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Abstract. We develop always convergent methods for solving nonlinear equations of the
form f (x) = 0 (f : Rn → Rm, x ∈ B = ×n

i=1 [ai, bi]) on continuous space curves that are
lying in B. Under the only assumption that f is continuous these methods have a kind of
monotone convergence to the nearest zero on the given curve, if it exists, or the iterations
leave the region in a finite number of steps. Depending on the selection of the curve these
methods are always convergent in the previous sense. In the paper we also investigate the
selection of curves and also provide numerical test results that indicate the feasibility of the
suggested methods.
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1. Introduction

Targonszky [1] investigated the following problem:

Let f : C→ C be continuous in the closed domain

S = {z ∈ C : |z| ≤ K, ϕ0 ≤ arg z ≤ ϕ1}

and assume that f (0) 6= 0. Let

ω (δ) = sup
z1,z2∈S
|z1−z2|≤δ

|f (z1)− f (z2)|

be the modulus of continuity of f and let ρ : [0,∞) → [0,∞) be a continuous and
strictly monotone increasing function so that

ρ (0) = 0, ρ (δ) ≥ ω (δ) (δ > 0) , lim
δ→∞

ρ (δ) =∞.
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Furthermore assume that γ > 0 is a constant such that γK ≤ 1. Let F : [0,∞) →
[0,∞) be any continuous and strictly monotone decreasing function such that

F (0) = 1, F (x) ≥ 1

1 + x
(x > 0) .

Let

ψ (z) = zF
(
γρ−1 (|f (z)|)

)
. (1.1)

Observe that for z 6= 0, z = ψ (z) if and only if f (z) = 0. For any 0 6= z ∈ S,
f (z) 6= 0, define the iteration sequence

z0 = z (1.2)

zi+1 = ψ (zi) , i = 0, 1, . . . . (1.3)

Theorem 1. ( [1]). The iteration is always convergent in the following sense: (i) If
the line segment {tz ∈ C : 0 < t ≤ 1} contains no zero of f , then zi → 0; (ii) If the
line segment contains at least one zero of f , then zi tends to the zero that is nearest
to z.

Theorem 2. ( [1]). The line segment {tz ∈ C : 0 < t ≤ 1} contains no zero of f , if
and only if the series

∑∞
n=0 zi is convergent.

Denote by LipMβ (0 < β ≤ 1) those functions for which

‖f (x)− f (y)‖ ≤M ‖x− y‖β (x, y ∈ D ⊂ D (f)). (1.4)

Lipβ denotes the set of those functions that are LipMβ for some constant M ≥ 0.

If f ∈LipLβ (L > 0), then ω (f ; δ) = ρ (δ) = Lδβ can be chosen. Thus ρ−1 (x) =

(x/L)
1/β

and the iteration function (1.1) takes the form

ψ (z) = zF

(
γ

(
|f (z)|
L

) 1
β

)
. (1.5)

It is interesting to note that Beauzamy [2] investigated the direct paths from 0 to
the zeros of polynomials P , that is the sets {P (tzj) : 0 ≤ t ≤ 1}, where zj is a zero
of P (z) (where P is normalized so that P (0) = 1). He showed that there is always
a zero towards which the direct path declines near 0, that is |P (tzj)| < |P (0)| if t
is small enough. However, starting with degree 5, there are polynomials for which
no direct path constantly remains below the altitude 1. Observe that Targonszky’s
method approaches the zero from above.

Also note that algorithm (1.2)–(1.3) works with any function f that is continuous
on the compact set S. The weak point of the algorithm is, however, its behavior at
zero. There is no indication if f has no zero on the line segment, while the algorithm
makes infinitely many iterations.

In this paper we extend Targonszky’s method for solving nonlinear equations in
more general environments. In Section 2 we analyze and generalize some of its prop-
erties. Then we develop some classes of iteration methods with better convergence



Always convergent methods for solving nonlinear equations 185

behavior. Using the new results we suggest always convergent iteration schemes for
solving nonlinear equations of the form

f (x) = 0 (f : Rn → Rm, x ∈ B = ×ni=1 [ai, bi]) , (1.6)

where f is continuous on B. These methods work on continuous curves lying in B and
exhibit a kind of monotone convergence to the nearest zero on the given curve, if it
exists, or the iterations leave the region in a finite number of steps. The convergence
is assured under continuity and its rate is estimated in many cases. The suggested
curves are space-filling curves and/or α-dense curves.

Definition 3. Let r : [0, 1] → [0, 1]
n

(n ≥ 2) be a continuous mapping. The curve
x = r (t) (t ∈ [0, 1]) is space-filling if r is surjective.

Given a space-filling curve r : [0, 1] → [0, 1]
n

and the hyperrectangle (or box)
B = ×ni=1 [ai, bi], the mapping

hi (t) = (bi − ai) ri (t) + ai, i = 1, . . . , n

clearly fills up the whole hyperrectangle B.

Space-filling curves are used in many areas ( [3], [4], [5], [6]). Their use in opti-
mization was first suggested by Butz [7], [8], followed by Strongin and others (see,
e.g. [9], [3], [6]). The use of Hilbert’s space-filling functions for solving nonlinear
systems was also suggested by Butz [10] and also later by Hlawka [11].

Definition 4. Let I = [a, b] ⊂ R be an interval and B = ×ni=1 [ai, bi] ⊂ Rn be a
rectangle. The map x : I → B is an α-dense curve, if for every x ∈ B, there exists a
t ∈ I such that ‖x (t)− x‖ ≤ α.

The concept and use of α−dense curves in optimization was suggested and applied
by Cherruault and Guillez (see, e.g. [12], [13] or [14]).

In Section 6 we analyze and select space-filling and α-dense functions. In Section
8 we test some of the new methods on a set of test problems in order to see the
feasibility of the suggested algorithms.

2. An analysis of Targonszky’s method

There are two key elements of Targonszky’s method. One is the iteration formula,
the other is a kind of Lipschitz property.

For the first element, we can reformulate the Targonszky method in the following
way. Set zi = zti (ti ∈ (0, 1]). Then iteration function (1.1) can be replaced by

ψ (t) = tF
(
γρ−1 (|f (zt)|)

)
, (2.1)

where function tF (y) has the following properties:

(i) tF (y) is strictly monotone increasing in t and strictly monotone decreasing in
y;

(ii) For t > 0 and y > 0, tF (y) < t;
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(iii) For t > 0, tF (y) = t if and only if y = 0.

In the next two sections we generalize this iteration method and also derive particular
formulae.

The second element is that if f has a zero z∗ = zt∗ ∈ {tz ∈ C : 0 < t ≤ 1}, then
γρ−1 (|f (zt)|) satisfies a kind of Lipschitz property

γρ−1 (|f (zt)|) ≤ |t− t
∗|

t∗
.

From the proof of Theorem 1 it seems that the latter property is the quintessential
element of Targonszky’s method. It can can be formulated more generally as follows.

