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Institute of Applied Mechanics,

University of Miskolc, H-3515 Miskolc-Egyetemváros
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Abstract. The present paper deals with the development of the two-dimensional J-integral
for large strains. The line of thought is based on a continuum mechanical approach by using
elastic or elastic-plastic bodies and presents some numerical examples.

1. Introduction

The phenomenon of failure caused by catastrophic crack propagation in structural
materials poses problems of design and analysis in many fields of engineering. Cracks
are present to some degree in all structures. They may exist as basic defects in the
constituent materials or they may be induced in construction or during service life.

Using the finite element method, a lot of papers deal with the calculation of stress
intensity factors for two- and three-dimensional models of solid bodies which contain
cracks of different shapes and are subjected to various loading conditions. In order
to increase the accuracy of the results, special singular and transition elements have
been used. These are described together with the methods that are used to deter-
mine the stress intensity factors from the results computed. The methods mentioned
include the displacement substitution method, J-integral and the virtual crack exten-
sion technique.

Over the past decades the finite element technique has become firmly established
as a useful tool for numerical solution of engineering problems. In order to be able to
apply the finite element method to the efficient solution of fracture problems, appro-
priate adaptations and/or further developments must be made.

At the vicinity of a crack tip the strains are not always small, sometimes they may
be large ones, too. The J-integral can also be applied to characterize the cracks in
elastic or elastic-plastic bodies under the assumption of finite strains.

In the literature there are only a few papers dealing with the J-integral for large
strains. For example Lau at al. [1, 2] presented a revised J-estimation method
under large plastic deformation. May and Kobayashi [3] investigated plane stress
stable crack growth and J-integral using Moire interferometry. Boothman at al.
[4] developed the J- and Q-estimation schemes for homogeneous plates. Jackiewicz
[5] applied a hybrid model of steel cracking. Bouchard at al.[6] demonstrated their
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two-dimensional local approach finite element study compared with conventional J-
estimation schemes and cracked body J-integral analysis. Saczuk at al. [7] presented
a continuum model with inelastic material behaviour and a generalization of the J-
integral.

The aim of the present paper is a further development of the two-dimensional J-
integral based on continuum mechanics assuming large strains and elastic or elastic-
plastic material behavior: computation of the J-integral is made by using the finite
element method and the numerical results show the efficiency of the procedure we
have developed.

2. Fundamental concepts and notations

Continuum mechanics is the part of mechanics that deals with the mechanical motion
of bodies using continuum models. The general theory of continuum mechanics ap-
plies to 3-dimensional models. It is, in general, supposed that the continuum (in the
present case the solid body considered) has a deformation and stress-free initial state
referred to as initial configuration for which t = t0 = 0. At time t (when we perform
our investigation) the state of continuum is referred to as present configuration.

The mechanical motion of a continuum is analyzed in a reference coordinate sys-
tem which is usually the cartesian coordinate system (xyz). An arbitrary point of

the moving continuum is denoted by P̂ . The position of this point is P o in the initial
configuration and P in the present configuration. In the coordinate system (xyz) the
coordinates of the point P o are xo, yo, zo, the corresponding base vectors are denoted
by e o

x , e o
y and e o

z . The coordinates of the point P are x, y, z. For the sake of making
a difference the base vectors in the present configuration are denoted by ex, ey and ez
[e o

m = em (m = x, y, z)]. In accordance with what has been said above the quantities
in the initial configuration are designated by the superscript o.

Scalar quantities are typeset in mathematical italic letters, e.g. U , s. Boldface
letters stand for vector quantities: e.g. u, E. Tensors of order two are denoted by
slanted boldface letters, e.g. T , F .

When using indicial notation in the cartesian coordinate system (a) 1, 2 and 3
correspond to x, y, z; (b) all the indices are subscripts, (c) summation over repeated
indices is implied. The other notational conventions are the same as before.

