary value problem constituted by equations
(1.4), (1.5), (1.6), (4.1) and (4.2) if we apply again the principle of minimum com-
plementary energy. Let us denote the stress function for region Bi by Vi = Vi(r)
(i = 1, 2). The statically admissible stress fields should satisfy both the equations of
equilibrium (3.1), (3.2) and the stress boundary conditions (1.4)1, (1.5)1, (1.6). It is
obvious that the traction continuity conditions given by equations (4.2) should also
be fulfilled. Formulae for the statically admissible stresses are as follows:

σir =
Vi(r)

r2
sinϕ, σiϕ =

1

r

dVi
dr

sinϕ, τirϕ = −Vi(r)
r2

cosϕ, (i = 1, 2),

(4.3)
where

V1(a) = 0, V2(b) = 0 V1(c) = V2(c). (4.4)

The total complementary energy for the curved two-layered beam is of the form:

Πc(V1, V2) =

=
πt

2


c∫
a

[
S111

(
V1
r2

)2

+ 2S112
V1
r3

dV1
dr

+ S122
1

r2

(
dV1
dr

)2

+ S166

(
V1
r2

)2
]
r dr +

+

b∫
c

[
S211

(
V2
r2

)2

+ 2S212
V2
r3

dV2
dr

+ S222
1

r2

(
dV2
dr

)2

+ S266

(
V2
r2

)2
]
r dr−


− Cπt


c∫
a

V1
r2

dr +

b∫
c

V2
r2

dr

 . (4.5)

By means of Castigliano’s principle [5, 6] we get from equation (4.5) that

δΠc = 0 (4.6)

where the stress functions V1 = V1(r) and V2 = V2(r) should be varied under condi-
tions (4.4). After some paper and pencil calculations (details are omitted), equation
(4.6) results in the following stationary conditions:

− Si22r
2 d2Vi

dr2
+ Si22r

dVi
dr

+ (Si11 + 2Si12 + Si66)Vi = Cr,

ai ≤ r ≤ bi, (i = 1, 2), a1 = a, b1 = c; a2 = c, b2 = b, (4.7)
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S122
1

c

(
dV1
dr

)
r=c

+ S112
V1(c)

c2
− S222

1

c

(
dV2
dr

)
r=c

− S212
V2(c)

c2
= 0. (4.8)

The general solution of the differential equation (4.6) is

Vi(r) = αi1r
λi1 + αi2r

λi2 + Ci r, (4.9)

where (i = 1, 2) and

Ci =
C

Si11 + 2Si12 + Si22 + Si66
, (4.10)

λi1 = 1 +

√
Si11 + 2Si12 + Si22 + Si66

Si22
, (4.11)

λi2 = 1−
√
Si11 + 2Si12 + Si22 + Si66

Si22
. (4.12)

The unknown integration constants in the expressions for the stress functions can be
computed from the following system of linear equations, which are based on boundary
conditions (4.4) and (4.8):

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



α1

α2

α3

α4

 =


β1
β2
β3
β4

 . (4.13)

Here

α1 = α11, α2 = α12, α3 = α21, α4 = α22 (4.14)

β1 = −C1a, β2 = (C2 − C1)c,

β3 = [C2(S212 + S222)− C1(S112 + S122)]c, β4 = −C2b,
(4.15)

a11 = aλ11 , a12 = aλ12 , a13 = a14 = 0, (4.16)

a21 = cλ11 , a22 = cλ12 , a23 = −cλ21 , a24 = −cλ22 , (4.17)

a31 = (S112 + λ11S122)cλ11 , a32 = (S112 + λ12S122)cλ12 ,

a33 = −(S212 + λ21S222)cλ21 , a34 = −(S212 + λ22S222)cλ22 ,
(4.18)

a41 = a42 = 0, a43 = bλ21 , a44 = bλ22 . (4.19)

The determination of the connection between the stress resultant F and displace-
ment constant C can be obtained from

F = 2t

 c∫
a

τ1rϕ(r, π)dr +

b∫
c

τ2rϕ(r, π)dr

 = 2t

 c∫
a

V1
r2

dr +

b∫
c

V2
r2

dr

 . (4.20)

A combination of equations (4.9), (4.14) with equation (4.20) gives the final formula
for the stress resultant:

F = 2t

[
α1

λ11 − 1

(
cλ11−1 − aλ11−1

)
+

α2

λ12 − 1

(
cλ12−1 − aλ12−1

)
+ C1 ln

c

a
+
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+
α3

λ21 − 1

(
bλ21−1 − cλ21−1

)
+

α4

λ22 − 1

(
bλ22−1 − cλ22−1

)
+ C2 ln

b

c

]
. (4.21)

Formulae for stresses σir, σiϕ and τirϕ (i = 1, 2) are as follows:

σir =

(
αi1r

λi1−2 + αi2r
λi2−2 +

Ci

r

)
sinϕ, (4.22)

σiϕ =

(
αi1λi1r

λi1−2 + αi2λi2r
λi2−2 +

Ci

r

)
sinϕ, (4.23)

τirϕ = −
(
αi1r

λi1−2 + αi2r
λi2−2 +

Ci

r

)
cosϕ. (4.24)

Following the method presented here we can generalize the two-layered solution for
the case of more than two layers.