Lemma 5. Assume that f ∈ C [a, b], ω (δ) = ω (f ; δ) is its modulus of continuity,
ρ : [0,∞) → [0,∞) is a strictly monotone increasing function such that ρ (0) = 0,
ρ (x) ≥ ω (x) for x ∈ [0, b− a] and limx→∞ ρ (x) = ∞. Assume that f has a zero
ξ ∈ [a, b]. Then

ρ−1 (|f (x)|) ≤ |x− ξ| (x ∈ [a, b]) .

Proof. Since |f (x)| = |f (x)− f (ξ)| ≤ ω (|x− ξ|) ≤ ρ (|x− ξ|) and ρ−1 is also strictly
monotone increasing we have ρ−1 (|f (x)|) ≤ |x− ξ|. �

If f ∈LipMβ, then ρ (δ) = ω (f ; δ) = Mδβ can be chosen. If f is not Lipschitz
β for some β (0 < β ≤ 1), then we can use the following result (for the proof, see
Efimov [15]).

Theorem 6. (S.B. Stechkin). For each modulus of continuity ω (δ), 0 ≤ δ ≤ b − a,
there is a concave modulus of continuity ω1 (δ) with the property

ω (δ) ≤ ω1 (δ) ≤ 2ω (δ) , 0 ≤ δ ≤ b− a. (2.2)

Function ω1 is called the least concave majorant of ω. It is easy to see that for
f 6≡ 0, either ω1 is strictly monotone on [0, b− a] or it is strictly increasing on some
interval [0, c] and becomes constant on [c, b− a].

In order to get a proper ρ we can take any continuous and strictly monotone
increasing function g (x) that satisfies g (0) = 0, g (x) ≥ x, and limx→∞ g (x) = ∞.
Then the function

ρ (x) =

{
g (x+ ω1 (x)) , 0 ≤ x ≤ b− a
g (x+ ω1 (b− a)) , x > b− a

will satisfy the requirements for ρ. For example, g (x) = ex − 1 is such a function.

Assume that T ⊂ Rn is a closed and bounded region and f : Rn → Rm is a
continuous function on T . The modulus of continuity of f is defined by

ω (δ) = ω (f ; δ) = sup
x1,x2∈T
‖x1−x2‖≤δ

‖f (x1)− f (x2)‖ (0 ≤ δ ≤ diam (T )) , (2.3)

where diam(T ) is the diameter of the compact region T . It is clear that ω (δ) is
monotone decreasing.
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For other properties, Kolodii and Khil’debrand [16] proved the following results:

(i) ω (δ) is continuous from the right;

(ii) ω (δ) is continuous from the left if and only if T satisfies the following condition
A: for any δ > 0 and any points x, y ∈ T , x 6= y, there are points x′, y′ ∈ T such that
‖x′ − x‖ < δ, ‖y′ − y‖ < δ and ‖x′ − y′‖ < ‖x− y‖;

(iii) ω (δ) is continuous if and only if T satisfies condition A;

(iv) ω is subadditive if and only if T is convex.

Note that any region T satisfying condition A is connected. It is also obvious that if
T is convex, then it satisfies condition A.

Lemma 7. Assume that T ⊂ Rn is a closed, bounded and convex region and f : Rn →
Rm is continuous on T . Let ωf denote the modulus of continuity of f on T . Let Γ
be any continuous curve that lays in T , that is Γ = {r (t) : 0 ≤ t ≤ τ} ⊂ T . Denote
its modulus of continuity by ωr. Assume that ρf , ρr : [0,∞)→ [0,∞) are continuous
and strictly monotone increasing functions so that

ρf (0) = 0, ρf (δ) ≥ ωf (δ) (δ ∈ [0, diam (T )]) , lim
δ→∞

ρf (δ) =∞ (2.4)

and

ρr (0) = 0, ρr (δ) ≥ ωr (δ) (δ ∈ [0, τ ]) , lim
δ→∞

ρr (δ) =∞ (2.5)

hold, respectively. If f (r (t)) has a zero ξ on the curve Γ, that is f (r (ξ)) = 0 for
some ξ ∈ [0, τ ], then

ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
≤ |t− ξ| (t ∈ [0, τ ]) . (2.6)

Proof. Since

‖f (r (t))‖ = ‖f (r (t))− f (r (ξ))‖ ≤ ωf (‖r (t)− r (ξ)‖) ≤ ρf (‖r (t)− r (ξ)‖) ,

we have

ρ−1
f (‖f (r (t))‖) ≤ ‖r (t)− r (ξ)‖ ≤ ωr (|t− ξ|) ≤ ρr (|t− ξ|)

and

ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
≤ |t− ξ| .

�

Assume that f ∈LipLfβ (0 < β ≤ 1). Then ωf (δ) ≤ Lfδ
β and we can select

ρf (δ) = Lfδ
β and ρ−1

f (δ) =
(
δ
Lf

)1/β

. Similarly, if curve Γ is LipLΓ
µ (µ ∈ (0, 1]),

that is

‖r (s)− r (t)‖ ≤ LΓ |s− t|µ (t, s ∈ [0, τ ]) , (2.7)



188 A. Galántai

then ωr (δ) ≤ LΓδ
µ and so we can take ρr (δ) = LΓδ

µ and ρ−1
r (δ) =

(
δ
LΓ

)1/µ

. Thus

ρ−1
r

(
ρ−1
f (δ)

)
= 1

L
1
µ
Γ

(
δ
Lf

) 1
µβ

and in the case of a zero ξ ∈ [0, τ ], we have the estimate

ρ−1
r ρ−1

f (‖f (r (t))‖) =
1

L
1
µ

Γ

(
‖f (r (t))‖

Lf

) 1
µβ

≤ |t− ξ| (t ∈ [0, τ ]) . (2.8)

In Targonszky’s case r (t) = t for which µ = 1, LΓ = |z|.

Corollary 8. Assume that both f and Γ are bi-Hölder, that is

kf ‖x− y‖β ≤ ‖f (x)− f (y)‖ ≤ Lf ‖x− y‖β (x, y ∈ T ) (2.9)

and

kΓ |s− t|µ ≤ ‖r (s)− r (t)‖ ≤ LΓ |s− t|µ (s, t ∈ [0, τ ]) . (2.10)

If f (r (t)) has a zero ξ on the curve Γ, that is f (r (ξ)) = 0 for some ξ ∈ [0, τ ], then(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.11)

Proof. Since

kfk
β
Γ |t− ξ|

µβ ≤ ‖f (r (t))‖ ≤ LfLβΓ |t− ξ|
µβ

we have

ρ−1
r

[kfkβΓ |t− ξ|µβ
Lf

]1/β
 ≤ ρ−1

r ρ−1
f (‖f (r (t))‖) ≤ ρ−1

r (LΓ |t− ξ|µ) = |t− ξ| .

