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Abstract. This paper is concerned with the conceptual development of mathematical mod-
els suitable for reliable prediction of fatigue life in metallic mechanical and structural com-
ponents. Of particular interest is the prediction of the number of loading cycles to failure in
parts that contain irregularities in material properties, inclusions and surface features caused
by corrosion or other damage and are subjected to periodic loading.
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1. Introduction

Conceptual development of mathematical models is an inductive process that in-
volves expert opinion, virtual experimentation and calibration. The end product of
conceptualization is a mathematical model. This paper is concerned with aspects of
conceptual development of mathematical models designed to support condition-based
maintenance (CBM) and reliability-centered maintenance (RCM) decisions. The in-
tended use of such models are: (a) identification of maintenance problems early, when
they can be corrected at a relatively low cost and (b) scheduling maintenance only
when needed, thereby realizing increased asset utilization, extension of equipment life,
and reduction in operating costs.

Both CBM and RCM require mathematical models capable of predicting the re-
maining useful life of parts with a reasonably high degree of confidence. There are
two seemingly competing approaches to fatigue life management: Flaw tolerance and
damage tolerance. The purpose of flaw tolerance analysis is to evaluate the likelihood
of crack initiation from flaws, given some cyclic loading. The purpose of damage tol-
erance analysis is to estimate crack growth caused by cyclic loading. A comprehensive
overview of maintenance practices relating to military aircraft is presented in [1].

The conceptual development outlined in this paper is based on the idea that models
formulated for the prediction of crack nucleation, i.e., for the purpose of supporting
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flaw tolerance analysis, and models formulated for the prediction of crack growth, i.e.,
for the purpose of supporting damage tolerance analysis, are similar in the following
sense: In both cases the physical events of interest; crack nucleation and crack growth,
are highly nonlinear processes that occur on length scales that are typically less than
about 0.5 mm for aluminum alloys, titanium and steel. The sites of crack nucleation
and crack tip regions are called process zones (see, for example [2] and references cited
therein). Within the process zone the usual assumptions of infinitesimal strain and
small deformation do not hold. Nevertheless, as long as a process zone is completely
surrounded by material for which those assumptions hold, crack nucleation and crack
extension events occurring within the process zone should be predictable from the
solutions of mathematical models that incorporate the assumptions of infinitesimal
strain and small deformation only.

The paper is organized as follows: The classical approaches used for the prediction
of the effects of notches on the endurance limit and their relationship to linear elastic
fracture mechanics are summarized in Section 2. Procedures for the formulation and
testing of mathematical models for the prediction of fatigue damage accumulation
are outlined in Section 3. Experimental data obtained for twelve micro-machined test
specimens made of AF1410 steel are presented in Section 4. Recommendations for
a new family of models that account for size effects and removes difficulties associ-
ated with the application of linear elastic fracture mechanics in three dimensions are
presented in Section 5. A brief summary is presented in Section 6.

2. Classical models for damage accumulation

Failure initiation and crack propagation are inherently nonlinear processes that
occur on length scales over which the assumptions of infinitesimal strain and small
deformation do not hold. Nevertheless, computations based on mathematical models
that incorporate the usual infinitesimal strain and small deformation assumptions,
coupled with experimentation, have been proven to be useful for predicting crack
initiation events and crack propagation rates.

Mathematical models constructed for the prediction of damage accumulation caused
by cyclic loading are based on the following assumptions:

1. There exist one or more functionals, computable from the solution of math-
ematical models based on infinitesimal strain, small deformation theory, that
can be correlated with crack initiation events and crack propagation rates with
sufficient accuracy to suit the purposes of engineering decision-making.

2. There exist one or more procedures suitable for the generalization of the results
of fatigue experiments performed under a particular cyclic loading, character-
ized by a mean value and constant amplitude, to cyclic loading characterized
by arbitrary mean value and constant amplitude.

3. There exist one or more procedures suitable for correlating damage accumu-
lation with variable amplitude cyclic loading, such as loading that represents
flight spectra.
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This paper is concerned with the formulation of functionals pertaining to assump-
tion 1. The functionals are called driving forces for damage accumulation or simply
driving forces.