5. Analysis of the displacement continuity conditions at the interface

There are two independent continuity conditions the displacements should fulfill on
the common cylindrical boundary surface of the two curved beam components. By
the use of the displacement continuity conditions (4.1) we can derive two independent
new continuity conditions that can be expressed in terms of strains and stresses. It
follows from equation (1.2) that

ε1ϕ(c, ϕ) = ε2ϕ(c, ϕ), 0 ≤ ϕ ≤ π, (5.1)

that is

c S112 σ1r(c, ϕ) + c S122 σ1ϕ(c, ϕ) = c S212 σ2r(c, ϕ) + c S222 σ2ϕ(c, ϕ). (5.2)

By using (4.3) we can rewrite this equation in terms of the stress functions V1, V2:

S112
V1(c)

c
+ S122

(
dV1
dr

)
r=c

− S212
V2(c)

c
− S222

(
dV2
dr

)
r=c

= 0. (5.3)

We remark that this equation is one of the stationarity conditions for the total com-
plementary energy – see equation (4.8).

The exact solutions should satisfy the two independent displacement continuity
condition if r = c. Next, we formulate a new displacement continuity conditions in
terms of stresses. Starting from equations (1.1), (1.2) we can write

∂2v

∂r∂ϕ
=

∂

∂r
[r (S12 σr + S22 σϕ)]− S11 σr − S12 σϕ. (5.4)

It follows from equation (1.3) that

∂2v

∂r∂ϕ
= S66

∂τrϕ
∂ϕ
− 1

r

(
∂2u

∂ϕ2
− ∂v

∂ϕ

)
. (5.5)
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A combination of equation (4.19) with equation (5.5) yields

q(r, ϕ) =
1

r

(
∂2u

∂ϕ2
− ∂v

∂ϕ

)
= S66

∂τrϕ
∂ϕ
− ∂

∂r
[r (S12 σr + S22 σϕ)] + S11 σr + S12 σϕ.

(5.6)

If equation (4.1) is satisfied at every point on the common cylindrical boundary
surface of the curved beam components then it follows that

q1(c, ϕ) =
1

c

(
∂2u1
∂ϕ2

− ∂v1
∂ϕ

)∣∣∣∣
r=c

= q2(c, ϕ) =
1

c

(
∂2u2
∂ϕ2

− ∂v2
∂ϕ

)∣∣∣∣
r=c

(5.7)

in which 0 ≤ ϕ ≤ π.

Substitute the stress functions V1 = V1(r) and V2 = V2(r) into equation (5.7) by
utilizing equations (4.7) and (5.6). After some manipulations we get

−
[
S122

1

c

(
dV1
dr

)
r=c

+ S112
V1(c)

c2

]
+
C

c
= −

[
S222

1

c

(
dV2
dr

)
r=c

+ S212
V2(c)

c2

]
+
C

c
.

(5.8)
or

S112
V1(c)

c
+ S122

(
dV1
dr

)
r=c

− S212
V2(c)

c
− S222

(
dV2
dr

)
r=c

= 0, (5.9)

Hence we have proved that two independent displacement continuity conditions
(5.1), (5.7) are all satisfied since they can be transformed into equation (4.8) which
follows from the stationary condition (4.6).

6. Examples

6.1. Example 1. The geometrical and material data of the considered single curved
beam are as follows:

a = 35 mm, b = 70 mm, t = 10 mm;

S11 = 0.5525 · 10−5
1

MPa
,

S12 = S21 = −0.1547 · 10−5
1

MPa
,

S22 = 0.9709 · 10−5
1

MPa
,

S66 = 0.1359 · 10−5
1

MPa
.

The displacement constant C = −1 mm. The force resultant which belongs to C is
F = −53.59065 kN. This value is obtained by the application of formula (3.17).

The stresses are calculated by using equations (3.18), (3.19), (3.20). They can also
be obtained from a FEM solution which is based on the application of the commercial
program Abaqus. The results are listed in Table 1.
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Table 1. Stresses in single curved beam. Comparison of theoretical
and FEM solutions.