The inverse of a tensor is denoted by the superscript −1, the notation for a trans-
posed tensor is the superscript T . Scaler and double scaler multiplications are denoted
by a dot, or a double-dot (energy product of two tensors of the second order).

We remark that the Lagrangian description will be used throughout the present
paper.

3. Description of the J-integral

Figure 1 shows a line integral path which encloses the crack tip and has initial and
end points which lie on the two crack faces. It has been shown independently by Rice
[8] and Cherepanov [9] that the following integral quantity is path independent when
taken along any path, which satisfies the above conditions:
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J =

∫
Γ

(
Unx − Ti

∂ui
∂x

)
ds . (1)

In this formula U is the strain energy density, Ti is the traction vector on a plane
defined by the outward normal, ni, ui is the displacement vector, ds is the arc element
along the path, Γ. For a closed path not containing the crack tip, J = 0 [8].

ds

n

Γ

σ

σ

x

 y

Figure 1. Contour path for J-integral evaluation

Knowles and Sternberg [10] noted that this expression could be considered as the
first component of a vector:

Jk =

∫
Γ

(
Unk − Ti

∂ui
∂xk

)
ds , k = 1, 2. (2)

This integral is also path independent provided that the contour touches each surface
of the crack at the tip. As x1 = x and x2 = y, applying formulae nx = dy/ds and
ny = −dx/ds, by means of (2) we can write the two components of the J-integral in
the following form:

Jx =

∫
Γ

(
Udy − Ti

∂ui
∂x

ds

)
, Jy = −

∫
Γ

(
Udx+ Ti

∂ui
∂y

)
. (3)

For elastic-plastic bodies the strain energy density consists of two parts:

U = Ue + Up . (4)

Ue is given by

Ue =
1

2
σij (εij)e , (5)

where σij is the stress tensor and (εij)edenotes the elastic components of strains. The
plastic work contribution is given by
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Up =

∫ εp

0

σ dεp . (6)

In this expression σ and εp are the effective stress and effective plastic strain, respec-
tively:

σ =

[
3

2

(
σ,
ij σ

,
ij

)]1/ 2

, (7)

in which σ,
ij denotes the components of the deviatoric stress tensor and

d εp =

{
2

3

[
(d εij)p (d εij)p

]}1/ 2

, (8)

where (d εij)p denotes the plastic part of the strain tensor increment.

Figure 2 represents the motion of a continuum with the initial and the present
configurations.
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Figure 2. Motion of the continuum in the reference coordinate system (xyz)

Let us suppose that equation (2) is valid in the present configuration for large strains.
As the initial configuration is known, it is necessary to express the quantities in the
integrand in terms of the Green-Lagrange strain tensor (E 0) and the second Piola-
Kirchhoff stress tensor (T 0). For elastic applications it can be proved that instead of
the strain energy density U one can use the following formula:

Uo =
1

2
E o · ·T o. (9)

For two-dimensional problems equation (9) assumes the form:

Uo =
1

2

(
E o

xx T
o
xx + 2E o

xy T
o
xy + E o

yy T
o
yy

)
. (10)

The arc element is
ds = dsoλs = dso

√
1 + 2 eo ·E o · eo , (11)
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where dso and eo are the arc element and the tangent vector to the curve Γ in the
initial configuration and λs is the stretch.

For manipulating the traction vector t =T · n into a suitable form we shall need
the relations:

T =
1

J
F · T o · F T , (12)

J = det |F | , (13)

where F = r ◦ ∇o is the deformation gradient, J is the Jacobian and ∇o is the nabla
operator in the initial configuration.

Applying the formula dA = JF −T · dAo between the surface elements, the trac-
tion vector can be expressed as:

t =
1

λA
F · T o · no =

1

J

√
no · (2E o + I)

−1 · no

F · T o · no , (14)

where I is the unit tensor, no is the outward unit normal to Γ in the initial configu-
ration, dA is the vectorial surface element in the present configuration, dAo is the
vectorial surface element in the initial configuration, λA = dA/dAo is the ratio of
the scalar surface element [11].