2.1. Notch sensitivity. Several approaches have been proposed for the quantifica-
tion of the effect of notches on the fatigue limit of machine components made of
various metallic alloys. Essentially these approaches distinguish between the geo-
metric stress concentration factor Kt and the effective stress concentration factor Ke

where 0 < Ke ≤ Kt.

Definition 1. Nominal stress, defined for notched machine elements subjected to
tension, bending and torsion, is understood in machine design to be the maximum
normal or shearing stress at a notch computed by formulas based on the assumption
that the strain distribution over the cross section is a linear function. Because this
definition cannot be generalized to arbitrary domains, unless stated otherwise, we will
understand nominal stress to mean the stress that would exist at the location of a
notch if the notch were not present. �

Definition 2. The geometric stress concentration factor, denoted by Kt, is the ratio
of maximum stress to the nominal stress. �

Definition 3. The notch sensitivity index (q) is defined as follows:

q =
Ke − 1

Kt − 1
· (2.1)

It is dependent on the notch radius % and a material property. Peterson [3], [4] defined
the notch sensitivity index as:

q =
1

1 + α/%
(2.2)

where α is an experimentally determined material constant. Peterson gave approx-
imate values for α for steels as a function of their ultimate tensile strength (UTS).
For UTS ranging between 345 and 1725 MPa the estimated range of α is 380 to 33
µm respectively. Although not stated explicitly, there has to be a lower bound on %.
The experimentally determined values of q for aluminum and steel published in [3]
indicate that % is greater than approximately α/4.

An alternative definition of q, based on Neuber’s work [5] is:

q̄ =
1

1 +
√
%′/%

(2.3)

where %′ is an experimentally determined material constant (in length units). It is
correlated with UTS in [6]: For UTS ranging between 345 and 1725 MPa the estimated
range of %′ is 430 to 0.9 µm respectively. �

Investigating notched machine elements subjected to tension, bending and torsion,
Neuber formulated the following hypothesis: The driving force for the accumulation of
fatigue damage is the elastic stress (shearing and tensile) at a notch tip averaged over a
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material-dependent small distance that has to be determined through experimentation
[5].

Neuber’s hypothesis and variants of his hypothesis proposed by other investigators
form the basis for flaw tolerance analysis. See, for example [8], a reference that
makes comparisons among the Neuber-Kuhn, Peterson, Heywood, Stieler-Siebel and
the Buch-Switek formulas, all proposed for the prediction of the effects of fillets,
characterized by a radius, and notches, characterized by a depth, a notch angle and
radius, on the fatigue limit.

Remark 1. Neuber’s work was concerned with the fatigue strength of notched ma-
chine elements. Averaging stresses over a material-dependent distance for notched
bars, shafts and beams can be understood also as averaging over an area or volume.
Therefore Neuber’s conceptualization admits alternative interpretations on general
domains. �

2.2. Linear elastic fracture mechanics. Linear elastic fracture mechanics (LEFM)
is based on the hypothesis that the driving force for crack propagation under cyclic
loading is the amplitude of the stress intensity factor.

Neuber’s hypothesis and LEFM may appear to be fundamentally different models
of damage accumulation. In reality LEFM can be viewed as a special case of Neuber’s
model in the following sense: Let us assume that a material-dependent critical distance
d exists which is independent of the geometric features or the magnitude of stress or
strain. Considering a two-dimensional domain with a crack, assuming that the crack
is along the x-axis, periodic loading of amplitude ∆Ty is applied in the direction of
the y-axis and the origin of the coordinate system is the crack tip, the driving force
is the average stress ∆σd induced by ∆Ty. By definition;

∆σd =
1

d

∫ d

0

∆σy(x, 0) dx. (2.4)

The periodic loading ∆Ty induces variations in the stress intensity factor ranging
between a minimum value (KI)min and a maximum value (KI)max where (KI)min ≥ 0.
Let ∆KI ≡ (KI)max − (KI)min and denote by (∆KI)th the threshold value of ∆KI

below which the crack will not grow. Therefore a crack will not propagate when the
amplitude of the average stress is

∆σd ≤
1

d

∫ d

0

∆KI√
2πx

dx = ∆KI

√
2

πd
· (2.5)

Equating ∆σd to the endurance limit ∆σ0, we have the following estimate for the
critical distance:

d =
2

π

(
(∆KI)th

∆σ0

)2

· (2.6)

If (∆KI)th and ∆σ0 are material properties then d is a material property also. One has
to bear in mind however that the endurance limit varies with the size of specimens:
When the size increases, the endurance limit decreases. Therefore d is a material
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property only if (∆KI)th varies with size in the same way as ∆σ0. However, for
reasons discussed in the following, it is not possible to determine (∆KI)th accurately.