Position σr [MPa] σϕ [MPa] τrϕ [MPa]

r [mm] ϕ [rad] Eq. (3.18) FEM Eq. (3.19) FEM Eq. (3.20) FEM

35.0 0.0 0.0000 0.0178 0.0000 0.0843 0.0000 0.5754
40.0 0.0 0.0000 0.0094 0.0000 -0.0089 90.4089 90.6799
50.0 0.0 0.0000 0.0084 0.0000 -0.0046 115.5556 115.676
60.0 0.0 0.0000 0.0080 0.0000 -0.0025 66.9516 67.0311
70.0 0.0 0.0000 0.0124 0.0000 0.0939 0.0000 -0.0049

35.0 0.7854 0.0000 -0.4065 -683.5371 -683.1990 0.0000 0.4068
40.0 0.7854 -63.9287 -64.1205 -425.3195 -425.3140 63.9287 64.1204
50.0 0.7854 -81.7101 -81.7951 -68.1447 -68.1905 81.7101 81.7950
60.0 0.7854 -47.3419 -47.3982 169.8475 169.8050 47.3419 47.3982
70.0 0.7854 0.0000 0.0000 341.7685 341.8760 0.0000 -0.0355

35.0 2.3562 0.0000 -0.4065 -683.5371 -683.1990 0.0000 -0.4068
40.0 2.3562 -63.9287 -64.1205 -425.3195 -425.3140 -63.9287 -64.1204
50.0 2.3562 -81.7101 -81.7951 -68.1447 -68.1905 -81.7101 -81.7950
60.0 2.3562 -47.3419 -47.3982 169.8475 169.8050 -47.3419 -47.3982
70.0 2.3562 0.0000 0.0000 341.7685 341.8760 0.0000 -0.0035

35.0 3.1416 0.0000 0.0178 0.0000 0.0843 0.0000 -0.5754
40.0 3.1416 0.0000 0.0094 0.0000 -0.0089 -90.4089 -90.6799
50.0 3.1416 0.0000 0.0084 0.0000 -0.0046 -115.5556 -115.6760
60.0 3.1416 0.0000 0.0080 0.0000 -0.0025 -66.9516 -67.0311
70.0 3.1416 0.0000 0.0124 0.0000 0.0939 0.0000 0.0049

6.2. Example 2. Two-layered curved beam. The geometrical and material data of
the considered two-layered curved beam made of two different materials are as follows:

a = 35 mm, b = 70 mm, c = 50 mm, t = 10 mm;

S111 = 0.5525 · 10−5
1

MPa
, S211 = 7.14 · 10−5

1

MPa
,

S112 = S121 = −0.1547 · 10−5
1

MPa
, S212 = S221 = −3.19 · 10−5

1

MPa
,

S122 = 0.9709 · 10−5
1

MPa
, S222 = 43.76 · 10−5

1

MPa
,

S166 = 0.1359 · 10−5
1

MPa
, S266 = 50.70 · 10−5

1

MPa
,

The displacement constant is again C = −1 mm. The force resultant for C is F =
−17.525 kN. For calculating F we have applied formula (4.21).

The stresses calculated with equations (4.22), (4.23), (4.24) are compared to those
of a FEM solution obtained by using the commercial program Abaqus. The results
are listed in Table 2.
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Table 2. Stresses in two-layered curved beam. Comparison of theo-
retical and FEM solutions.

Position σr [MPa] σϕ [MPa] τrϕ [MPa]
r [mm] ϕ [rad] Eq. (4.22) FEM Eq. (4.23) FEM Eq. (4.24) FEM

35.0 0.0000 0.0000 0.0163 0.0000 0.0477 0.0000 0.4494
40.0 0.0000 0.0000 0.0108 0.0000 -0.0069 40.6747 0.0409
50.0 0.0000 0.0000 0.0113 0.0000 0.0440 6.5699 6.6233

50.0 0.0000 0.0000 0.0079 0.0000 0.0026 6.5699 6.5695
60.0 0.0000 0.0000 0.0004 0.0000 0.0000 2.9508 2.9528
70.0 0.0000 0.0000 0.0005 0.0000 0.0036 0.0005 -0.0007

35.0 0.7854 0.0000 -0.3167 -383.7897 -383.4140 0.0000 0.3177
40.0 0.7854 -28.7614 -28.9218 -124.6154 -124.5690 28.7614 28.9216
50.0 0.7854 -4.6456 -4.6862 237.5746 237.7650 4.6456 4.6834

