Szilárdságtan III.

GYAKORLATI ANYAGOK

Összeállíotta:

Baksa Attila

2007.

Érintkezési feladat vizsgálata – Hertz-féle elmélet alapján

Keressük

- *a*-t, a kialakuló érintkezési felület jellemző mérete (sugara).
- d-t, a P_1 és P_2 pontok közeledése

$$d = (z_1 + w_1) + (z_2 + w_2)$$

1.1. ábra. Két rugalmas gömb érintkezése

Azon pontok érintkeznek, melyekre

$$z_1 + z_2 = d - (w_1 + w_2).$$

Az 1.1. ábrából

$$R_1^2 - r^2 = (R_1 - z_1)^2 = R_1^2 - 2R_1z_1 + z_1^2 \quad \Rightarrow \quad z_1 = \frac{r^2}{2R_1}, \quad z_2 = \frac{r^2}{2R_2}$$

$$a = \sqrt[3]{\frac{3}{4} F k \frac{R_1 R_2}{R_1 + R_2}},$$

$$d = \sqrt[3]{\frac{9}{16} (F k)^2 \frac{R_1 + R_2}{R_1 R_2}}.$$
(1.1)

÷

RUGALMAS ÁGYAZÁSÚ TARTÓ

A közeg: egymástól független lineáris rugókból modellezhető.

2.1. ábra. Rugalmas ágyazási modell

Az ébredő erő:

$$\underline{f} = \begin{bmatrix} c_x & 0 & 0\\ 0 & c_y & 0\\ 0 & 0 & c_z \end{bmatrix} \begin{bmatrix} u\\ v\\ w \end{bmatrix} = \underline{\underline{C}} \cdot \underline{u}.$$

Fajlagos alakváltozási energia:

$$e = \frac{1}{2}\underline{f}^T \cdot \underline{u} = \frac{1}{2}\underline{u}^T \cdot \underline{C} \cdot \underline{u}.$$

Egy elemben felhalmozott belső energia:

$$U^e_{rug} = \frac{1}{2} \int\limits_{A^e_{rug}} \underline{u}^T \cdot \underline{\underline{C}} \cdot \underline{u} \, dA.$$

Az elmozdulás közelítése:

$$\underline{u}^e = \underline{\underline{N}}^e \cdot \underline{\underline{q}}^e + \underline{\underline{\breve{N}}}^e \cdot \underline{\breve{a}}^e,$$

mellyel

$$U_{rug}^{e} = \frac{1}{2} \begin{bmatrix} \underline{q}^{T} & \underline{\check{a}}^{T} \end{bmatrix}^{e} \int_{A_{rug}^{e}} \begin{bmatrix} \underline{\underline{N}}_{\underline{\check{N}}}^{T} \end{bmatrix}^{e} \underline{\underline{C}} \begin{bmatrix} \underline{\underline{N}} & \underline{\check{N}} \end{bmatrix}^{e} dA \begin{bmatrix} \underline{\underline{q}} \\ \underline{\check{a}} \end{bmatrix}^{e} = = \frac{1}{2} \begin{bmatrix} \underline{q}^{T} & \underline{\check{a}}^{T} \end{bmatrix}^{e} \begin{bmatrix} \underline{\underline{K}}_{qq} & \underline{\underline{K}}_{qa} \\ \underline{\underline{K}}_{aq} & \underline{\underline{K}}_{aa} \end{bmatrix}^{e} \begin{bmatrix} \underline{\underline{q}} \\ \underline{\check{a}} \end{bmatrix}^{e}$$

Síkbeli esetben <u>C</u>-t módosítani kell, úgy hogy valamelyik c_x , c_y , c_z nulla legyen és ezzel az energiával kell módosítani a rugalmas közeg nélküli elem potenciális energiáját!

I-DEAS használata érintkezési feladat megoldására

3.1. ábra. Kapcsoló modellje (szélessége: 2 mm, lemezvastagság: 0.15 mm))

A feladat végrehajtásához használatos főbb parancsok:

$\frac{\text{Simulation} \rightarrow \text{Master Modeller}}{\text{Options} \rightarrow \text{Units } \min[\text{Newton}]}$

$options \rightarrow onits min[Newton]$		
Workplane Appearance $B(2,3)\ { m Grid}$, Snap		
Polylines $A(2,1)$ kontúr rajzolása		
Dimension $A(4,1)$ méretezés		
Modify Entity $B(2,1)$ méretek		
- Mentés Ctrl-S		
Extrude $A(5,1)$		
Name Parts $B(4,2)$		
- Mentés Ctrl-S		
$\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$		
Create FE Model $B(4,2)$ Geometry based		
Define Contact Set $A(5,1)$		
-Global search off		
-Regions, Add to Region, Create (2x)		
-Pairs, Search distance: 3 mm		