Example 1. The threshold stress intensity factor for conventionally processed AF1410
steel is approximately 16.0 MPa m1/2 and its endurance limit is approximately 950
MPa. Therefore from eq. (2.6) we have (d = 180 µm). This is an ultra high strength
steel; its UTS is approximately 1670 MPa. This estimate of d is much larger than the
estimate given in [3] and [6]. Note: The ASTM grain size number1 of conventionally
heat treated AF1410 steel is approximately 10.8 [7]. This corresponds to an average
grain size of approximately 8.5 µm. �

It is not difficult to show that the stress intensity factor is proportional to σd
√
d:

σy(x, 0) =
KI√
2πx

→ KI = σd

√
πd

2
· (2.7)

There are two important advantages of using eq. (2.4) instead of eq. (2.7):

1. Equation (2.4) is defined for both cracks and notches whereas eq. (2.7) is
defined for cracks only.

2. Problems arise when attempting to interpret the results of physical experi-
ments. Calibration involves correlation of crack growth with load cycles using
the assumption that the stress distribution in the test articles very nearly sat-
isfy the conditions of planar elasticity. However the asymptotic expansion of
stresses in the neighborhood of a crack tip in two-dimensions is not applica-
ble in three dimensions. This is because asymptotic expansion has a different
character in the vicinity of the points where the crack front intersects a free
surface. When the specimen is thin then these points are in close proximity
and therefore tend to dominate the stress field ahead of the crack tip. When
the specimen is thick then the stress fields in the vicinity of these points are
usually ignored and the assumption is made that plane strain conditions exist.
In reality generalized plane strain conditions exist [9].

In practical situations, such as shown in Fig. 1 where a crack represented
by arc AB is originating at a countersunk fastener hole, there is substantial
epistemic uncertainty as to how crack growth is influenced by the stress field in
the vicinity of points A and B. Therefore it is not possible to justify application
of conventional LEFM methodology in such cases.

2.3. The theory of critical distances. The classical approaches proposed by Neu-
ber, Peterson and others were precursors to what is called today the theory critical
distances (TCD), see [10] - [13]. The line method of theory of critical distances states
that for notched components in tension or bending the driving force is:

GTCD =
1

2L

∫ 2L

0

σ1(s) ds (2.8)

1ASTM Standard E 112 - 96 (2004).
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A

B crack

plate

Figure 1. Crack originating at a countersunk hole.

where L is the critical distance, assumed to be a material property, σ1 > 0 is the first
principal stress, and the domain of integration is chosen such that GTCD is maximal.

Remark 2. The relationship between the critical distance d defined in eq. (2.6) and
the critical distance L defined in eq. (2.8) is L = d/2. See for example [10]. �

In the following example it is shown that Peterson’s definition of Ke can be under-
stood as an approximation to the ratio of the average normal stress, in the direction
of loading, over the distance α, to the nominal stress.

Example 2. We refer to the problem of a circular hole in an infinite plate subjected
to unidirectional tension. The notation is shown in Fig. 2. The classical solution for
σx is:

σx = σ∞

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ

]
(2.9)

where σ∞ is the nominal stress. The geometric stress concentration factor is Kt =
σmax/σ∞ = 3 where σmax = σx(a,±π/2). See, for example, [14].

