VEM ALAPJAI

I-DEAS MINTAFELADATOK

a BSc oktatáshoz

Baksa Attila

Miskolc

 $\boldsymbol{2007}$

Bevezetés az I-DEAS használatába

Áttekintés

Az I-DEAS olyan általános célú programrendszer, melyet a tervezési folyamat különböző fázisainak megkönnyítésére alkalmazhatunk. Minden egyes gépészeti folyamat más-más alrendszer betöltését és használatát igényli. A program például a következő alkalmazásokat nyújtja:

- Design: Modeller, Assembly, Drafting Setup
- Simulation: Boundary Conditions, Meshing, Model Solution
- Test: Time History, Histogram, Model Preparation, Signal Processing, Modal
- Manufacturing: Modeler, Generative Machining, Assembly Setup, GNC Setup

Főbb jellemzők

- A parametrikus modellezés. A tervezés során először egy vázlatot kell készíteni, mely nagy vonalakban hasonlít majd az elkészítendő darabhoz, és a méreteket ezután kell pontosan beállítani az igényeknek megfelelően. De természetesen a geometriai elemek pontos koordináták segítségével is megrajzolhatóak.
- *Tulajdonság alapú modellezés.* A bázis alak létrehozása után egyszerűen lehet definiálni kivágást, furatot, beszúrást, stb.
- *Párhuzamos alkatrész fejlesztés.* Az alkatrészek közös könyvtárakban helyezhetőek el, melyek a megfelelő tervezők által elérhetők, módosíthatók.

A program elindítása

A program elindítható parancssorból, menüből vagy ikon segítségével. Előfordulhat az is hogy speciális jogok beállítsa is szükséges a szoftver megfelelő használatához. A gördülékeny használathoz elengedhetetlen a minnél jobb grafikai hardver megléte is, mely OpenGL támogatással rendelkezik.

A program indítása után egy dialógus ablak a következő információkat igényli:

- 1. *Projekt neve:* mely az adott munkát rendszerezi. Ezt ki is lehet választani a felkínált listából. Vagy behívható egy kiválasztó ablak, az ikon kiválasztásával.
- 2. *Model file:* a munka során létrehozott objektumhoz tartozó adatk itt tárolódnak el. Ezt segíti egy előhívható lista, mely a file megnyitásához, mentéséhez hasonló ablakot jelent, a megfelelő ikon kiválasztásával aktivizálható.
- 3. A használni kívánt *alkalmazás kiválasztása*: alapértelmezésként felkínálja a program az utoljára használtat, illetve a **Design** csomagot. Ez alatt található az adott alkalmazáson belüli feladat kiválasztására szolgáló legördülő listaablak.

Ha az I-DEAS-t parancssorból indítottuk el, akkor lehetőség van megadni opciókat is.

• -h az indításhoz használható opciók.

- -d device a grafikus drivert lehet vele megadni induláskor. Ha nem adjuk meg egy listát kínál fel amiből lehet választani.
- -g a legutóbb végzett munka folytatását teszi lehetővé.
- -1 language a használni kívánt nyelvet lehet megadni. Ha nem adjuk meg a nyelvet akkor az elérhető nyelvek listáját kapjuk.

Használathoz szükséges alapok

Ablakok

- Rajzterület itt készül minden...
- Ikon (A, B, C mátrix) érdemes egy kicsit kisebbre venni
- Lista üzenetek, hibák jelzésére; ha nem használjuk sokszor el lehet rejteni, de hasznos dolog
- Prompt ide mindig nézni LÉNYEGES

Egér

A program használatához a három gombos egér használata az ideális, ahogy ezt egy korszerű tervező szoftvertől elvárható. Minden gombnak saját funkciója van.

- Bal gomb parancskiválasztás, geometriai alakzatok kiválasztása a grafikus ablakban. A Shift gombbal együtt használva csoportos kijelölést tesz lehetővé. (ez pl. törlésnél, méretezésnél hasznos)
- Középső gomb ez az Enter vagy a Return billenytyűt helyettesíti. A parancs lezárására szolgál.
- Jobb gomb Popup menüt jelenít meg, ha a rajzterületen használjuk, feladattól függően más és más parancsok aktivizálást gyorsítja.

