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Abstract. A methodology for minimization of composite panels deflections and stresses
that uses a time domain nonlinear modal finite element model with two different optimiza-
tion algorithms (genetic and DB algorithms) is described. The nonlinear modal formulation
is based on geometrical nonlinearities rather than material nonlinearities, which does not
require updating of the stiffness matrix at each time step, making it extremely time effi-
cient when compared to commercial finite element softwares. Optimization algorithms are
implemented in Matlab and can be used either with the finite element code itself or as a
post-processing option. The method is applied to rectangular 10-ply symmetrically lami-
nated plates under uniform pressure loads, with simply supported and clamped boundary
conditions. The design constraints are based on the Tsai-Wu failure criterion. Results of the
optimization using genetic algorithm include the influence of the initial size of population
and number of generations. The DB algorithm proposed by the authors is shown to be more
effective for the presented examples than the genetic algorithm.

Keywords: Composite optimization, lay-ups, stacking sequences, genetic algorithm, DB al-
gorithm

1. Nomenclature

Latin Symbols
a, b panel dimensions,

b indicates that a vector (or matrix) depends on bending

mb indicates that a vector (or matrix) depends on
couples bending membrane (mb=bm)

E modulus of elasticity
G shear modulus of elasticity
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h panel thickness

m indicates that a vector (or matrix) depends on membrane
z distance from neutral axis
[K] linear stiffness matrices
[K1] first order stiffness matrices (they depend on {Wb})
[K2] second order stiffness matrices (they depend on {Wb})
[M ] mass matrices
P (t) time dependent load vector
u, v in-plane displacements
W transverse panel deflection.

Greek Symbols
ρ panel density
ν Poisson’s ratio
ζ damping coefficient

2. Introduction

The latest commercial aircraft from Boeing and Airbus, the 787 and the A350, first
flew in 2009 and 2013, respectively. Both represented a technological step change by
having structures composed of up to 50% of composite materials. They are only two
examples of a trend that indicates that the industry will rely more and more on the
beneficial properties of composites. The best mechanical properties of composite ma-
terials are obtained from laminates composed of many layers of unidirectional fibers
embedded in a polymer matrix. These plies are distributed with different orientations,
allowing the laminates properties to be tailored to the specific structural application.
Hence, it is clear that to extract the maximum performance out of these materials,
efficient stacking sequence optimization techniques are needed. Different optimization
techniques based on Lagrangian minimization principle exist, however, in this work,
the technique that will be explored is that of genetic algorithms (GA), which relies on
evolutionary principles developed by Holland [1]. GA solve the problem of optimiza-
tion by following a process analogous to what is observed in nature, where only the
mutations that give an advantage to the individual are propagated to the new gen-
erations. The mechanics of GA is based on operations that result in structured, yet
randomized exchange of genetic information between individual strings (chromosome
strings) of the parents and consists of crossover, mutation and inversion [2]. For the
sake of brevity, only the genetic representations for optimization of structural design
will be discussed here. Goldberg and Samtani [3] were the first to use GA in structural
design, solving the weight optimization problem of a 10 bar truss. Different variants
of GA widely used in various structural problems have already been discussed in
detail [4]. More specifically, multiple authors [5–7] combined commercially available
finite element software with GA in the design of composite structures. However, it has
been remarked that the major limitation in this application stems from the generality
of the finite element package, i.e., those programs can be adapted to analyze compos-
ites but that is not their main objective. Hence, the novelty of the present work is
that the authors would be using their own modal finite element program that is able
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to accurately predict the linear and nonlinear response of composite beams, plates,
and shells subjected to different loading conditions at a reasonable computational
cost. Accurate prediction of behavior of aircraft panels to different loading conditions
is essential for design. Traditional design and analysis methods for commercial and
military aircraft [8] [9] are based on linearization and simplified loading conditions.
However, experimental data have shown that, in many instances, the loads induce
large nonlinear deflection responses. Table 1 shows the non-dimensional displacement
(Wmax/h) and the maximum normal stress for linear and nonlinear analysis of com-
posite panels with varying stacking sequences when subjected to a uniform load of
1, 500 Pa. It can be seen that the linear analysis overpredicts the responses, something
that will result in a heavier, overbuilt structure.