Figure 2. Circular hole in an infinite plate subjected to unidirec-
tional tension (σ∞). Notation.
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We will be interested in the value of σx averaged over the interval a ≤ y ≤ d. The

average value will be denoted by σ
(d)
x . Referring to eq. (2.9), we have

σ(d)
x =

1

d

∫ a+d

a

σx(r, π/2) dr =
σ∞
d

∫ a+d

a

(
1 +

1

2

a2

r2
+

3

2

a4

r4

)
dr

=σ∞

(
1 +

1

2

1

1 + d/a
+

3

2

1 + d/a+ d2/(3a2)

(1 + d/a)3

)
=σ∞

(
1 + 2

1

1 + d/a
− 3

2

d/a+ 2d2/(3a2)

(1 + d/a)3

)
=σ∞

(
1 + 2

1

1 + d/a
+O(d/a)

)
. (2.10)

Letting α = d, % = a in eq. (2.2) and using eq. (2.1) we have:

Ke =
σ

(d)
x

σ∞
= q(Kt − 1) + 1 (2.11)

which is the same as eq. (2.10) if we neglect the term of O(d/a) because (Kt− 1) = 2
for the infinite plate. Therefore Ke can be understood as an approximation of the ratio
of the average stress over length α and the nominal stress. The error of approximation
is explicitly given for the problem of the circular hole in an infinite plate. The relative
error The percent relative error defined by

er = 100
σ

(d)
x − (q(Kt − 1) + 1)σ∞

σ
(d)
x

where q =
1

1 + d/a

is shown in Fig. 3. The maximum relative error is 19.08 % which occurs at d/a = 1.39.
In other words, if the fatigue limit depends on the average normal stress over the
length d and Peterson’s formula would be used to estimate this average stress then
the error could be as large as 19.08 percent for the circular hole in the infinite plate.

3. Validation

The formulation and testing of mathematical models for the prediction of damage
accumulation due to fatigue under standard conditions, i.e., periodic loading charac-
terized by fixed amplitude and mean value, involves the following processes:

1. Conceptualization: (a) formulation of a mathematical model that establishes a
relationship between certain functionals of the stress or strain field and failure
initiation or crack propagation events, (b) virtual experimentation and (c)
calibration. The end product of conceptualization is a mathematical model.

2. Validation: Experiments performed to test the predictive capabilities of a
mathematical model. The quality of predictions is evaluated with reference
metrics and criteria formulated prior to the validation experiments. In the
case of models formulated for the prediction of damage accumulation caused
by metal fatigue, the metric is the number of cycles to failure. The formulation
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Figure 3. The relative error in Peterson’s formula applied to the
circular hole in an infinite plate.

of criteria is complicated by the fact that accumulation of fatigue damage is
inherently stochastic.

Examples of conceptualization were given in Section 2 and a general framework for
conceptualization is proposed in Section 5. It is now becoming standard practice to
perform validation experiments. Many papers and case studies have been published
on this subject see, for example, [15] - [20] and the references cited therein.

In principle, a model is rejected if it fails to meet established criteria. In practice
it is generally not possible to assign pass/fail scores to mathematical models on the
basis of the outcome of a limited number of experiments because statistical variabil-
ity in material properties, loading, constraints and geometric attributes complicates
comparisons of predicted and observed data. Nevertheless, it is possible to formu-
late a framework for quantifying a “degree of belief” in a mathematical model and
rank alternative models on the basis of accumulated experience with the accuracy of
predictions based on the models.

Two types of uncertainty are associated with damage accumulation models: Epis-
temic (cognitive) uncertainty and aleatory (statistical) uncertainty. The goal is of
validation is to minimize epistemic uncertainties through objective evaluation and
ranking of alternative models of damage accumulation.

4. Fatigue tests of micro-machined AF1410 steel specimens

In the course of investigation of the effects of small surface defects on the fatigue life
of aircraft components made of AF1410 steel one group of investigators recommended
fitting truncated ellipsoids to the surface features and using eq. (2.11):

Ke = q(Kt − 1) + 1 (4.1)
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with q defined by eq. (2.2) and the notch radius % determined from the truncated
ellipsoid. The truncated ellipsoid is characterized by three parameters; length, width
and depth. It was called “pit metric” to convey the assumption that all surface
features can be replaced for the purpose of fatigue life prediction with truncated
ellipsoids. No limit was placed on the size of the pit metric, even though the notch
radius in Peterson’s model has an implied lower bound, as noted in Section 2. The
implied assumption is that Peterson’s model is capable of predicting crack nucleation
events.