Funkció billentyűkről

Számtalan billentyűkombináció előre definiált az I-DEAS-ban, melyek felsorolása túl nagy feladat. Most elsősorban az F1 - F12 billenytűkre gondolunk. Ezek szerepe természetesen átdefiniálható (ideas.ini) de alapértelmezésben a következő feladokat gyorsítják

- F1 F5: eltolás, nagyítás, forgatás, kívánt nézet, reset
- F6: az előző 5 funkcióbillentyű szerepét határozza meg a feladatbank kiválasztással
- F7: Zoom All (AU Ctrl-A, ZM ablakkal nagyít)
- F8: Reconsider
- \bullet F9: Deselect All
- F10:
- F11: "Filter"
- F12: Redisplay (Ctrl-R)

Menü: elérése Ctrl-M kombinációval kapcsolható ki/be Kilépés: exit – paranccsal, vagy menüből kiválasztva, vagy Ctrl-e kombinációval.

Rajzolást megkönnyítő néhány funkció

Dynamic Navigator

Select menü elemei

alaphelyzetben a jobb egérgomb rajzterületen történő lenyomásával aktiválhatjuk ezt a popup menüt:

- Visible
- Label Egy-egy konkrét elem kijelölésére szolgál (pl. C curve, E edge, F face, P wireframe points, stb.)
- Filter... egy dialógus ablak segítségével szükíthetjük a kiválaszható objektumok típusát
- Area Options... kijelölési terület jellemzőit állíthatjuk itt be, (Auto Shift)
- Reconsider F8
- Deselect All F9
- Related To

Húzott-nyomott rúd vizsgálata

Feladat az 2.1. ábrán vázolt szerkezet végeselemes modelljének felépítése. A vizsgált tartónak az ábrán vázolt állandó téglalap keresztmetszete van, anyaga általános acél.

$$E = 2.05 \,\text{GPa}$$
 $\nu = 0.28$

A modell felépítésekor húzott-nyomott rúdelem kerüljön alkalmazásra!

Határozzuk meg a támasztó ER-t, illetve a rúderőket, a rúd elmozdulásait és a rúdban ébredő húzó-nyomó feszültséget!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{Simulation} \rightarrow \underline{Master} \ \underline{Modeller}$

Options \rightarrow Units mm[Newton] Hidden Hardware C(1,2)Lines A(2,1) kontúrok rajzolása - Mentés Ctrl-S $\underline{\mathbf{Simulation}} \rightarrow \underline{\mathbf{Boundary}} \ \mathbf{Conditions}$ Delete B(4,1) nem kívánt rajzelemek törlése Dimension A(4,1) méretezés Displacement Restraint A(4,2) KPF előírása Modify Entity B(2,1) méretek megváltoztatása Specified Force A(2,1) DPF előírása Name Parts B(4,2) szerkezet elnevezése, tárolása - Mentés Ctrl-S X Force: 800 N $\underline{\mathbf{Simulation}} \rightarrow \underline{\mathbf{Beam Sections}}$ - Mentés Ctrl-S Solid Rectangle Beam A(1,3) téglalap definiálása $\underline{\mathbf{Simulation}} \rightarrow \underline{\mathbf{Model}} \ \underline{\mathbf{Solution}}$ Store Section A(5,2) keresztmetszet tárolás Solution Set A(1,2) megoldások tárolására MENTÉS Ctrl-S Create $\mathbf{Simulation} \to \mathbf{Meshing}$ $\texttt{Output Selection} \to \texttt{Element Forces}$ Name Parts... B(4,2) alkatrész elnevezés Solve A(2,1) megoldás Create FE Model... B(4,2) VEM modell definiálás Visualizer A(6,2)Anyag definiálása Define Beam Mesh A(1,1) háló generálás Undeformed V(3,1)Arrow V(3,2)Length: 100 mm Family: Rod Select Results V(1,2)Beam Options elmentett téglalap KM Reaction Force, Element Force, Disp, Str.

Shaded Hardware C(1,3)

2.2.ábra. A vizsgált rúdhoz tartozó eredmények

2.3. ábra. A vizsgált rúdhoz tartozó eredmények

HAJLÍTOTT-NYÍRT TARTÓ

Feladat az 3.1. ábrán vázolt szerkezet végeselemes modelljének felépítése. A vizsgált tartó egy acélcső, 50.8 mm-es külső átmérővel, 10 mm-es falvastagsággal.

$$E = 1.85 \,\text{GPa}$$
 $\nu = 0.25$

A modell felépítésekor hajlított-nyírt rúdelem kerüljön alkalmazásra!