Table 1. Comparison of linear and nonlinear deformations and nor-
mal stresses

Deformation Wmax/h Normal stress σ [MPa]
Stacking Linear Non-linear Linear Non-linear

0 0 0 0 0 0 0 0 0 0 1.067 0.534 33.58 12.63
-45 0 0 0 0 0 0 0 0 -45 1.283 0.616 140.19 40.54

-45 45 -45 45 -45 -45 45 -45 45 -45 1.302 0.765 153.43 59.30
45 90 90 90 45 45 90 90 90 45 2.375 0.989 265.95 61.10

h is the panel thickness

To the authors’ best knowledge, all commercial finite element packages study geo-
metrical nonlinear deformations at the structural degree of freedom, something that
is extremely computationally expensive because all nonlinear matrices need to be re-
assembled at each time of the solution by considering deformations from the previous
step. This is a severe obstacle in optimization that is intended to be overcome with
the approach presented in this paper.

3. Formulation

This section introduces the fundamentals of the nonlinear modal formulation and
genetic algorithms.

3.1. Nonlinear modal finite element. The governing equations of motion (EOM)
for a two-dimensional panel subject to thermal and time dependent loading are devel-
oped. First, the EOM are expressed in terms of structural degrees of freedom (DOF)
or in physical coordinates. Then the system level EOM are transformed into modal
coordinates based on the expansion theorem. The plate is subjected to load intensi-
ties driving the response into the nonlinear range. The von Karman large deflection
plate theory is employed here to describe the nonlinear strain and displacement rela-
tionships.

3.1.1. Equations of motion in structural degrees of freedom. The 24-DOF Bogner-Fox-
Schmit C conforming rectangular plate element is used for the finite element model.
Considering large amplitude deflections, i.e., that the transverse displacement of the
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panel is of the same order of magnitude as the panel thickness, the in-plane membrane
response becomes coupled with the transverse bending. As the plate bends, the
middle surface stretches and significant membrane forces develop. The load-transverse
deflection response becomes nonlinear. The von-Karman plate theory addresses the
above in-plane extension effects by introducing additional quadratic terms to the
strains developed in a vibrating plate. The von-Karman nonlinear strain-displacement
relationship is given by

{ε} =

 u,x
v,y

u,y + v,x

+
1

2


w2
,x

w2
,y

2w,xw,y

+ z

 −w,xx
−w,yy
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=
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}
+
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}
+ z {κ} (1)

where
{
ε0
m

}
is the linear membrane strain vector,

{
ε0
θ

}
is the von Karman nonlinear

membrane strain vector, and z {κ} is the bending strain vector.

When the principle of virtual work and the finite element expressions are combined,
the assembled governing EOM for the panel subjected to aerodynamic, thermal, and
acoustic excitations are derived and expressed as[
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or

[M ] {Ẅ}+ ([Ko]− [KN∆T ] + [K1] + [K2]) {W} = {P} (3)

where {P} = {Pb∆t + Pb(t)}. If the membrane inertia term {Ẅm} is neglected, the
in-plane displacement vector can be expressed in terms of the bending displacement
as

{Wm} = [Km]
−1 {Pm∆T } − [Km]

−1
[Kmb] {Wb}−

− [Km]
−1

[K1mb] {Wb} = {Wm}0 + {Wm}1 + {Wm}2 (4)

where {Wm}0 = [Km]
−1 {Pm∆T } is a constant matrix in function of the linear mem-

brane matrix [Km] and the constant membrane in-plane load {Pm∆T }; {Wm}1 =

− [Km]
−1

[Kmb] {Wb} is in function of the constant membrane matrix [Km], the con-
stant coupling bending-membrane matrix [Kmb] and the linear vertical bending de-

formation {Wb}; {Wm}2 = − [Km]
−1

[K1mb (Wb)] {Wb} is in function of the con-
stant matrix [Km], the first order nonlinear matrix [K1mb] which depends on {Wb}
and the bending deformation {Wb}. Consequently, the term {Wm}2 quadratically

({Wb}2) depends on {Wb}. Thus [K1Nm] which depends on {Wm} = {Wm}0 +

{Wm}1 + {Wm}2 has three components
[
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]
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]
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[
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]
evaluated with {Wm}2. Recalling that {Wm} =
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{Wm}0 +{Wm}1 +{Wm}2 it should be clear that {Wm} is the sum of a constant term
{Wm}0, and two terms that depends on the bending deformation {Wb} only. The
term {Wm}1 depend linearly on {Wb} while the term {Wm}2 depends quadratically
on {Wb}. Next, by substituting {Wm} which is now in function of {Wb} into equation
(2), the system EOM can be written in terms of the bending deformation {Wb} only