In order to test this assumption, twelve dog-bone specimens were machined from
AF1410 steel. For each specimen the thickness of the test section was 3.05 mm (0.120
in), the width was 25.4 mm (1.0 in). The test sections were hand-polished and six
features were micro-machined into the test section of nine specimens: Two ellipsoidal
features, two conical features, and two pill-shaped features. The features were located
at 60-degree intervals on the perimeter of a 12.7 mm (0.5 in) diameter circle, as shown
in Fig. 4(a). One of the ellipsoidal and one of the pill-shaped features were oriented
parallel with the direction of loading, the others were oriented perpendicular to it.
The features were sufficiently far apart so that interaction among the features can be
neglected. The remaining three specimens were tested without surface features.

R1

H

Rf

y

x

R2

pit metric

Cone 1 Ellipsoid 1

Pill 1

Cone 2Ellipsoid 2

Pill 2Load Load

(a) (b)

Figure 4. (a) Micro-machined features. The features lie on the
perimeter of a 12.7 mm (0.5 in) diameter circle. (b) Conical fea-
ture. Relationship between the ellipsoidal pit metric and the micro-
machined cone.

An example of replacement of a conical feature, characterized by four parame-
ters (R1 = 1.02 mm, R2 = 0.33 mm, H = 0.89 mm, Rf = 0.39 mm), with a pit
metric which in this case is characterized by only two parameters (R1, H) is shown
in Fig. 4(b). The radius of curvature of the pit metric in the point (0,−H, 0) is
%pm = R2

1/H = 1.17 mm. The ellipsoids are characterized by two radii R1 = 0.64
mm, R2 = 0.32 mm and the depth H = 0.32 mm. The pill-shaped features are com-
prised of a cylinder and two spherical caps of radius R = 0.18 mm, depth H = 0.18
mm and combined length L = 0.57 mm.
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The maximum applied stress was 1380 MPa (200 ksi) the minimum stress was 138
MPa (20 ksi). Therefore the ratio of minimum to maximum stress was R = 0.1. The
constant amplitude cyclic load was maintained at R = 0.1 for 1000 cycles then in each
marker band block groups of 400 cycles at R = 0.7 stress was followed by 8 cycles at
R = 0.1 stress.

The computed values ofKe, based on the nominal dimensions of the micro-machined
features, are shown in Table 1. According to Peterson’s model the first occurrence of
crack nucleation is expected at Ellipsoid 2, the long axis of which is oriented perpen-
dicular to the load direction.

Table 1. The values of Ke for the three micro-machined features
computed from Peterson’s formula using α = 0.064 mm.

Feature % (mm) α/% q Kt Ke

Cone 0.391 0.164 0.8593 2.477 2.269
Ellipsoid 2 0.635 0.101 0.9084 2.476 2.341
Pill 1 0.178 0.360 0.7355 2.492 2.097

Figure 5. (a) Typical failure across conical features. (b) Secondary
fatigue crack at a pill feature (specimen 598-2). (c) Secondary fatigue
crack at an ellipsoidal feature (specimen 598-2).

Fractographic examination found that for all micro-machined specimens failure
initiated at the conical features and the failure surface intersected the two conical
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features, a shown in Fig. 5(a). Secondary fatigue cracks developed at the ellipsoidal
and pill-shaped features that did not grow to critical size prior to failure. Typical
secondary cracks are shown in Fig. 5(b) and Fig. 5(c). The number of cycles to
initiation, which is defined as the first occurrence of a 0.254 mm (0.01 in) crack, is
shown in Table 2.

Table 2. Results of fractographic examination of micromachined
AF1410 dog-bone specimens. Number of R = 0.1 cycles to crack
initiation and total number of cycles. Maximum applied stress: 1379
MPa (200 ksi).