By definition

ρ−1
r

[kfkβΓ |t− ξ|µβ
Lf

]1/β
 =

(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ,

and so we have the two-sided bound(
kΓ

LΓ

) 1
µ
(
kf
Lf

) 1
aβ

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.12)

�

If Γ ⊂ R is an interval, that is r (t) = t, then kΓ = LΓ = 1, µ = 1, ρr (t) = t and(
kf
Lf

) 1
β

|t− ξ| ≤ ρ−1
r ρ−1

f (‖f (r (t))‖) ≤ |t− ξ| . (2.13)
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3. A general class of iteration methods

We investigate iteration methods of the form

xi+1 = F (xi, ϕ (xi))

for solving real equation f (x) = 0 on the interval [a, 1] ([a, 1] ⊂ [0, 1], f ∈ C [a, 1]).
The selection of interval [0, 1] is only for convenience. We assume that F (x, y) =
x ⇔ y = 0 (x ≥ a), F (x, y) > x or F (x, y) < x for y > 0, ϕ (x) ≥ 0 and ϕ (x) =
0 ⇔ f (x) = 0. We also assume that y ≥ 0 and y := ϕ (x) ≤ |x− ξ|, if a zero ξ of f
exists in the interval [a, 1]. Both F and ϕ are continuous, F (x, y) is strictly monotone
increasing in x and strictly monotone in y. We separately investigate the case when
a = 0 and F (0, y) = 0 may occur for some y > 0.

Theorem 9. Assume that
(a) F (x, y) is continuous in [a, 1]× [0,∞);
(b) x ≥ a, F (x, y) = x⇔ y = 0;
(c) F (x, y) < x (x ∈ [a, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;
Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [a, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = 1 and assume that ϕ (1) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.1)

Then {xi} is a strictly monotone decreasing sequence that converges to ξmax if a root
exists in [a, 1]. If no root exists, then the sequence {xi} leaves the interval [a, 1] in a
finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 < xi by (c). If ϕ (xi) = 0 then xi+1 = xi by (b).
Assume that xi > ξmax. Then ϕ (xi) ≤ xi − ξmax and xi+1 = F (xi, ϕ (xi)) ≥
ξmax by (d). Hence the sequence {xi} can not pass the zero ξmax. Since {xi} is a
monotone decreasing sequence bounded from below, it has a limit point x∗ so that
ξmax ≤ x∗ = F (x∗, ϕ (x∗)). Hence x∗ = ξmax. If there is no zero in [a, 1], then
x − F (x, ϕ (x)) ≥ m > 0 (x ∈ [a, 1]) by (c). Hence xi+1 ≤ xi −m and for a large
enough i, xi < a. �

Corollary 10. If for x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ,

F (x, y) ≥ ξ + κ2 (x− ξ) (0 < κ2 < 1), (3.2)

and ϕ (x) is such that ϕ (x) ≤ |x− ξ| (x ∈ [a, b]), then the speed of convergence is at
best linear.

Proof. Since 0 ≤ ϕ (xi) ≤ xi − ξ, the assumption implies

xi+1 − ξmax = F (xi, ϕ (xi))− ξmax ≥ κ2 (xi − ξmax) ,

which proves this. �
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Corollary 11. If for x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ θ (x− ξ) ≤ y ≤ x− ξ,

ξ + κ1 (x− ξ) ≥ F (x, y) (3.3)

holds with constant 0 < κ2 < κ1 < 1, and ϕ (x) is such that θ |x− ξ| ≤ ϕ (x) ≤ |x− ξ|
(x ∈ [a, b]), then the convergence speed is linear.

Proof. The assumption implies θ (xi − ξmax) ≤ ϕ (xi) ≤ xi − ξmax and

κ1 (xi − ξmax) ≥ xi+1 − ξmax ≥ κ2 (xi − ξmax) .

�

If a = 0 and F (x, y) = x is possible for y > 0 and x = 0, then what we can prove
is prove definitely less.

Theorem 12. Assume that
(a) F (x, y) is continuous in [0, 1]× [0,∞);
(b) x > 0, F (x, y) = x⇔ y = 0;
(c) F (x, y) < x (x ∈ (0, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [0, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;
Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [0, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = 1 and assume that ϕ (1) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.4)

Then {xi} is a strictly monotone decreasing sequence that converges to ξmax if a root
exists in [0, 1]. If no root exists, then the sequence {xi} either converges to 0 or leaves
the interval [0, 1] in a finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 < xi by (c). If ϕ (xi) = 0 then xi+1 = xi by (b).
Assume that xi > ξmax. Then ϕ (xi) ≤ xi − ξmax and xi+1 = F (xi, ϕ (xi)) ≥ ξmax by
(d). Hence the sequence {xi} can not pass the zero ξmax. Since {xi} is a monotone
decreasing sequence bounded from below, it has a limit point x∗ so that ξmax ≤ x∗ =
F (x∗, ϕ (x∗)). Hence x∗ = ξmax. If there is no zero in [0, 1], then we have two possible
cases: xi ≥ 0 for all i or xi0 < 0 holds for some integer i0 > 0. If xi ≥ 0 for all i and
we have no zero in [0, 1], then xi → 0 must hold. �

Remark 13. The result is different from the previous one. The Targonszky case
indicates that problems with a = 0 if F (0, y) = 0 may happen for y > 0. The two
corollaries of the previous theorem also hold.

Theorem 14. Assume that
(a1) F (x, y) is continuous in [a, 1]× [0,∞);
(b1) x ≥ a, F (x, y) = x⇔ y = 0;
(c1) F (x, y) > x (x ∈ [a, 1], y > 0);
(d1) For x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ ξ − x, F (x, y) ≤ ξ;
(e1) F (x, y) is strictly monotone increasing both in x and y.
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Assume further that ϕ (x) ≥ 0, ϕ (ξ) = 0 ⇔ f (ξ) = 0 and if a root ξ ∈ [a, 1] exists,
then ϕ (x) ≤ |x− ξ|. Let x0 = a and assume that ϕ (a) > 0. Define

xi+1 = F (xi, ϕ (xi)) (i = 0, 1, 2, . . .). (3.5)

Then {xi} is a strictly monotone increasing sequence that converges to ξmin if a root
exists in [a, 1]. If no root exists, then the sequence {xi} leaves the interval [a, 1] in a
finite number of steps.

Proof. If ϕ (xi) > 0, then xi+1 > xi by (c1). If ϕ (xi) = 0 then xi+1 = xi by
(b1). Assume that xi > ξmax. Then ϕ (xi) ≤ ξmin − xi and xi+1 = F (xi, ϕ (xi)) ≤
ξmin by (d1). Hence the sequence {xi} cannot pass the zero ξmin. Since {xi} is a
monotone increasing sequence bounded from above, it has a limit point x∗ so that
ξmin ≥ x∗ = F (x∗, ϕ (x∗)). Hence x∗ = ξmin. If there is no zero in [a, 1], then
F (x, ϕ (x)) − x ≥ m > 0 (x ∈ [a, 1]) by (c1). Hence xi+1 ≥ xi + m and for a large
enough i, xi > 1. �

Corollary 15. If for x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ ξ − x,

F (x, y) ≤ ξ − λ2 (ξ − x) (0 < λ2 < 1), (3.6)

and ϕ (x) is such that ϕ (x) ≤ |x− ξ| (x ∈ [a, b]), then the speed of convergence is at
best linear.

Proof. The assumption implies

ξmin − xi+1 = ξmin − F (xi, ϕ (xi)) ≥ λ2 (ξmin − xi) ,

which proves this. �

Corollary 16. If for x < ξ (x, ξ ∈ [a, 1]) and 0 ≤ θ (ξ − x) ≤ y ≤ ξ − x,

ξ − λ1 (ξ − x) ≤ F (x, y) (3.7)

holds with constants 0 < λ2 < λ1 < 1, and ϕ is such that θ |x− ξ| ≤ ϕ (x) ≤ |x− ξ|
(x ∈ [a, 1]), then the convergence speed is linear.