[Mb]
{
Ẅb

}
+

+
(
[KL] + [K1 (Wb)] +

[
K2

(
W 2
b

)])
{Wb} = {F} (5)

where

[KL] = [Kb]− [KN∆T ] + [K1bm] [Km]
−1

[Pm∆T ]−

− [K1bm] [Km]
−1

[Kmb] +
[
K10

Nm

]
, (6a)

[K1] = [K1Nb] +
[
K11

Nm

]
− [Kbm] [Km]

−1
[K1mb]−

− [K1bm] [Km]
−1

[Kmb] , (6b)

[K2] = [K2b] +
[
K12

Nm

]
− [K1bm] [Km]

−1
[K1mb] (6c)

and

{F} = {Pb∆T }+ {Pb(t)} − [Kbm] [Km]
−1 {Pm∆T } . (6d)

For more details on the derivation of the nonlinear modal formulation readers can
consult [10]

3.1.2. Equations of motion in modal degree of freedom. Equation (5) is expressed in
terms of structure DOF, which means a costly computational burden since the gov-
erning equations increase proportionally with the number of elements. This obstacle
is resolved by transforming the system EOM in the structural DOF into a set of trun-
cated modal coordinates by expressing the response as a linear combination of some
base functions

{Wb} =

n∑
r=1

qr (t) {φr} = [Φb] {q} (7)

where qr(t) denotes the modal coordinates of the r-th mode, which reflects the con-
tribution to the total deflection from the r-th mode; Φb = [φ1, φ2, . . . , φr, . . . , φn] is
the modal matrix, in which φr is the mode shape due to the transverse bending of
the r-th mode obtained from the linear vibration analysis.

The transformation of system governing EOM into modal coordinates is achieved
by substituting equation (6) into equation (5) and pre-multiplying the whole equation

by [Φb]
T

. If structural modal damping in the form of ζr (r = 1, 2, . . . , n) is assumed
the transformed EOM in modal coordinates can be written in a brief form as follows:[
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]
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(8)
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Here the diagonal mass matrix is of the form[
M̄b

]
= [Φb]

T
[Mb] [Φb] (9)

The linear, quadratic, and cubic stiffness matrices are as follows:[
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The modal load vector is given by:{
F̄
}

= [Φb]
T {Pb∆T }+ [Φb]

T {Pb (t)}−

− [Φb]
T

[Kbm] [Km]
−1 {Pm∆T } . (13)

3.2. Genetic algorithms. The application of GA operators to a problem first re-
quires the representation of the possible combinations of the variables in terms of bit
strings, analogous to chromosomes in biological genetics [2]. In order to increase the
speed of the genetic search the following assumptions are considered: i) the stacking
sequences are limited to using 0◦, ±45◦ and 90◦ plies; ii) the laminate thickness can
only be an integer multiple of the standard ply thickness; iii) the laminate is sym-
metric. The initial population set is generated by a function that generates pseudo-
random numbers uniformly and, to generate future generations, parents are selected
from the initial population based on their fitness. Next, genetic operators are used
to create new stacking sequences: the children population. Good features from the
initial population set propagate to the children population by using a biased roulette
wheel where better parents are assigned a larger area. A description of the genetic
operators for the construction of new generations is given next [7].

Crossover operator. Once a pair of parents is selected, the children are generated
by combining information from both parents, for example, by splicing the left part
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of the string of one of the parents with the right part of the string from the other
parent.

Parent 1: [90/0/45]s
Parent 2: [45/90/0]s possible child designs are:

Child: [90/90/0]s, [90/0/0]s, [45/0/45]s, [45/90/45]s
It is important to note that the present work utilizes a modified crossover algorithm
given the constraints that all laminates must be symmetric.

Mutation operator. Mutation performs the valuable task of preventing premature
loss of important genetic information by introducing random alteration in the child
string obtained by the crossover operator. Inferior designs may have some good
traits that would get lost in the gene pool (roulette wheel) when the parents are not
selected. For example if you only consider the first child from the crossover [90/90/45]s
a possible mutation is [90/0/45]s, which may lead to a good design but that would
not be accounted for by the crossover operator.