Specimen Surface
primary conic secondary conic
R = 0.1 Total R = 0.1 Total

598-4 smooth 25,467 83,467 - -
598-11 smooth 24,212 80,212 - -
598-14 smooth 14,974 49,374 - -
598-1 notched 1,767 6,567 1,800 6,600
598-2 notched 1,700 3,300 1,822 5,822
598-3 notched 1,968 4,368 1,971 4,371
598-5 notched 1,521 5,760 1,934 6,173
598-8 notched 1,418 4,209 1,869 4,660
598-9 notched 1,828 5,700 1,936 5,808
598-10 notched 1,500 3,100 1,833 3,433
598-12 notched 1,483 4,633 1,550 4,700
598-13 notched 1,790 6,502 1,970 6,682
Average 1,664 4,904 1,854 5,361
Standard deviation 179 1,218 124 1,053

We note that the predictions were based on the nominal dimensions of the surface
features. The actual dimensions were measured for only one of the specimens by means
of white light interferometry (WLI). The largest deviations were found in Rf = 0.33
mm (-15 %) for Cone 2 and L = 0.69 mm (+17 %) for Pill 1. Such deviations
notwithstanding, the results indicate a strong probability that Peterson’s model is not
capable of predicting crack initiation events for the conical feature. The reason for
this is that the stress distribution in the vicinity of the cones is qualitatively different
from the stress distribution in the vicinity of notches considered by Peterson and
Neuber. Arguably this was not a fair test of Peterson’s model because the assumptions
incorporated in that model were not satisfied by the test article. This could have
been determined through virtual experimentation prior to performing the physical
experiments.

We have seen in Section 2 that Peterson’s effective stress concentration factor
Ke can be understood as an approximation to the average stress over a material-
dependent distance α, which in two dimensions is equivalent to an area. The original
intent in the development of Ke was to estimate the fatigue life of machine elements
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with notches that are characterized by a dominant curvature, the radius of curvature
being larger than approximately α/4. In those cases Ke gives a reasonably good
approximation to the average stress. The underlying idea of using average stress over
a line, area or volume has no such restrictions however and can be implemented into
finite element analysis programs without difficulty.

The stress distribution in the vicinity of (a) the conical feature and (b) represen-
tation of the conical feature by the pit metric is shown in Fig. 6. It is seen that the
stress distribution at the conical feature is not related to a clearly defined curvature
but the stress distribution at the pit metric is. The same holds for the other surface
features as well. This indicates that the idea of replacing surface features with a pit
metric has to be rejected.

(a) (b)

Figure 6. Stress distribution in the vicinity of (a) the conical feature
and (b) representation of the conical feature by the pit metric. The
nominal stress is 1 MPa applied in the x - direction.

The values of σ
(d)
x /σ∞ for the three micro-machined features for various values of

the averaging interval d are shown in Table 3. The averaging intervals were chosen by
inspection so as to approximately maximize the average values. Examples of averaging
intervals are shown by the lines labelad AB in Fig. 6.

It is seen that for the averaging interval ranging between 0.05 mm and 0.5 mm

σ
(d)
x /σ∞ is largest for the conical features. Therefore a failure initiation model based

on σ
(d)
x would have correctly predicted that failure would begin at the conical features.

Furthermore it would have predicted that the ellipsoid would be the next site of failure
initiation, and the pill-shaped features would be last for any choice of d. This sequence
of events was confirmed by fractographic examination. It is therefore possible to
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Table 3. The values of σ
(d)
x /σ∞ for the three micro-machined features.

Feature 0.5 mm 0.25 mm 0.10 mm 0.05 mm
Cone 1.640 1.894 2.165 2.296
Ellipsoid 2 1.334 1.565 1.913 2.128
Pill 1 1.189 1.352 1.683 1.953

conclude that predictions based on σ
(d)
x are consistent with the results of experiments.

The model based on the theory of critical distances passed the validation test.

5. Generalization of classical models for damage accumulation

Examples of conceptualization were given in Sections 2. The conceptualization
attributed to Neuber and the theory of critical distances are based on the assumption
that a material constant, which has the dimension of length, exists and accumulation
of fatigue damage can be correlated with the average stress over a line, area or volume
characterized by that constant. This is contradicted by the experimental observation
that the endurance limit depends on the size of the specimens, therefore the dis-
tance d cannot be a material constant. Consequently there appear to be fundamental
problems with the classical models described in Section 2.