Proof. The assumption implies θ (ξmin − xi) ≤ ϕ (xi) ≤ ξmin − xi and

λ2 (ξmin − xi) ≤ ξmin − xi+1 ≤ λ1 (ξmin − xi) .

�

For certain cases a = 0 is possible. For F (x, y) = x (1 + y) the iteration does not
start from x0 = 0.
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4. Some iteration functions

Using requirements (a)-(e), (a1)-(e1) and various assumptions on the form of
F (x, y) such as

F (x, y) = g (x)h (y) ,

F (x, y) = g (x) + h (y) ,

and

F (x, y) =
α+ βx+ γy

a+ bx+ cy

we derived the iteration functions (d-1)-(d-3), (i-1)-(i-3) given in the following tables.
These tables also contain iteration functions (d-4), (i-4) that are direct generalizations
of method [17] (see, also [18], [19]). It is assumed that function U is strictly monotone
increasing, and both U and U−1 are Lipschitz with LU−1 < 1 and LU > 1.

For the error constants κ1, κ2, λ1 and λ2 we have to assume the existence of a zero
ξ.

monotone decreasing case κ2 κ1

(d-1) F (x, y) = x
1+y (1− ξ) /2 ≥ 0 1− θξ ≤ 1

(d-2) F (x, y) = x− 1
P y (P ≥ 1) 1− 1

P ≥ 0 1− θ
P < 1

(d-3) F (x, y) = px+qy
p+wy

p−w+q
p+w ≥ 0 p−θ(wξ−q)

p < 1

(p > 0, W ≥ 0, q < 0, p ≥W − q)
(d-4) F (x, y) = U−1 (U (x)− y) 1− LU−1 1− θ

LU

monotone increasing case λ2 λ1

(i-1) F (x, y) = x (1 + y) 1− x ≥ 0 1− θx ≤ 1

(i-2) F (x, y) = x+ 1
P y (P ≥ 1) 1− 1

P ≥ 0 1− θ
P < 1

(i-3) F (x, y) = px+qy
p+wy (p ≥ q > w ≥ 0) p−(q−wξ)

p+w ≥ 0 p−θ(q−wξ)
p < 1

(i-4) F (x, y) = U−1 (U (x) + y) 1− LU−1 1− θ
LU

Formulae (d-1) and (d-2) are special cases of (d-3). Case (d-1) is Targonszky’s
formula and F (x, y) = x⇔ y = 0 holds only for x > 0.

Formula (i-2) is a special case of (i-3). For (i-1), F (x, y) = x ⇔ y = 0 holds only
for x > 0.

If U (x) = Px+ q, then U−1 (x) = x−q
P and U−1 (U (x)± y) = x± 1

P y. In this case
formulae (d-2) and (i-2) are special cases of subclasses (d-4) and (i-4).

While the determination of error constants for cases (1)-(3) is rather straightfor-
ward, cases (d-4)-(i-4) require some argument. Here we exploit the strict monotonicity
of U and U−1 as follows. For x > ξ,

U−1 (U (x)− y)− ξ ≥ κ2 (x− ξ)⇔ U (x)− y ≥ U (ξ + κ2 (x− ξ))⇔

U (x)− U (ξ + κ2 (x− ξ)) > 1

LU−1

(1− κ2) (x− ξ) ≥ x− ξ ≥ y
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holds if 1
LU−1

(1− κ2) ≥ 1. This gives the error constant κ2 ≤ 1 − LU−1 . Also we

have

κ1 (x− ξ) ≥ F (x, y)− ξ ⇔ U (κ1 (x− ξ) + ξ) ≥ U (x)− y ⇔
U (x)− U (κ1 (x− ξ) + ξ) ≤ LU (x− ξ − κ1 (x− ξ))

= LU (1− κ1) (x− ξ) ≤ θ (x− ξ) ≤ y,

that is if LU (1− κ1) ≤ θ, which leads to κ1 ≥ 1− θ
LU

.

Derivation of (i-4) error constants is similar. Note that in case (d-3) κ2 > 0, if
p > W − q. Similarly in case (i-3) λ2 > 0 if p > q.

5. Iteration methods for general equations

Here we study equations of the form

f (x) = 0 (f : Rn → Rm, x ∈ T = ×ni=1 [ai, bi]) , (5.1)

where f is continuous on the (compact) rectangle/hyperinterval T , and each of the
cases n = m, n < m and n > m is possible.

Assume that a continuous curve Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ T is given. We seek for
the solution of f (x) = 0 on the curve Γ, that is the solution of equation

f (r (t)) = 0 (t ∈ [0, 1]) , (5.2)

which is equivalent to the real equation

‖f (r (t))‖ = 0 (t ∈ [0, 1]) . (5.3)

Taking any iteration method ti+1 = F (ti, ϕ (ti)) of Section 3 with

ϕ (t) = ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
(5.4)

we have an always convergent iteration method that either solves the equation on the
curve Γ or leaves Γ in a finite number of steps.

One can easily reformulate Theorems 9, 12 and 14 and their respective Corollaries.
We just do this with Theorem 9.

Theorem 17. Assume that f : Rn → Rm is continuous on the rectangle T =
×ni=1 [ai, bi] and Γ = {r (t) : 0 ≤ t ≤ 1} ⊂ T is a continuous curve. Let ωf and ωr
be the modulus of continuity of f on T and Γ on [0, 1], respectively. Assume that
ρf , ρr : [0,∞)→ [0,∞) are continuous and strictly monotone increasing functions so
that

ρf (0) = 0, ρf (δ) ≥ ωf (δ) (δ ∈ [0, diam (T )]) , lim
δ→∞

ρf (δ) =∞ (5.5)

and
ρr (0) = 0, ρr (δ) ≥ ωr (δ) (δ ∈ [0, τ ]) , lim

δ→∞
ρr (δ) =∞ (5.6)

hold, respectively. Furthermore assume that
(a) F (x, y) is continuous in [a, 1]× [0,∞);
(b) x ≥ a, F (x, y) = x⇔ y = 0;



194 A. Galántai

(c) F (x, y) < x (x ∈ [a, 1], y > 0);
(d) For x > ξ (x, ξ ∈ [a, 1]) and 0 ≤ y ≤ x− ξ, F (x, y) ≥ ξ.
(e) F (x, y) is strictly monotone increasing in x, and strictly monotone decreasing in
y;

Define ϕ (t) = ρ−1
r

(
ρ−1
f (‖f (r (t))‖)

)
(t ∈ [a, 1]). Let t0 = 1 and assume that ϕ (1) >

0. Define

ti+1 = F (ti, ϕ (ti)) (i = 0, 1, 2, . . .). (5.7)

Then {ti} is a strictly monotone decreasing sequence that converges to ξmax if a root
ξ of ‖f (r (t))‖ = 0 exists in [a, 1]. If no root exists, then the sequence {ti} leaves the
interval [a, 1] in a finite number of steps.