$\mathbf{Simulation} \rightarrow \mathbf{Meshing}$

Physical Property A(5,2) lemezvastagság (0.15 mm)Materials A(5,1) anyagjellemzők Define Shell Mesh A(1,1) háló generálás (1 mm)- Mentés Ctrl-S $\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$ Displacement Restraint A(4,2) KPF (megfogás) Displacement Restraint A(4,1) KPF (előírt elm.)Define Contact Set A(5,1) Preview (Contact elements?!) Boundary Condition Set A(6,1) $\underline{Simulation} \rightarrow \underline{Model \ Solution}$ Solution Set... A(1,2)Model Solution A(2,1)-Output selection: Reaction, Constraint Forces -Options: Contact Control... Visualiser A(6,2)-Scale Factor: 1 -Contact Stresses, Top/Bottom! -Reaction Forces

Érintkezési feladat megoldása büntetőparaméteres technikával

Nyomott rúd érintkezése merev felülettel. Keressük a rúd 1-es és 2-es csomópontjának elmozdulását.

4.1. ábra. Nyomott rúd érintkezési feladata (c: büntetőparaméter)

A vizsgált funkcionál:

$$B = \Pi(u) + \frac{1}{2}c(h - u_2)^2 = \frac{1}{2}\frac{AE}{L}(u_2 - u_1)^2 - F_0u_1 + \frac{1}{2}c(h - u_2)^2$$

 $\delta B = 0:$

$$\delta B|_{u_1} = -\frac{AE}{L}(u_2 - u_1) - F_0 = 0$$

$$\delta B|_{u_2} = \frac{AE}{L}(u_2 - u_1) + cu_2 - ch = 0$$

melyből

$$u_1 = \frac{F_0}{c} \frac{L}{AE} \left(c + \frac{AE}{L} \right) + h, \quad u_2 = \frac{F_0}{c} + h.$$

Ha $c\to\infty$ akkor $\Rightarrow u_2\to h,$ mely az egzakt megoldás. A feladat végrehajtásához használatos főbb parancsok:

4.2. ábra. Rugalmas lemezek érintkezése(szélessége: $2 \times 10 \, mm$, vastagság: $0.5 \, mm$))

${\bf Simulation} \rightarrow {\bf Master \ Modeller}$	${\bf Simulation} \rightarrow {\bf Meshing}$
$\texttt{Options} \rightarrow \texttt{Units} \mathrm{mm}[\mathrm{Newton}]$	Physical Property $A(5,2)$
Lines $A(2,1)$ Grid, Snap	-Thickness: $(0.15 mm)$
Center Start, End ${\cal A}(2,2)$	Materials $A(5,1)$ anyagjellemzők
Dimension $A(4, 1)$ méretezés	Define Shell Mesh $A(1,1)$ háló generálás $(10 mm)$
Modify Entity $B(2,1)$ méretek	- Mentés Ctrl-S
- Mentés Ctrl-S	${\bf Simulation} \rightarrow {\bf Boundary} \ {\bf Conditions}$
Extrude $A(5,1)$ $2 \times 10 mm$	Displacement Restraint $A(4,2)$ KPF (megfogás)
Name Parts $B(4,2)$	Displacement Restraint $A(4,1)$ KPF (<i>előírt elm.</i>)
- Mentés Ctrl-S	Define Contact Set $A(5,1)$ Preview (Contact elements?!)
$\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$	Boundary Condition Set $A(6,1)$
Create FE model $B(4,2)$	$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Model Solution}}$
-Geometry Based Analysis Only	Solution Set $A(1,2)$
Define Contact Set $A(5,1)$	Model Solution $A(2,1)$
-Global search on	-Output selection: Reaction, Constraint Forces
-Regions, Add to Region, Create (2x)	-Options: Contact Control
-Pairs, Search distance: 8 mm	Visualiser $A(6,2)$
	-Scale Factor: 1
	-Contact Stresses, Top/Bottom!
	-Reaction Forces

Egy hatásmátrix és egy matematikai programozási feladat felírása

Feladat: Befalazott tartó és rugalmas ágyazás érintkezési feladata kapcsán állítsuk össze tartóra vonatkozó hatásmátrixot, majd a rugalmas ágyazás figyelembevételével írjuk fel a megoldáshoz vezető matematikai programozási feladatot!