It can be seen from Figure 2 that r = r o + u o, therefore we can write

dy =
∂y

∂xo
dxo +

∂y

∂yo
dyo = dyo +

∂uoy
∂xo

dxo +
∂uoy
∂yo

dyo , (15)

dx =
∂x

∂xo
dxo +

∂x

∂yo
dyo = dxo +

∂uox
∂xo

dxo +
∂uox
∂yo

dyo . (16)

As u = u o, the derivatives of the displacement vector are as follows:

∂uo

∂x
=
∂uox
∂x

eox +
∂uoy
∂x

eoy =

(
∂uox
∂xo

∂xo

∂x
+
∂uox
∂yo

∂yo

∂x

)
eox +

(
∂uoy
∂xo

∂xo

∂x
+
∂uoy
∂yo

∂yo

∂x

)
eoy ,

(17)
∂uo

∂y
=
∂uox
∂y

eox +
∂uoy
∂y

eoy =

(
∂uox
∂xo

∂xo

∂y
+
∂uox
∂yo

∂yo

∂y

)
eox +

(
∂uoy
∂xo

∂xo

∂y
+
∂uoy
∂yo

∂yo

∂y

)
eoy .

(18)
Since r = ro + uo, it follows that

x = xo + u o
x , y = yo + u o

y . (19)

Making use of (19) for the deformation gradient F , the inverse deformation gradient
F −1 and the Jacobian determinant J we obtain

[F ] =

 ∂ x
∂ xo

∂ x
∂ yo

∂ y
∂ xo

∂ y
∂ yo

 =

 1 +
∂ uo

x

∂ xo

∂ uo
x

∂ yo

∂ uo
y

∂ xo 1 +
∂ uo

y

∂ yo

 , (20)

[
F −1

]
=

 ∂ xo

∂ x
∂ xo

∂ y

∂ yo

∂ x
∂ yo

∂ y

 =
1

J

 1 +
∂ uo

y

∂ yo − ∂ uo
x

∂ yo

− ∂ uo
y

∂ xo 1 +
∂ uo

x

∂ xo

 , (21)
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J = det |F | =

(
1 +

∂ u o
x

∂ x o

)(
1 +

∂ u o
y

∂ y o

)
− ∂u o

x

∂ y o

∂u o
y

∂ x o
. (22)

Utilizing equations (20), (21) and (22), we can rewrite equations (17) and (18) in
other form:

∂uo

∂x
=

1

J

[(
1 +

∂uoy
∂yo

)
∂uox
∂xo
− ∂uox
∂yo

∂uoy
∂xo

]
eox +

1

J

[(
1 +

∂uoy
∂yo

)
∂uoy
∂xo
−
∂uoy
∂yo

∂uoy
∂xo

]
eoy ,

(23)

∂uo

∂y
=

1

J

[(
1 +

∂uox
∂xo

)
∂uox
∂yo
− ∂uox
∂xo

∂uox
∂yo

]
eox +

1

J

[(
1 +

∂uox
∂xo

)
∂uoy
∂yo
−
∂uoy
∂xo

∂uox
∂yo

]
eoy .

(24)
Substituting (10) - (24) into (3) we obtain the components of J-integral for large
strains in two dimensions:

Jx =

∫
(Γ)

[
Uo

(
dyo +

∂uoy
∂xo

dxo +
∂uoy
∂yo

dyo
)
− t

∂uo

∂x
λsds

o

]
(25)

Jy =

∫
(Γ)

[
−Uo

(
dxo +

∂uox
∂xo

dxo +
∂uox
∂yo

dyo
)
− t

∂uo

∂y
λsds

o

]
(26)

For elastic-plastic bodies the strain energy density also has two parts:

Uo = Uo
e + Uo

p , (27)

where Uo
e is given in equation (9) and Uo

p is similar to (6):

Uo
p =

∫ E
o
p

o

T
o
dE

o

p . (28)

In this expression T
o
and E

o

p are the effective stress and effective plastic strain in the
initial configuration.