If Γ is a space-filling curve, then we clearly have the always convergence property.
Butz [10] suggested using the Hilbert curve, while Hlawka [11] suggested using the
Schoenberg curve.

If the selected curve Γ is not space-filling, the algorithm may fail to find a zero.
However the space-filling functions used in practice are only approximations to the
true ones, and do not have the space-filling property. Hence in practice we are forced
to use approximate curves.

6. Selection of curves

6.1. Space-filling curves. The first examples of space-filling functions were given
by Peano in 2D and 3D and were followed by several other space-filling functions
constructed by Hilbert, Lebesgue, Sierpinski, Schoenberg and many others (see, e.g.
Singh [20], Sagan [21], Bader [22]). There are plenty of space-filling or Peano-type
curves that are applied in a variety of fields (see, e.g. Strongin-Sergeyev [3], Zumbusch
[4], Bebendorf [5], Sergeyev at al. [6]). The most often applied space-filling function
is the Hilbert function (for definition, see, e.g. [21], Butz [7], [23], [3], [4], [6]).

Lemma 18. The Hilbert mapping rH : [0, 1]→ [0, 1]
n

is space-filling, nowhere differ-
entiable and LipKµ with K = 2

√
n+ 3 and µ = 1/n:

‖rH (s)− rH (t)‖ ≤ K |s− t|1/n (s, t ∈ [0, 1]) . (6.1)

For a proof, see, e.g. [4] (p. 96). Other n-dimensional space-filling functions that
are Lip 1

n are the Peano and Sierpiński curves (see [4] p. 101).

Buckley [24] proved that there exist 2D space-filling curves f that are Lip 1
2 , but

no such curve is Lipµ for µ > 1/2. Hence for n = 2, the Lipschitz/Hölder-exponent
of the Hilbert curve is the best possible. However the estimate of Lipschitz constant
K = 2

√
5 ≈ 4.4721 is not the sharpest result. Bauman [25] proved that K = 2

√
5

can be replaced by K =
√

6 = 2.4495. For a more refined characterization of the
smoothness properties of space-filling functions, see Jaffard-Nicolay [26].

Most of the space-filling functions are defined by a possibly recursive geometric
process [21]. Any evaluation of the function at a point requires building up a good
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approximation to the whole function. We however need only to estimate the function
at certain points.

From this point of view, Schoenberg’s space filling-function [27], [28] is different,
as it is defined by absolutely convergent series that can be evaluated at any point.
Define function p as

p (t) =


0, 0 ≤ t ≤ 1/3
3t− 1, 1/3 ≤ t ≤ 2/3
1, 2/3 ≤ t ≤ 4/3
5− 3t, 4/3 ≤ t ≤ 5/3
0, 5/3 ≤ t ≤ 2

(6.2)

and extend it periodically by p (t+ 2) = p (t) (t ∈ R). Note that 0 ≤ p (t) ≤ 1 for
any t ∈ R. Also we have |p (s)− p (t)| ≤ 3 |s− t| (s, t ∈ [0, 2]), which extends to
|p (s)− p (t)| ≤ 3 |s− t| (s, t ≥ 0).

The two-dimensional space-filling curve of Schoenberg [27] is defined by

rSch (t) = [x(t), y (t)]
T

(t ∈ [0, 1]), (6.3)

where

x (t) =
1

2

∞∑
k=0

p
(
32kt

)
2k

, y (t) =
1

2

∞∑
k=0

p
(
32k+1t

)
2k

. (6.4)

Steele [29] proved that Schoenberg’s 2D curve is Lipschitz α with α = 1
2 log2 3 ≈

0.31546 (see also Jaffard-Nicolay [26]).

For general finite dimensional spaces Hlawka [11] extended Schoenberg’s functions
[27], [28]. The n-dimensional Schoenberg space-filling curve r : [0, 1] → [0, 1]

n
is

defined by

rj (t) =

∞∑
k=0

1

2k+1
p
(
3nk+j−1t

)
(j = 1, . . . , n) . (6.5)

Using the proof of Steele [29] we estimate the Lipschitz exponent and also the Lipschitz
constant.

Lemma 19. The n-dimensional Schoenberg curve is LipLα with α = 1
log2 3n and

Lipschitz constant L ≤ 32n/
√

2.

Proof. We can write

|rj (s)− rj (t)| ≤ 1

2

∑̀
k=0

∣∣p (3nk+j−1s
)
− p

(
3nk+j−1t

)∣∣
2k

+
1

2

∞∑
k=`+1

2

2k

≤ 3j |s− t|
2

∑̀
k=0

(
3n

2

)k
+

1

2`+1



196 A. Galántai

=
3n+j |s− t|
2 (3n − 2)

(
3n

2

)`
+

1

2`+1

Select ` so that

− log2 |s− t|
log2 3n

< ` ≤ − log2 |s− t|
log2 3n

+ 1.

Then

|rj (s)− rj (t)| ≤ 1

2

(
32n+j

3n − 2
+ 1

)
|s− t|

1
log2 3n

and

‖r(s)− r(t)‖22 ≤

1

4

n∑
j=1

(
32n+j

3n − 2
+ 1

)2
 |s− t| 2

log2 3n . (6.6)

A simple calculation yields the estimates for n ≥ 2 and 1 ≤ j ≤ n,

32n+j

3n − 2
+ 1 ≤ 4

3
3n+j

and
1

4

n∑
j=1

(
32n+j

3n − 2
+ 1

)2

≤ 1

2
32n

(
32n − 1

)
.

Hence we obtain the estimate

‖r(s)− r(t)‖2 ≤
32n

√
2
|s− t|

1
log2 3n .

�

A direct substitution into formula (6.6) gives a somewhat better result. For

example for n = 2 and n = 3, we obtain L = 55.54 (vs 34/
√

2 = 57.276) and

L = 417.95 (vs. 36/
√

2) = 515.48, respectively. Note however that

lim
n→∞

1
4

∑n
j=1

(
32n+j

3n−2 + 1
)2

1
234n

=
9

16
.

Note that the n-dimensional Lebesgue space-filling curve is also Lip 1
log2 3n (see [4]

p.108). Both curves are based on the Cantor set and closely related (see, e.g. [27], [4],
[26], [30]).

6.2. Alpha-dense curves. The idea of α-dense curves comes from the Alienor method
of optimization and it is due to Cherruault and Guillez (see, e.g. [12], [13]). The the-
ory and application of α-dense curves is summarized in the monograph by Cherruault
and Mora [14].

Definition 20. Let I = [a, b] ⊂ R be an interval and B = ×ni=1 [ai, bi] ⊂ Rn be a
rectangle. The map x : I → B is an α-dense curve, if for every x ∈ B, there exists a
t ∈ I such that ‖x (t)− x‖ ≤ α.
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There are many α-dense curves (see, e.g. [14]). Particularly we mention two curves:

xi (t) =
1

2
(1− cos (ωi2πt)) , i = 1, . . . , n (6.7)

by Cherruault and

x1 (t) = t, (6.8)

xi (t) =
1

2

(
1− cos

(
σi−12πt

))
, i = 2, . . . , n (6.9)

by Mora.