The classical models of driving force for damage accumulation exemplified by the
work of Neuber, Peterson, Buch and others were developed for the estimation of the
endurance limit of notched machine elements in tension, bending and shear. The
computational tools available at that time were limited. The geometric stress concen-
tration factors were determined mainly from classical solutions of the Navier-Lamé
equations and photoelastic studies. The nominal stress was computed from simple
formulae for bars, beams and shafts. Those limitations on computational tools no
longer exist and there is a need for generalization of the classical models of damage
accumulation to complicated parts, such as rotorcraft components, and small defects,
such as those caused by manufacturing processes, corrosion, impact and wear. In
this section the conceptual formulation of driving forces for damage accumulation
is outlined. For the sake of simplicity in presentation the domain is assumed to be
two-dimensional, unless otherwise noted, but the concept is not restricted to two
dimensions.

Consider the neighborhood of a sharp or blunt notch, called stress riser. It is
assumed in the following that the principles of continuum mechanics remain valid
everywhere within the body up to the failure initiation event. At the site of damage
accumulation the continuum model is likely to indicate strongly nonlinear behavior,
such as the formation of shear bands, large strain and large rotation. This is the
process zone, schematically indicated by the hatched area bounded by ΓPZ and Γ in
Fig. 7.
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Figure 7. Notation.

Let uPZ(x, t) = {ux(x, t) uy(x, t)}PZ be the solution of the general nonlinear
continuum mechanics problem that accounts for strongly nonlinear behavior as well
as heterogeneous material properties and let uSS(x, t) = {ux(x, t) uy(x, t)}PZ be
the solution of the continuum mechanics problem that accounts only for infinitesimal
strain, small deformation and homogeneous material properties. Both uPZ and uSS
are defined on the entire domain Ω and may be functions of time t. It is assumed that
there is a subdomain Ω?, bounded by ΓSS and Γ, such that outside of Ω? uPZ ≈ uSS .
Specifically:

‖uPZ(x, t)− uSS(x, t)‖max ≤ τ‖uPZ(x, t)‖max x ∈ (Ω− Ω∗) (5.1)

where τ is some small tolerance. On the domain outside of Ω∗ the usual infinitesimal
strain and small deformation assumptions of continuum mechanics are reasonable
representations of physical reality.

Implied in this assumption is that failure initiation, which depends on the solution
of the highly nonlinear problem inside the process zone, is related to the solution
of a linear or nonlinear problem of continuum mechanics for which the assumptions
of infinitesimal strain, small deformation hold, even though these assumptions are
violated inside the process zone. Consequently it should be possible to predict failure
initiation events on the basis of uSS . An important special case is when uSS can be
well approximated by models based on linear elasticity. In such cases uSS(x, t) can
be written as the product of a function of x and a function of t.

The key problem is identification of the driving force for damage accumulation,
given uSS(x, t). Infinitely many conceptualizations are possible. For example, the
following defines a family of possible definitions of driving force in terms of some
functional F (uSS) > 0 and a parameter α:

G(F, α, t, T ) =

∫
Ωα

F (uSS(x, t), T ) dV, x ∈ R3 (5.2)

where T represents temperature. The domain of integration Ωα depends on the
magnitude of F :

Ωα = {x |α ≤ F/Flim, 0 < α < 1}. (5.3)
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Various definitions of Flim > 0 are possible. The value of Flim may depend on the
yield stress, yield strain, the ultimate tensile stress or some other value. The choice
Ωα as a function of F is related to the experimentally observed fact that the larger
the volume subjected to elevated stress or strain, the greater the likelihood of failure.

Remark 3. In general, the solution uSS is not known, only an approximation to uSS ,
which will be denoted by uFE , is known. Replacement of uSS by uFE is permissible
only when ‖uSS − uFE‖max is sufficiently small on Ω − Ω?. This follows from the
inequality:

‖uPZ − uSS‖max ≤ ‖uPZ − uFE‖max + ‖uSS − uFE‖max. (5.4)

Numerical accuracy is essential because unless the accuracy of the computed data is
known it is not meaningful to compare experimental observations with predictions
based on a mathematical model. This is because it would not be possible to tell
whether the mathematical model is wrong or the numerical errors are too large, or
both. In some cases a large error in the mathematical model is nearly canceled by a
similarly large numerical error, leading to false conclusions [21].