 

X0 

Y0 

x0 
y0 

β 2a 

Figure 3. Coordinate systems in the initial configuration

For inclined cracks two coordinate systems and the corresponding transformation
formulae are necessary – see Figure 3.
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When one applies the finite element method the integration in equations (25) and
(26) should be performed numerically.

4. Path-independence of the J-integral

Rice has already investigated the problem of path-independence [8]. We remark that
other researchers have also examined this question, e.g. Atluri [12], Brocks and Schei-
der [13] and Wang at al. [14].

y 0

x 0

Γ1

Γ2

Γ +

Γ −

n0

Figure 4. Closed contour for J-integral evaluation

Henceforth the path-independence of (25), (26) is proved for large strains and two
dimensional problems. The following assumptions have been made:

– The material of the body is homogeneous.
– There are no body forces.
– The stress and strain fields depend on two coordinates (xo, yo).
– The crack is straight.
– The stress-free crack borders are parallel to coordinate axis xo.

Figure 4 shows a closed integral path which does not contain the crack tip.
The closed contour Γ does not include a singularity:

Γ = Γ1 ∪ Γ + ∪ Γ2 ∪ Γ−. (29)

Then J = 0 along a closed contour Γ for large strains, too. Let us examine the
component Jx along the path Γ.

Jx = 0 =

∫
Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+



48 Ágnes Horváth

+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ +

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ −

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (30)

The integrals on Γ+ and Γ− differ from each other in sign only. Therefore they can
be dropped. In this way we get

Jx = 0 =

∫
Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (31)

We get a useful expression if the integration on contour Γ2 is performed counterclock-
wise: ∫

Γ2

�

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
=

= −
∫

Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (32)

Substituting (32) into equation (31) we obtain the following formula:

0 = −
∫

Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
+

+

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (33)

Rearrangement of (34) results in∫
Γ2

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
= +

= +

∫
Γ1

	

[
U o

(
d yo +

∂ u o
y

∂ xo
dxo +

∂ u o
y

∂ yo
d yo

)
− t · ∂ u

o

∂ x
λs ds o

]
. (34)

which shows the path independence of the first component of the vector J . This holds
for the other component, too.

5. Applicability of special isoparametric elements

Consider a one-dimensional element that may form a side of a 2D or 3D nth-order
isoparametric element (see Figure 5).
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n
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Figure 5. Element coordinate mapping

The above transformation is accomplished by means of the usual isoparametric
mapping technique [15]. Without entering into details we obtain the following ex-
pressions:

xo =
`

2m
(1 + ξ)

m
, (35)

ξ = −1 + 2

(
xo

`

)1/m

. (36)

For an isoparametric element the displacement uox takes the form

uox = b0 + b1ξ + b2 ξ
2 + · · ·+ bn ξ

n , n = 2. (37)

from where
∂uox
∂ξ

= b1 + 2b2ξ + 3b3ξ
2 + · · ·+ nbnξ

(n−1). (38)

This expression can be manipulated further by inserting (36)

∂uox
∂ξ

= b1 + 2b2

[
−1 + 2

(
xo

`

)1/m
]

+ 3b3

[
−1 + 2

(
xo

`

)1/m
]2

+ · · ·+ (39)

+ nbn

[
−1 + 2

(
xo

`

)1/m
](n−1)

.

The strain in the xo-direction is then

Eo
xx =

duox
dxo

+
1

2

(
duox
dxo

)2

. (40)

Utilizing equation (37) the axial strain (40) can be rewritten

Eo
xx =

duox
dξ

dξ

dxo
+

1

2

(
duox
dξ

dξ

dxo

)2

. (41)
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Substituting (39) and the derivative of (36) into (41) we obtain

Eo
xx = A1 (xo)

1−m
m +A2 (xo)

2−m
m +A3 (xo)

3−m
m + · · ·+

+An (xo)
n−m
m +An+1 (xo)

2(1−m)
m +An+2 (xo)

2(1−m)+1
m + · · ·+ (42)

+A(3n−1) (xo)
2(n−m)

m ,

where

A1 = C (b1 − 2b2 + 3b3 − · · · ± nbn) ,

A2 =
C

`1/m
2 [2b2 − 6b3 + 12b4 − · · · ± (n− 1)nbn] ,

...