The implementation of the GA was done in Matlabr. Due to the assumptions
mentioned in Section 2.2, the number of possible solutions (stacking sequences) is
limited and is generated as a matrix.

To fully test the program, ensuring that it fulfills all of the assumptions, the results
for each layup are calculated and stored in a separate matrix. In the final version of
the program, this approach can be easily replaced by real time calculations.

In the first generation, a specified number (size of population) of indices (corre-
sponding to their chromosomes) are selected using random permutations. Selected
chromosomes form the population and the random permutations used ensure the
selection of unique (non-repeating) sets. The results for every chromosome are then
sorted by increasing values of the Tsai-Wu failure criterion on the outer (first) layer of
the laminate. That forms the fitness function. The best two from the list are then se-
lected as parents and will be used in crossover and mutation operations. Afterwards,
parents are crossed over with the rest of the population forming offspring. Subse-
quently, these two parents are mutated and form new sets of chromosomes. From
parents, offspring and mutated chromosomes, a list of unique stacking sequences is
formed and the corresponding results are extracted from the result matrix. The fitness
function (value of Tsai-Wu for the outer layer) is evaluated and the ordered results
constitute the first generation. Subsequent generations are generated in a similar way
but, instead of randomly choosing chromosomes at the start, the best two from the
previous generation become parents and the rest are used for crossover operation.

3.3. DB algorithm. The authors propose a DB algorithm that reduces the optimiza-
tion computational cost. It does not depend on either the size of the populations nor
on the number of generations. The advantage of such an approach will be explained
in the results section.

At first only one stacking sequence is randomly chosen. Since the ply orientations
are limited to only four angles, i.e., 0◦, ±45◦ and 90◦, the chosen layup is replicated
three times. In the next step, a randomly chosen layer is replaced in the replicated



10 K. Bogdansky, J. M. Dhainaut and A. Josephsohn

layups with all the other possible angle ply orientations.

Example:
Randomly chosen stacking: [90/0/45]
Newly formed stacking sequences with the third layer replaced: [90/0/0], [90/0/-45],
[90/0/90].

According to the fitness function (the same as the one used in genetic algorithm:
value of Tsai-Wu for the outer layer), the best layup is chosen from the four stacking
sequences. This best stacking is then replicated again three times and a different
layer is now replaced with the other ply orientations. That process is repeated until
all of the layers have been replaced and the very best out of all stacking sequences is
chosen. The number of calculations is equal to: No calc = L(A − 1) + 1 where L is
the number of layers and A is the number of possible angle ply orientations. In the
present case, L = 5 and A = 4, giving No calc = 16. Using the same matrices with
stacking sequences and results a program using the DB algorithm has been written
using Matlabr.

4. Results

4.1. Material properties. Composite and isotropic panels are used to validate the
finite element code and the DB algorithm. The material properties of isotropic alu-
minum panels are E1 = 73 GPa, ν = 0.30, ρ = 2750 kg/m3 and of composite
Graphite/Epoxy T300/5208 E1 = 181.0 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa,
G23 = 6.21 GPa, ν12 = 0.28 and ρ = 1550 kg/m3.

A proportional damping ratio of ζrωr = ζsωs with ζ1 = 0.02 is used for transient
responses. For validation purposes, simply-supported (S-S) boundary conditions are
considered and for generalization clamped (C) boundary conditions are considered
as well. For all support cases the maximum deformation occurs at the center of
the panel for the uniform loading but the maximum stress depends on the support
conditions. For instance, maximum stress occurs at center of the plate for SS but
at the midpoint of the longest edge for C conditions. Preliminary mesh convergence
and modal convergence was verified for all composite panels. It was found that eight
modes were sufficient for converged stress responses on a 24×24 mesh. The validation
of the nonlinear modal finite element code and of the GA can be done separately since
they are completely independent of each other. The former is only used to evaluate the
responses, and the GA is simply a numerical procedure used for finding the optimum
stacking sequence but does not depend on the linearity of the responses.