Example 3. The region of integration Ωα is illustrated for the conical feature when
F = σ1, is defined as the first principal stress, Flim = σyld = 1517 MPa is defined as
the yield stress of AF1410 steel and α = 0.95 in Fig. 8.

Figure 8. Example 3. The region of integration Ωα is highlighted
for α = 0.95. Specifically, σ1 ≥ 0.95σyld over the dark grey region.

6. Closing remarks

Damage tolerance and flaw tolerance methods employed in the management of
mechanical and structural systems have a common conceptual basis: The highly
nonlinear processes of crack nucleation and crack propagation are typically controlled
by stress and strain fields that can be determined to a high degree of accuracy from
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the solutions of mathematical models based on small displacement and infinitesimal
strain theory.

Development of a predictive capability for crack nucleation and crack propagation
based on small displacement and infinitesimal strain theory involves the definition of a
driving force G(F, α, t, T ), see eq. (5.2), and interpretation of the outcome of calibra-
tion experiments designed for determination of the parameters in G. The definition
of G involves expert opinion, i.e., subjective judgment. Nevertheless it is possible
to rank alternative definitions objectively through the application of verification and
validation procedures. For example, the results of fatigue tests of the micro-machined
AF1410 steel specimens presented in Section 4 clearly indicate that G defined as av-
erage stress over lengths ranging between 50 to 200 µm is preferable to Peterson’s
definition of the driving force.

Neuber’s seminal work on the investigation of the fatigue limit of notched machine
elements should be understood as an attempt to define a particular driving force
G. Specifically, Neuber’s driving force was the average tensile or shear stress over
a length which he assumed to be a material property. This length was calibrated
for various metals and was shown to provide useful predictions for typical notch
configurations in machine elements. The notch radii in the calibration experiments
were greater than about 0.5 mm. Scatter in the measured data tend to increase with
decreasing notch radius. Furthermore, as seen in Section 4, not all surface features
can be characterized by a single notch radius. For example, the stress distribution in
the vicinity of the conical feature is not associated with a notch radius (see Fig. 6).
Therefore Neuber’s and Peterson’s estimate of Ke is not applicable to the conical
feature. Another difficulty is that the classical models do not account for the influence
of size on fatigue limit.

There are conceptual problems also with mathematical models based on linear elas-
tic fracture mechanics for the estimation of crack propagation rates. These problems
arise because coupon tests designed for the determination of material parameters that
characterize crack propagation are performed on test articles which do not meet the
conditions of planar elasticity: The stress field at the intersection of the crack front
with the surface of the test article is not the stress field assumed in LEFM and, fur-
thermore, the crack front is typically curved. These conditions are typically ignored
in the interpretation of calibration experiments, resulting in systematic errors when
the results of calibration are applied to general crack configurations.

The class of driving fores defined in equations (5.2) and (5.3) do not have such
limitations. Given the framework of verification and validation, it is possible to re-
interpret the results of fatigue and fracture experiments with the objective to identify
specific driving forces that have the best predictive capabilities, independent of notch
configuration and size. This will minimize systematic errors in the prediction of crack
nucleation and crack propagation events.
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9. BABUŠKA, I. and SZABÓ, B.: On the generalized plane strain problem in thermoelas-
ticity. Comput. Methods Appl. Mech. Engng. 195, 2006, 5390–5402.

10. TAYLOR, D.: The Theory of Critical Distances. A New Perspective in Fracture Me-
chanics. Elsevier, Oxford (2007).

11. TAYLOR, D.: The theory of critical distances. Engineering Fracture Mechanics. 7, 2008,
1696–1705.

12. SUSMEL, L. and TAYLOR, D.: A novel formulation of the Theory of Critical Distances
to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigue
Fract. Engng. Mater. Struct. 30, 2007, 567–581.

13. SUSMEL, L.: The theory of critical distances: a review of its applications to fatigue.
Engineering Fracture Mechanics. 7 2008, 1706–1724.

14. MUSKHELISHVILI, N. I.: Some Basic Problems of the Mathematical Theory of Elas-
ticity, published in Russian in 1933, English translation of the 3rd edition: Groningen,
Holland, 1953.
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