50.0 0.7854 -4.6456 -4.6454 2.4758 4.9515 4.6456 4.6453
60.0 0.7854 -2.0865 -2.0879 6.9181 9.6141 2.0865 2.0879
70.0 0.7854 0.0000 0.0004 10.3726 13.2767 0.0000 -0.0004

35.0 2.3562 0.0000 -0.3167 -383.7897 -383.4140 0.0000 0.3177
40.0 2.3562 -28.7614 -28.9218 -124.6154 -124.5690 -28.7614 -28.9216
50.0 2.3562 -4.6456 -4.6862 237.5746 237.7650 -4.6456 -4.6834

50.0 2.3562 -4.6456 -4.6454 2.4758 4.9515 -4.6456 -4.6453
60.0 2.3562 -2.0865 -2.0879 6.9181 9.6141 -2.0865 -2.0879
70.0 2.3562 0.0000 0.0004 10.3726 13.2767 0.0000 0.0004

35.0 3.1416 0.0000 0.0163 0.0000 0.0477 0.0000 -0.449
40.0 3.1416 0.0000 0.0108 0.0000 -0.0069 -40.6747 -40.9013
50.0 3.1416 0.0000 0.0113 0.0000 0.0440 -6.5699 -6.6233

50.0 3.1416 0.0000 0.0079 0.0000 0.0026 -6.5699 -6.5695
60.0 3.1416 0.0000 0.0004 0.0000 0.0000 -2.9508 -2.9528
70.0 3.1416 0.0000 0.0005 0.0000 0.0036 0.0000 0.0007

(Avg: 75%)

S, S11

−120.45
−110.41
−100.37
 −90.34
 −80.30
 −70.26
 −60.22
 −50.18
 −40.14
 −30.10
 −20.06
 −10.02
   0.02

Figure 3. Stress σr in a curved beam of rectangular cross section (one layer)
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(Avg: 75%)

S, S11

−42.53
−38.98
−35.44
−31.89
−28.35
−24.80
−21.26
−17.71
−14.17
−10.62
 −7.07
 −3.53
  0.02

Figure 4. Stress σr in a curved beam of rectangular cross section
(two-layered)

(Avg: 75%)

S, S22

−966.19
−845.38
−724.58
−603.77
−482.96
−362.16
−241.35
−120.55
   0.26
 121.07
 241.87
 362.68

Figure 5. Stress σϕ in a curved beam of rectangular cross section (one layer)
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(Avg: 75%)

S, S22

−542.23
−469.02
−395.82
−322.61
−249.40
−176.20
−102.99
 −29.78
  43.42
 116.63
 189.84
 263.04
 336.25

Figure 6. Stress σϕ in a curved beam of rectangular cross section
(two-layered)

(Avg: 75%)

S, S12

−120.45
−100.38
 −80.30
 −60.23
 −40.15
 −20.08
   0.00
  20.08
  40.15
  60.23
  80.30
 100.38
 120.45

Figure 7. Stress τrϕ in a curved beam of rectangular cross section
(one layer)
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(Avg: 75%)

S, S12

−42.53
−35.44
−28.35
−21.27
−14.18
 −7.09
  0.00
  7.09
 14.18
 21.27
 28.35
 35.44
 42.53

Figure 8. Stress τrϕ in a curved beam of rectangular cross section
(two-layered)

Figures 3 and 4 depict a single curved beam and a beam with two layers. Both
figures show the stress distribution of the normal stress σR. Observe that the com-
puted σϕ stress distribution is discontinuous, as is expected, only on the two-layered
curved beam (see Figures 5 and 6 for details).

The computed stress distribution τrϕ is illustrated for the single curved beam in
Figure 7, and for the two-layered beam in Figure 8.

According to results shown in Tables 1 and 2 the theoretical and FEM solutions
are in good agreement in both examples.

7. Conclusions

Under the plane strain conditions a mixed type boundary value problem of a curved
beam with rectangular cross section is analysed. One- and two-layered curved beams
made of polar orthotopic materials are considered. The mixed type boundary value
problems are bending problems. For isotropic, homogeneous curved beams this prob-
lem was first solved by Golovin [8].

The present paper applies a minimum strain energy property for finding the equa-
tions of the considered bending problem. Formulae for the stresses are obtained by
means of Castigliano’s principle. A detailed analysis is presented for the displacement
continuity conditions on the common cylindrical boundary surface of the two-layered
curved beam. By applying the method presented in the paper the solutions for the
two-layered beam can easily be generalized for the case of beams with more than two
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layers. The results of the theoretical computations are in good agreement with the
FEM solution.
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