An =
C

`(n−1)/m
2(n−1)nbn ,

A(n+1) =
C2

2
[b21 + 4b22 + · · ·+ n2b2n − 4b1b2 + 6b1b3 − · · · ± 2nb1bn ± · · ·±

± 2 (n− 1)nb(n−1)bn] ,

A(n+2) =
C2

2

22

`1/m
[2b1b2 − 6b1b3 + 18b2b3 − 4b22 − 18b23 − · · ·±

± n2 (n− 1) b(n−1)bn − (n− 1) (nbn)
2
] ,

...

A(3n−1) =
C2

2

22(n−1)

`2(n−1)/m
(nbn)

2
,

C =
2

m

1

`1/m
.

Equation (42) clearly shows that the strain is singular at xo = 0 (ξ = −1). The

leading strain term is of order (xo)
1−m
m . Therefore when xo → 0, the type of the

strain singularity is (xo)
(1−m) /m

(m ≥ 2).

6. Numerical example

The author has developed a Fortran program by means of Microsoft Developer
Studio 97 to compute the J-integral numerically for small and large strains. For a
real physical problem the strains can be either small or large depending on the loading
of the body. As regards the present example both kind of strains are computed so that
one can see what the difference is between the two kind of strains. When computing
elastic-plastic problems the Von Mises yield criterion, the Newton-Raphson iteration
technics and the Euler-Cauchy incremental method are applied.
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100 MPa

100

 50

10
integral pathes

Figure 6. Finite element mesh

The example considered is that of a plate under tension which contains a crack of
length 20 mm perpendicular to the direction of loading. The width of the plate is
100 mm and the thickness is assumed to be unity. The length of the plate is 200
mm. For the first computations the material is linear elastic with the properties
E = 2× 105 MPa and ν = 0.3. The applied tensile traction is p = 100 MPa. Because
of the symmetrical properties of the problem the finite element mesh represents only
a quarter of the body considered – see Figure 6. The finite element mesh contains
singular and transition elements as well.

Theoretically Jy is zero for this problem. Figure 7 shows the values computed for
the J-integral.

For the second series of computations the material of the plate is a linear elastic
linear hardening material for which H ′ = 0, 1E and the yield stress is σF = 100
MPa. The loading is applied in incremental steps. The increments are 0.1 p = 10
MPa, 1.0 p = 100 MPa, 0.3 p = 30 MPa. Figure 8 shows the values computed for the
J-integral both for small strains and for large strains.

Figure 9 depicts the plastic zones for the third load increment. Figure 10 shows
the von Mises stresses for the third load increment.
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Figure 7. J-integral for elastic deformations
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Figure 8. J-integral for elastic-plastic deformations
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Small strains Large strains

Figure 9. Plastic zones for the third load increment

Small strains Large strains

Figure 10. Von Mises stresses for the third load increment
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7. Conclusions

This paper proves the formulations and applicability of the J-integral for large
strains under the assumption of elastic and elastic-plastic material behaviour. The J-
integral values are higher for large strains, as can be seen from the numerical examples
we have solved. This fact means that the safety of the cracked body increases from the
aspect of service life. The path independence of the two-dimensional J-integral is also
proved for large strains – the numerical results confirm the validity of this statement.
The paper presents the mapping and applicability of special isoparametric elements
for the finite element meshes. Using these elements the type of the strain singularity

is
(
x0
)(1−m) /m

(m ≥ 2) at the crack tip. The application of the special isoparametric
elements gives good results for relatively coarse finite element meshes, too.
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