5.1. ábra. Befalazott tartó és rugalmas ágyazás

B-beli terhelés hatására az y irányú elmozdulás változása (táblázatból)

 $(A \rightarrow B) \text{ szakaszon:} \quad v(x) = -\frac{1}{6} \frac{P}{I_z E} \left(-a^3 + 3a^2l - 3a^2x\right)$ $(B \rightarrow C) \text{ szakaszon:} \quad v(x) = -\frac{1}{6} \frac{P}{I_z E} \left[(x-b)^3 - 3a^2(x-b) + 2a^3\right]$ $(\text{adott:} E, I_z = \text{áll.})$

Konkrét felosztás a felső testre

• P_1 erő az 1. csomópontban azaz (a = 5, b = 1)

$$\begin{aligned} v^{1}(1,1)\big|_{x=1} &= -\frac{1}{6} \frac{P_{1}}{I_{z}E} \left[(1-1)^{3} - 3 \cdot 5^{2}(1-1) + 2 \cdot 5^{3} \right] = -\frac{250}{6I_{z}E} \cdot P_{1} \\ v^{1}(2,1)\big|_{x=3} &= -\frac{1}{6} \frac{P_{1}}{I_{z}E} \left[(3-1)^{3} - 3 \cdot 5^{2}(3-1) + 2 \cdot 5^{3} \right] = -\frac{108}{6I_{z}E} \cdot P_{1} \\ v^{1}(3,1)\big|_{x=5} &= -\frac{1}{6} \frac{P_{1}}{I_{z}E} \left[(5-1)^{3} - 3 \cdot 5^{2}(5-1) + 2 \cdot 5^{3} \right] = -\frac{14}{6I_{z}E} \cdot P_{1} \end{aligned}$$
(5.1)

5.2. ábra. Felső test felosztása

• P_2 erő az 2. csomópontban azaz (a = 3, b = 3)

$$v^{1}(1,2)\big|_{x=1} = -\frac{1}{6} \frac{P_{2}}{I_{z}E} \left[-3^{3} + 3 \cdot 3^{2} \cdot 6 - 3 \cdot 3^{2} \cdot 1 \right] = -\frac{108}{6I_{z}E} \cdot P_{2}$$

$$v^{1}(2,2)\big|_{x=3} = -\frac{1}{6} \frac{P_{2}}{I_{z}E} \left[(3-3)^{3} - 3 \cdot 3^{2}(3-3) + 2 \cdot 3^{3} \right] = -\frac{54}{6I_{z}E} \cdot P_{2}$$

$$v^{1}(3,2)\big|_{x=5} = -\frac{1}{6} \frac{P_{2}}{I_{z}E} \left[(5-3)^{3} - 3 \cdot 3^{2}(5-3) + 2 \cdot 3^{3} \right] = -\frac{8}{6I_{z}E} \cdot P_{2}$$

$$(5.2)$$

• P_3 erő az 3. csomópontban azaz (a = 1, b = 5)

$$v^{1}(1,3)\big|_{x=1} = -\frac{1}{6} \frac{P_{3}}{I_{z}E} \left[-1^{3} + 3 \cdot 1^{2} \cdot 6 - 3 \cdot 1^{2} \cdot 1 \right] = -\frac{14}{6I_{z}E} \cdot P_{3}$$

$$v^{1}(2,3)\big|_{x=3} = -\frac{1}{6} \frac{P_{3}}{I_{z}E} \left[-1^{3} + 3 \cdot 1^{2} \cdot 6 - 3 \cdot 1^{2} \cdot 3 \right] = -\frac{8}{6I_{z}E} \cdot P_{3}$$

$$v^{1}(3,3)\big|_{x=5} = -\frac{1}{6} \frac{P_{3}}{I_{z}E} \left[-1^{3} + 3 \cdot 1^{2} \cdot 6 - 3 \cdot 1^{2} \cdot 5 \right] = -\frac{2}{6I_{z}E} \cdot P_{3}$$

$$(5.3)$$

Ezen mennyiségeket vektorokba, illetve mátrixba rendezve kapjuk

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}^1 = \underbrace{-\frac{1}{6I_z E} \begin{bmatrix} 250 & 108 & 14 \\ 108 & 54 & 8 \\ 14 & 8 & 2 \end{bmatrix}^1}_{\underline{\underline{H}}^1(x,s)} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} \quad \Rightarrow \quad \underline{\underline{v}}^1 = \underline{\underline{H}}^1 \cdot \underline{\underline{p}} + \underline{\underline{u}}_0 \tag{5.4}$$

ahol u_0 a merevtestszerű elmozdulás.