Note that approximations of space-filling curves are also α-dense curves for some
α. For 2D, the nth approximating polygon of the Hilbert curve is α-dense with
α ≤
√

2/22n, while for 3D, α ≤
√

3/23n (see, e.g. Sagan [21]).

Mora [31] gave a characterization of the connection between space-filling curves
and α-dense curves.

The α-dense curves are not space-filling functions. Hence for any small α > 0,
the solver can fail. This may happen, however, with the approximate space-filling
functions as well.

However it is easy to evaluate/compute α-dense curves and they may be smooth
enough. It is a disadvantage that the known constructions are such that their Lipschitz
constant grows to infinity, while α→ 0.

We use the following class of α-dense curves.

Assume that fi : [0, 1] → [0, 1] (i = 1, . . . , n) are continuous functions such that
for each i = 1, 2, . . . , n, Range(fi) = [0, 1] and fi is periodically extended to R with
period 1. Also assume that there exist constants Li > 0 and 0 < βi ≤ 1 such that

|fi (x)− fi (y)| ≤ Li |x− y|βi (x, y ∈ [0, 1]) (6.10)

hold for i = 1, 2, . . . , n. Define the curve x : [0, 1]→ [0, 1]
n

by

xi (t) = fi (ωit) , i = 1, . . . , n, (6.11)

where ωi’s are positive integers such that ωi+1 = σiωi with σi ∈ N and σi ≥ 1.

It is clear that xi (t) is periodic with period Ti = 1/ωi. Note that Ti = σiTi+1.

Lemma 21. The density of curve (6.11) is

α ≤

 n∑
i=1

L2
i(

σβii

)2


1/2

(6.12)

Proof. Choose any point a ∈ [0, 1]
n
. We estimate the distance between a and the

curve x (t). There exists t1 ∈
[
0, 1

ω1

]
such that x1 (t1) = a1. There is a unique integer
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0 ≤ k1 ≤ σ1 − 1 such that t1 ∈ I1 =
[
k1

ω2
, 1+k1

ω2

]
. Note that for any t ∈ I1,

|x1 (t)− a1| = |f1 (ω1t)− f1 (ω1t1)| ≤ L1 (ω1 |t− t1|)β1 ≤ L1

σβ1

1

.

There exists t2 ∈
[
0, 1

ω2

]
such that x2 (t2) = a2. There is a unique integer 0 ≤ k2 ≤

σ2 − 1 such that t2 ∈
[
k2

ω3
, 1+k2

ω3

]
. For any t ∈

[
k2

ω3
, 1+k2

ω3

]
,

|x2 (t)− a2| = |f2 (ω2t)− f2 (ω2t2)| ≤ L2 (ω2 |t− t2|)β2 ≤ L2

σβ2

2

.

Define I2 =
[
k1

ω2
+ k2

ω3
, k1

ω2
+ 1+k2

ω3

]
. Since 1+k2

ω3
≤ 1

ω2
, I2 ⊂ I1. The periodicity

assumption implies that for t ∈ I2,

|x2 (t)− a2| ≤ L2 (ω2 |t− t2|)β2 ≤ L2

σβ2

2

also holds. Assume that for j ≥ 2, we have the interval

Ij =

[
j∑
i=1

ki
ωi+1

,
1

ωj+1
+

j∑
i=1

ki
ωi+1

]
⊂ Ij−1

such that for t ∈ Ij , |xj (t)− aj | ≤ Lj/σ
βj
j holds. There exists tj+1 ∈

[
0, 1

ωj+1

]
such

that xj+1 (tj+1) = aj+1. There is a unique integer 0 ≤ kj+1 ≤ σj+1 − 1 such that

tj+1 ∈
[
kj+1

ωj+2
,

1+kj+1

ωj+2

]
. For any t ∈

[
kj+1

ωj+2
,

1+kj+1

ωj+2

]
,

|xj+1 (t)− aj+1| ≤ Lj+1 (ωj+1 |t− tj+1|)βj+1 ≤ Lj+1

σ
βj+1

j+1

.

Define

Ij+1 =

[
j+1∑
i=1

ki
ωi+1

,
1

ωj+2
+

j+1∑
i=1

ki
ωi+1

]
.

Since
1+kj+1

ωj+2
≤ 1

ωj+1
, Ij+1 ⊂ Ij . By the periodicity of xj+1 (t), for t ∈ Ij+1,

|xj+1 (t)− aj+1| ≤ Lj+1 (ωj+1 |t− tj+1|)βj+1 ≤ Lj+1/σ
βj+1

j+1 .

Thus we have a sequence of intervals In ⊂ In−1 ⊂ · · · ⊂ I1 such that for any t ∈ In,

|xj (t)− aj | ≤
Lj

σ
βj
j

(j = 1, 2, . . . , n) .

Hence the density of x (t) is estimated by

‖x (t)− a‖22 ≤
n∑
i=1

L2
i(

σβii

)2 . (6.13)

�
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Remark 22. Since σi is specified by ωi+1 = σiωi for i = 1, . . . , n− 1, σn ≥ 1 is our
choice. If L = Lj, σi = σ > 1 and βi = 1 (i = 1, . . . , n − 1), then we can select
σn = σ and so the density estimate becomes

‖x (t)− a‖2 ≤
√
nL

σ
. (6.14)

If f1 (t) = t, ω1 = 1 and L = Lj, σi = σ > 1, βi = 1 (i = 2, . . . , n), then

‖x (t)− a‖2 ≤
√

1 + (n− 1)L2

σ
. (6.15)

Remark 23. It is clear from the proof that for f1 (t) = t, we do not need its periodic
extension to R. It also follows that for t1 6= t2, x (t1) 6= x (t2), unlike in the case of
space-filling functions.

If fi is periodically extended to R, then its Lipschitz constant may change.

Lemma 24. If fi is continuously and periodically extended to R, then

|fi (s)− fi (t)| ≤ 21−βiLi |s− t|βi (s, t ≥ 0) . (6.16)

Proof. Assume that βi = 1. If s, t ∈ [k, k + 1] (k ≥ 0 integer), then

|fi (s)− fi (t)| = |fi (s− k)− fi (t− k)| ≤ Li |s− t| ,
which clearly extends to R. Assume that βi < 1. If s, t ∈ [k, k + 1] (k ≥ 0 integer),
then

|fi (s)− fi (t)| = |fi (s− k)− fi (t− k)| ≤ Li |s− t|βi .

If, say s > t and s ∈ [k, k + 1], t ∈ [j, j + 1] and k ≥ j + 1, then by the periodicity
and the continuity

|fi (s)− fi (t)| = |fi (s)− fi (k) + fi (j + 1)− fi (t)| ≤ Li
(
|s− k|βi + |j + 1− t|βi

)
.

Since xβi is concave, the Jensen inequality implies that

|s− k|βi + |j + 1− t|βi ≤ 2

(
s− k + j + 1− t

2

)βi
≤ 2

(
s− t

2

)βi
and

|fi (s)− fi (t)| ≤ 21−βiLi |s− t|βi .