4.2. Validation. The validation of the present nonlinear modal FE formulation,
equation (7), is performed by comparing results for isotropic SS panels obtained with
classical formulation [11]. The linear and nonlinear stiffness matrices will be verified
by solving the single mode linear and nonlinear free vibration problems, respectively.
Table 2 shows the non-dimensional frequency parameter ωa

√
ρ(1− ν2)/E1 which

neglects the in-plane inertia and characterizes the linear free vibration behavior by
the fundamental linear bending mode (1,1) only. Results are obtained for different
shell geometries ranging from spherical shells (Rx/Ry = 1) to hyperbolic paraboloids
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(Rx/Ry = −1). The curved panels (b/a = 1) are modeled by an 8 × 8 mesh on a
quarter shell, more than adequate for modeling the fundamental mode (1,1). The
validation was performed on curved and cylindrical panels because no data for flat
panels was available.

Table 2. Non-dimensional frequency parameter ωa
√
ρ(1− ν2)/E1

$a
√
ρ(1 − ν2)/E1

Rx/Ry Ref. [11] F.E.

-1.0 0.05695 0.05831
-0.5 0.06174 0.06251
0.0 0.07429 0.07471
0.5 0.09144 0.09178
1.0 0.1111 0.1115

Rx = Ry

3.048 0.1111 0.1115
5.08 0.07429 0.08096
12.7 0.06007 0.006145
25.4 0.05776 0.005813

H = h/a

0.005 0.09955 0.09901
0.01 0.1111 0.1115
0.02 0.1485 0.1489
0.1 0.5622 0.5778
0.2 1.033 1.1437

Figure 1. Non-dimensional stress vs. uniform pressure
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It can be observed that results compare very well, except for the very thick shell
case (h/a = 0.2) where the difference is 10.7%.

The stress convergence was based on stresses rather than displacements because
the Tsai-Wu failure criteria used for the optimization is based on stresses. The same
mesh size and number of modes will be employed in subsequent sections.

This difference is due to the fact that the present modal FE formulation neglects
shear effects, negligible for thin-shells but significant in thick ones. The uniform
pressure loading is verified on a 0.254 × 0.381 × 0.00127 m (12 × 15 × 0.05 in.) flat
panel modeled with a 20 × 20 mesh on a full panel. Isotropic material properties
and simply-supported boundary conditions are assumed. Figure 1 shows the non-
dimensional stress at different uniform load intensities.

4.3. Results. Genetic algorithm. The GA algorithm was tested on several different
population sizes with the following assumptions: i) stacking sequences consisted of
10 layers (5 symmetrical), ii) there are 1024 possible (unique) stacking sequences.
Calculations have been performed for both simply supported and clamped boundary
conditions

Since all the stacking sequences were calculated, it was found that for the applied
load and simply supported boundary conditions, the highest value of Tsai-Wu for
one layup was more than twenty times greater than the lowest. The distribution of
the results in comparison to the lowest value is shown in Figure 2. The solution is
treated as converged if the result of the Tsai-Wu for the outer layer does not differ
more than 5% from the best result of the 1024 stacking sequences. This results in a
list consisting of 24 solutions (2.34% of the total population).

Figure 2. Distribution of results for simply supported boundary con-
ditions in comparison to the best result
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Table 2 presents the results for simply supported boundary conditions of the stacking
sequences generated using the GA sorted by each generation and population size.
Each of the results has been calculated using statistics based on 40 samples. Number
of solutions means how many unique calculations have to be performed after every
generation. The adjacent column contains the percentage of the results obtained after
every generation that belong to the set of the 24 best results. The least number of
calculations performed in order to find the best results was 46 with the population
of 15 after the fourth generation. A 90% chance of achieving the best solution is
possible after 30 calculations with the population size of 10 after the fifth generation.
The same efficiency can be obtained after the second generation with a 50% larger
population. However, the computational cost is 23% higher.

Table 3. Percentage of 24 best results (2.3% of all possible) in each
generation sorted by population size

Population size 5 10 15

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 11 25 13 45 27 85
2 15 35 20 50 37 90
3 18 65 23 70 47 90
4 20 75 27 70 46 100
5 22 85 30 90 47 100
6 24 85 33 95 49 100
7 25 85 35 95 50 100

Population size 20 25 30

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 26 75 40 85 37 95
2 34 85 53 100 52 100
3 40 95 62 100 58 100
4 46 95 68 100 63 100
5 50 100 70 100 67 100
6 53 100 73 100 70 100
7 56 100 75 100 73 100

The results in Table 3 clearly show that the larger the population size, the higher
the probability of getting the best answer in that generation. However, due to the
larger size, the number of solutions needed to be calculated grows rapidly. To get
a 90% chance of getting the solution, the lowest number of solutions is 30 with a
population size of 10 after the fifth generation. The same efficiency can be obtained
after the second generation with a 50% larger population but the computational cost
is 23% higher.