Másik test (rugalmas ágyazás)

cágyazási tényezővel

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}^2 = \begin{bmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{bmatrix}^1 \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} \quad \Rightarrow \quad \underline{v}^2 = \underline{\underline{H}}^2 \cdot \underline{p}$$
(5.5)

Az eddigiek alapján, össze
adva a két testre kapott mennyiségeket

$$\underline{d} = \underline{v}^2 - \underline{v}^1 + \underline{h} = \begin{bmatrix} (\frac{250}{6I_zE} + c) & \frac{108}{6I_zE} & \frac{14}{6I_zE} \\ \frac{108}{6I_zE} & (\frac{54}{6I_zE} + c) & \frac{8}{6I_zE} \\ \frac{14}{6I_zE} & \frac{8}{6I_zE} & (\frac{2}{6I_zE} + c) \end{bmatrix}^1 \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} + \begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} - \begin{bmatrix} u_{01} \\ u_{02} \\ u_{03} \end{bmatrix} \ge 0 \quad (5.6)$$

A megoldandó matematikai programozási feladat

$$\min\left\{\underline{p}^{T} \cdot \underline{d} \mid \underline{p}^{T} \ge 0, \ \underline{d} = \underline{\underline{H}} \cdot \underline{p} + \underline{h} - \underline{u}_{0} \ge 0\right\}$$
(5.7)

Példák folyási feltételek alkalmazására I.

Példa 1.: Adott a \underline{T} feszültségi tenzor:

$$\underline{\underline{T}} = \begin{bmatrix} 60 & 20 & 50\\ 20 & -40 & 0\\ 50 & 0 & 130 \end{bmatrix} MPa.$$

Kérdések:

- a.) Írjuk fel az $\underline{\underline{S}}$ feszültségi deviátor mátrixát!
- b.) Számítsuk ki a $T_{I},\,S_{I}$ és S_{II} skalár invariánsok értékét!
- c.) Megfolyik-e az adott esetben az anyag, ha $\tau_F=130\,MPa?$ (Mises-féle folyási feltétel alapján!)

Példa 2.: Egy acéltartó egyik pontjának síkbeli feszültségi állapotát az ábrán látható feszültségek jellemzik.

6.1. ábra. Síkbeli feszültségi állapot

Kérdések: Mekkora a képlékeny állapot bekövetkezésének szerkezeti biztonsága

- Mises $(n_M = ?)$
- Tresca $(n_T = ?)$

szerint, ha $\sigma_F = 250 MPa?$

I-DEAS használata rugalmas-képlékeny feladat megoldására

Vizsgáljuk meg az ábrán vázolt befogott lemez rugalmas képlékeny alakváltozását!

7.1. ábra. A vizsgált lemez geometriája

7.2. ábra. Terhelés – idő diagramm;

Feszültség – nyúlás diagramm

 $E_1 = 21000 MPa$ $E_2 = 15000 MPa$ $\sigma_F = 10 MPa$ $\nu = 0.3$ b = 1 mm

A feladat végrehajtásához használatos főbb parancsok:

$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Master Modeller}}$	$\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$
$\texttt{Options} \rightarrow \texttt{Units} \ \mathrm{mm}[\mathrm{Newton}]$	Nonlinear Statics $A(1,1)$
Rectangle by $\dots A(2,1)$ Grid, Snap	Displacement Restraint $A(4,2)$ KPF (megfogás)
Modify Entity $B(2,1)$ méretek	Forces $A(2,1)$
Surface by Boundary $A(5,1)$ felület def.	- Time function
Name Parts $B(2,4)$	-Graph idő–erő diagramm
- Mentés Ctrl-S	Boundary Condition Set $A(6,1)$
$\mathbf{Simulation} \rightarrow \mathbf{Meshing}$	-Nonlinear Statics
Create FE model $B(4,2)$	-Restraint Set, Load Set
Materials $A(5,1)$ anyagjellemzők	$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Model Solution}}$
-Nonlinear material	Solution Set $A(1,2)$
- E - ε , σ - ε megadása	-Material nonlinear
Physical Property $A(5,2)$	-Output selection: Plastic strain
-Plastic Yield & Hardening	-Subincrements
- $Thickness: (1 mm)$	- Mentés Ctrl-S
Define Shell Mesh $A(1,1)$ elemek: 10×10	Model Solution $A(2,1)$
- Mentés Ctrl-S	Visualiser $A(6,2)$