�

Corollary 25. Curve (6.11) satisfies the Lipschitz condition

‖x (t)− x (s)‖2 ≤

[
n∑
i=1

(
21−βiLiω

βi
i |s− t|

βi
)2
]1/2

(s, t ∈ [0, 1]) . (6.17)

Particularly, if L = Lj, σi = σ > 1 and βi = 1 (i = 1, . . . , n), then

‖x (t)− x (s)‖2 ≤ ω1L

(
σ2n − 1

σ2 − 1

)1/2

|s− t| (s, t ∈ [0, 1]) . (6.18)



200 A. Galántai

If f1 (t) = t, ω1 = 1 and L = Lj, σi = σ > 1, βi = 1 (i = 2, . . . , n), then

‖x (t)− x (s)‖2 ≤
(

1 + L2σ
2n − σ2

σ2 − 1

)1/2

|s− t| (s, t ∈ [0, 1]) . (6.19)

7. Comparison with known methods

The use of space filling functions for solving nonlinear equations first appeared in
Butz [10] and later in Hlawka [11]. In the context of the theory of uniform distributions
Hlawka suggested a quadrature related method that uses Schoenberg’s space-filling
curve and is different from the present approach.

Butz [10] investigated the following problem

f (x) = 0
(
f : X ⊂ [0, 1]

n → RN
)
, (7.1)

where X is nonempty and closed. Let h : [0, 1]→ [0, 1]
n

be a space-filling curve that
satisfies the Lipschitz condition

‖h (t)− h (t+ ∆)‖ ≤ B (∆t, t) ≤M∆1/n (t, t+ ∆t ∈ [0, 1] , ∆t ≥ 0) , (7.2)

where B is a nondecreasing function of ∆t, and B = 0 if and only if ∆t = 0.

Define
t (X) = min {t : t ∈ [0, 1] , h (t) ∈ X} (7.3)

and x (X) = h
(
t (X)

)
.

Theorem 26. (Butz [10]) Assume that ω (x) is some function and γ (x) is some
continuous function such that for all x ∈ [0, 1]

n
,

ω (x) ≥ γ (x) ≥ 0 (7.4)

with strict inequality on the right if x /∈ X and, if X is not empty,

ω (x) ≤ ‖x− x′‖ (7.5)

for every x′ ∈ X. Let
{
ti, xi

}
be a sequence, where t0 = 0 and xi = h

(
ti
)

such that

ti+1 = min
{

1, ti + ∆ti
}
, (7.6)

where ∆ti ≥ 0 is such that

ω
(
xi
)
≥ B

(
∆ti, ti

)
≥ min

{
κ,

1

2
ω
(
xi
)}

, (7.7)

where κ > 0 is some constant, with strict inequality on the left if ω
(
xi
)
> 0 (xi /∈ X).

Then if X is not empty, ti → t (X) and xi → x (X) with ti+1 > ti for all i (unless
h (0) ∈ X). If X is empty, ti = 1 for finite i with ω (h (1)) > 0.

Butz applies this result and Hilbert’s space-filling function to solve equation

f (x) = 0
(
f : [0, 1]

n → RN
)
,

when X is the solution set, and it is assumed that for any solution x∗ ∈ X,

|fk (x)| ≤ Kk ‖x− x∗‖ (x ∈ [0, 1]
n
, k = 1, . . . , N) (7.8)
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holds with positive constants Kk. Using

ω (x) = max
1≤k≤N

|fk (x)|
Kk

(≤ ‖x− x∗‖) (7.9)

his algorithm (7.6) takes the form

ti+1 = ti +

(
ω
(
xi
)

M

)n
(7.10)

(for this see [10], p. 379).

Since fk (x) = 0⇔ fk (x) /Kk = 0, we can assume that equation f (x) = 0 is such
that every Kk = 1. Then ω (x) = maxk |fk (x)| = ‖f (x)‖∞. Here ρr (δ) = Mδ1/n

and ρf (δ) = δ, ρ−1
r (δ) =

(
δ
M

)n
and ρ−1

f (δ) = δ. Hence

ρ1
r

(
ρ−1
f (δ)

)
= ρ−1

r (δ) =

(
δ

M

)n
,

and

ρ1
r

(
ρ−1
f (‖f (r (t))‖)

)
=

(
‖f (r (t))‖

M

)n
Hence formula (7.10) clearly corresponds to iteration function (i-2) with P = 1.

8. Numerical experiments

The purpose of testing is only to get some view about the feasibility and behavior of
the suggested algorithms. It is clear that space-filling curves have no finite arclength
and so the computation time to get the first zero on the curve (if it exists) can be
arbitrarily high. The smooth α-dense curves have finite arclength that increases to
infinity when α→ 0.

8.1. The tested algorithms and curves. 1. Targonszky’s extended formula ((d-
1))

F (x, y) =
x

1 + y
.

2. Formula (d-2) with P = 1:

F (x, y) = x− y.

This formula corresponds to formula (7.10) of Butz.

3. Formula (d-3) with fixed parameters

F (x, y) =
x− 0.5y

1 + 0.5y
.

4. Formula (d-4) with U (x) = (x+ 2)
2
:

F (x, y) =

√
(x+ 2)

2 − y − 2.
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The tested curves were the Hilbert and Schoenberg space-filling-curves and the
following α-dense curves: Cherruault curve with ωi = σi, Mora’s curve, and three
other curves of the form

x1 (t) = t

xi (t) = f
(
σi−1t

)
, i = 2, . . . , n,

with f (x) = p (2x) (Schoenberg’s p (x), identified as Schoenberg-α), f (x) = 1 −
|2x− 1| (identified as ADC1) and

f (x) =


3
2x+ 1

2 , 0 ≤ x ≤ 1/3
2− 3x, 1/3 ≤ x ≤ 2/3
3
2x− 1, 2/3 ≤ x ≤ 1

(identified as ADC2).

For the computation of the 2D Hilbert curve we used the algorithm on page 52
of Bader [22] with depth = 50, that computes the points of the curve with an error
proportional to 2−50 = 8.8818 × 10−16. For 3D, we used a recursively generated
approximate Hilbert curve with 2097152 points and density α ≈ 0.0078. The error
of the used Schoenberg curve approximation is also proportional to 2−50 = 8.8818×
10−16.

The problem of exit or termination condition is well-known both from practical
and theoretical points of view (see, e.g. Rice [32], Delahaye [33]). We set generally
the condition

‖f (r (ti))‖ ≤ tol ∨ i = itmax,

which is not the most sophisticated exit condition.

It is reasonable to have the practical lower bound ϕ (ti) ≥ εmachine on the it-
erates ti. For f ∈LipLfβ and r ∈LipLΓ

µ, this holds if and only if ‖f (r (ti))‖ ≥
LfL

β
Γε
µβ
machine. Hence the tol parameter has the lower bound tol ≥ LfL

β
Γε
µβ
machine.

Since each of the tested problems has β = 1, the lower bound changes to tol ≥
LfLΓε

µ
machine.