Table 4 shows how the probability of finding the best solution decreases when for
convergence the best 1% of the results is selected as opposed to 2.3%. It is worth
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noting that with a population size of 30, all of the results were in the best 1% of the
results after the second generation.

Table 4. Comparison of percentage of 10 and 24 best results in each
generation sorted by population size

Population
10 20 30size

Generation
Best 10 Best 24 Best 10 Best 24 Best 10 Best 24

[%] [%] [%] [%] [%] [%]

1 25 45 55 75 80 95
2 30 50 70 85 100 100
3 35 70 80 95 100 100
4 45 70 85 95 100 100
5 65 90 90 100 100 100
6 80 95 95 100 100 100
7 90 95 95 100 100 100

Table 5. Percentage of 9 best results (0.88% of all possible) for fixed
boundary conditions in each generation sorted by population size

Population size 5 10 15

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 12 15 16 15 34 30
2 17 20 23 25 46 45
3 20 20 28 30 52 60
4 22 35 33 45 55 60
5 23 40 35 50 59 70
6 24 45 37 55 62 70
7 26 60 38 55 63 75

Population size 20 25 30

Generation
Number of

%
Number of

%
Number of

%
solutions solutions solutions

1 29 40 48 60 41 65
2 42 60 64 65 55 80
3 50 65 71 65 63 90
4 56 70 74 70 70 95
5 59 70 76 80 74 95
6 62 70 82 85 79 100
7 65 75 84 85 82 100

The second tested example differed by changing the boundary conditions from
simply supported to clamped. Using the same criterion that the result of the Tsai-
Wu for the outer layer does not differ more than 5% from the best result of the
1024 stacking sequences, the results list consists of only 9 solutions (0.9% of the total
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population). Table 5 presents the results for fixed boundary conditions using GA. In
comparison to the simply supported boundary conditions the results are worse due to
the lesser number of results considered for convergance. A 90% chance of achieving
the best solution is possible with the population size of 30 after 63 calculations and
three generations. In order to have a 100% chance of getting the solution converged,
the number of calculations has to increase up to 79 (by 25.4%).

4.3.1. DB Algorithm. Since the DB algorithm is simpler because it is not influenced by
the number of generations or population size, the analysis of the results is significantly
faster.

The algorithm was run 10,000 times and in 80.6% of the calculations the best
result, out of 1,024, was obtained. The two best results for simply supported boundary
conditions were obtained in 100% of the calculations. Compared to the presented GA,
16 unique calculations would result in a maximum 45% chance of finding a solution in
the best 24 possible results, whereas there is a 100% chance of getting one of the best
two results with the DB algorithm. For fixed boundary conditions, the DB algorithm
would give a 72.3% chance of converging (one of the best 9 results). Using the GA, 16
unique calculations would only give a 15% chance of achieving the converging solution.
It is worth mentioning that the worst result obtained for the DB algorithm was the
72nd best answer and only appeared in 0.18% of all of the performed calculations.

5. Conclusions

An efficient nonlinear finite element modal formulation was combined with two dif-
ferent optimization algorithms. It was shown that the newly developed DB algorithm
is more effective than the most popular GA for the studied cases.

For the first case (simply supported boundary conditions) and given assumptions,
the GA allows finding a result in the best 1% of all of the results, with about 90%
efficiency, by calculating about 3% of all of the possible solutions. By reducing the
efficiency to 85%, the computational costs only drops to requiring the calculation of
2.2% of the solutions. Since the GA is basically a semi-controlled random process, it
does not guarantee finding the best answer in the process. On the other hand, the
DB algorithm gave a 100% chance of finding one of the best two solutions after only
16 calculations (1.6% of all possible stacking sequences) and in 80% of cases it gave
the best possible solution.

The second tested case (fixed boundary conditions)also shoed better results gained
from the DB algorithm compared to the GA. It has given a 72.3% chance of conver-
gence compared to only 15% for the GA after 16 unique calculations. A 100% chance
of finding a result in the best 1% of all of the results is possible using GA, but it
takes on average 79 unique calculations. In future work, the authors will keep on
testing and developing the DB algorithm, including increasing the number of layers
and applying more complex loads.
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