In double precision floating point arithmetic εmachine ≈ 2.2204e − 016. The fol-
lowing table indicates the values of constant LΓε

µ
machine of the lower bound on tol.

curve n=2 n=3
Hilbert 6.6640e− 008 2.9666e− 005
Schoenberg 6.6042e− 004 2.6310e− 001
Mora 6.9757e-013 6.9757e-010
Schoenberg-α 1.3323e-012 1.3323e-009
Cherruault 6.9757e-010 6.9757e-007
ADC1 4.4409e-013 4.4409e-010
ADC2 6.6613e-013 6.6613e-010

Note that the α-dense curve values are computed for σ = 1000 and these lower bound
constants are better than those of the space-filling curves.
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Another reasonable bound on the tolerance is the following. If there is a zero x∗

of f and x (t) is α-dense, then there must be a point t′ that ‖x (t)− x∗‖ ≤ α. Hence
if f ∈LipLfβ, then

‖f (r (t′))‖ ≤ Lf ‖r (t′)− x∗‖ ≤ Lfα.
Hence tol ≤ Lfα seems to be a practical restriction because tol must be definitely
less than Lfα to sort out the possible zero.

In comparison we give the density estimates of these curves as well (σ = 1000).

curve n=2 n=3
Mora 0.0033 0.0046
Schoenberg-α 0.0061 0.0085
Cherruault 0.0044 0.0054
ADC1 0.0022 0.0030
ADC2 0.0032 0.0044

For the 2D test problems and σ = 1000, the bound Lfα is proportional to 1e-2
except for the Powell problem No. 7 the Lipschitz constant of which is 1.7e+5. In
the case of 3D problems the smallest bounds are proportional also to 1e-2. Hence the
selection of tol = 1e− 2 seems appropriate (for similar tolerance, see also Butz [10]).

8.2. Test results. We tested the four methods on each curve and on each 2D test
problems with tol = 1e − 2 and itmax = 1e + 6. The α-dense curves used the
parameter σ = 1000. The test was carried out on a PC with Intel I7 processor
and Matlab R2011b. A summary of the obtained results (average iteration/average
precision) is contained in the following two tables, the first of which contains the best
methods versus curves, while the second contains the best curves versus methods.

best in iterations best in precision
2D curve method iteration method precision
Hilbert (d-2) 1.0848e+004 (d-2) 3.1479e-001
Schoenberg (d-1) 1e+6 (d-1) 9.0372e-001
Mora (d-2) 1.4541e+004 (d-3) 3.1661e-001
Schoenberg-α (d-2) 1.2754e+005 (d-1) 3.0483e-001
Cherruault-α (d-2) 4.7817e+004 (d-3) 1.9037e-001
ADC1 (d-2) 1.1923e+004 (d-4) 1.9774e-001
ADC2 (d-2) 1.6164e+004 (d-4) 3.1686e-001

best in iterations best in precision
method curve iteration curve precision
(d-1) ADC2 3.7099e+004 Cherruault 1.9058e-001
(d-2) Hilbert 1.0848e+004 Cherruault 1.9064e-001
(d-3) Hilbert 1.4002e+004 Cherruault 1.9037e-001
(d-4) ADC1 4.5867e+004 Cherruault 1.9065e-001
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In fact, none of the methods solved test problem No. 7 and Schoenberg’s space
filling curve did perform poorly. On average, the other method-curve combinations
performed acceptably. For 3D the situation became different. The next table contains
the results (average iteration/average precision) of 3D test problems. Here we set
itmax = 1e+ 8.

best in iterations best in precision
curve method iteration method precision
Mora (d-2) 2.7581e+006 (d-3) 2.5842e+000
Schoenberg-α (d-2) 1.1053e+007 (d-4) 5.1233e-001
Cherruault-α (d-4) 4.1809e+006 (d-4) 1.5270e-001
ADC1 (d-2) 2.0374e+006 (d-1) 2.6802e+000
ADC2 (d-2) 7.1008e+006 (d-4) 6.0737e-002

The performances of the 3D Hilbert and Schoenberg curves were so poor that the
results are not included in the table. The 3D Hilbert curve performed better; however,
the achieved precision was limited due to the lack of computer memory and a more
efficient 3D Hilbert-curve program that computes the coordinate values directly. It is
seen that α-dense curves performed better and the best methods stopped under the
exit condition ‖f (r (ti))‖ ≤ tol. The arguments of the previous subsection indicate
that smaller tol would require smaller εmachine, which can be obtained with multiple
precision arithmetic.

In general, we can say that the proposed methods are working and feasible, al-
though they are more expensive than the local methods. For higher dimension they
require the use of multiple precision and more efficient curve computation other than
those of [34], [35] and references cited therein.

9. Appendix

The test problems are taken from the Estonian test problem collection [36]. When-
ever it is available we give the original source as well.

No. 1 (Yamamoto [37])

f1 (x) = x2
1 + x3

2,

f2 (x) = x2
2

No. 2 (Powell [38])

f1 (x) = x1 − 1,

f2 (x) = x1x2 − 1.

No. 3 (Yamamoto [37])

f1 (x) = x3
1 + x1x2,
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f2 (x) = x2 + x2
2.

No. 4 (Fuchs)

f1 (x) = x2
1 − x2

2 − 1,

f2 (x) = x2
1 + x2

2 − 4.

No. 5 (Brezinski [39])

f1 (x) = 0.5x2
2 − 0.5,

f2 (x) = −x2 + sin (x1) + sin (x2 − 1) + 1.

No. 6 (Bartish)

f1 (x) = x2
1 + x2

2 − 1,

f2 (x) = 0.75x3
1 − x2.

No.7 (Powell [38])

f1 (x) = 10000x1x2 − 1,

f2 (x) = exp (−x1) + exp (−x2)− 1.0001.

No. 8 (Boggs [40])

f1 (x) = x2
1 − x2 + 1,

f2 (x) = x1 − cos (0.5πx2) .

No. 9 (Brezinski [39])

f1 (x) = −x1 + 0.5x2
2 − 1.5,

f2 (x) = −x2 + 0.605 exp
(
1− x2

1

)
+ 0.395.

No. 10 (Allgower-Georg [41])

f1 (x) =
(
x1 − x2

2

)
(x1 − sin (x2)) ,

f2 (x) = (cos (x2)− x1) (x2 − cos (x1)) .

No.11 (Yamamoto [37])

f1 (x) = x1 + x2 + x3 − 1,

f2 (x) = 0.2x3
1 + 0.5x2

2 − x3 + 0.5x2
3 + 0.5,

f3 (x) = x1 + x2 + 0.5x2
3 − 0.5.

No. 12 (Allgower-Georg [41])

f1 (x) = x2
1 + 2x2

2 − 4,

f2 (x) = x2
1 + x2

2 + x3 − 8,

f3 (x) = (x1 − 1)
2

+
(

2x2 −
√

2
)2

+ (x3 − 5)
2 − 4.
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No. 13 (Brown-Conte)

f1 (x) = 3x1 + x2 + 2x2
3 − 3,

f2 (x) = −3x1 + 5x2
2 + 2x1x3 − 1,

f3 (x) = 25x1x2 + 20x3 + 12.

No. 14 (Babitsch)

f1 (x) = x1x2 + x2x3 + x1x3 − 47,

f2 (x) = x1
1 + x2

2 − x2
3,

f3 (x) = (x3 − x1) (x3 − x2)− 2.
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