3.1. ábra. A vizsgált befogott rúd

Határozzuk meg a támasztó ER-t, illetve a rúderőket, a rúd elmozdulásait és a rúdban ébredő húzó-nyomó feszültséget!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Master Modeller}}$		
$\texttt{Options} \rightarrow \texttt{Units} \ \min[\texttt{Newton}]$		
Lines $A(2,1)$ kontúrok rajzolása		
Delete $B(4,1)$ nem kívánt rajzelemek törlése		
Dimension $A(4,1)$ méretezés		
Modify Entity $B(2,1)$ méretek megváltoztatása		
Name Parts $B(4,2)$ szerkezet elnevezése, tárolása		
- Mentés Ctrl-S		
$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Beam Sections}}$		
Pipe/Round Beam $A(1,1)$ cső definiálása		
Store Section $A(5,2)$ keresztmetszet tárolás		
- Mentés Ctrl-S		
${\bf Simulation} \to {\bf Meshing}$		
Name Parts $B(4,2)$ alkatrész elnevezés		
Create FE Model $B(4,2)$ VEM modell definiálás		
Anyag definiálása		
Define Beam Mesh $A(1,1)$ háló generálás		
Length: 100 mm		
Family: Beam		
Beam Options elmentett cső KM		

```
Shaded Hardware C(1,3)
Hidden Hardware C(1,2)
- Mentés Ctrl-S
\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}
Displacement Restraint A(4,2) KPF előírása
    Specified
Force A(2,1) DPF előírása
    Y Force: -10^5/nNodes N
- Mentés Ctrl-S
\underline{Simulation} \rightarrow \underline{Model \ Solution}
Solution Set A(1,2) megoldások tárolására
    Create
\texttt{Output Selection} \to \texttt{Element Forces}
Solve A(2,1) megoldás
Visualizer A(6,2)
   Undeformed V(3,1)
   \texttt{Arrow}\ V(3,2)
   Select Results V(1,2)
```

Reaction Force, Element Force, Disp, Str.

3.2. ábra. A vizsgált rúdhoz tartozó eredmények

3.3. ábra. A vizsgált rúdhoz tartozó eredmények

RÁCSOS TARTÓ VIZSGÁLATA I.

Feladat az 4.1. ábrán vázolt szerkezet végeselemes modelljének felépítése. A vizsgált tartó rúdjai 2''-os acélcsövek, 10 mm-es falvastagsággal.

4.1. ábra. A vizsgált rácsos szerkezet

A feladat végrehajtásához használandó főbb funkciók, parancsok: $\underline{Simulation} \rightarrow \underline{Master} \ \underline{Modeller}$ Options \rightarrow Units mm[Newton] Lines A(2,1) kontúrok rajzolása Delete B(4,1) nem kívánt rajzelemek törlése Dimension A(4,1) méretezés Modify Entity B(2,1) méretek megváltoztatása Name Parts B(4,2) szerkezet elnevezése, tárolása - Mentés Ctrl-S Simulation \rightarrow Beam Sections Pipe/Round Beam A(1,1) cső definiálása Store Section A(5,2) keresztmetszet tárolas - Mentés Ctrl-S $\mathbf{Simulation} \to \mathbf{Meshing}$ Name Parts... B(4,2) alkatrész elnevezés Create FE Model... B(4,2) VEM modell definiálás Anyag definiálása Define Beam Mesh A(1,1) háló generálás Length: 2000 mm Family: Rod Beam Options elmentett cső KM

 $\begin{array}{lll} \alpha = 30^{\circ} & a = 1000 \ \mathrm{mm} \\ E = 1.80 \ \mathrm{GPa} & \nu = 0.3 & F_0 = 1000 \ \mathrm{N} \\ \mathrm{A} & \mathrm{modell} \ \mathrm{felépítésekor} \ \mathrm{csak} & \mathrm{húzott-nyomott} \\ \mathrm{rúdelem} & \mathrm{kerüljön} \ \mathrm{alkalmazásra!} & \mathrm{Határozzuk} \\ \mathrm{meg} & \mathrm{támasztó} \ \mathrm{erőket}, \ \mathrm{rúderőket}, \ \mathrm{illetve} \ \mathrm{a} \\ \mathrm{rudak} \ \mathrm{elmozdulásait} \ \mathrm{és} \ \mathrm{a} \ \mathrm{bennük} \ \mathrm{ébredő} \ \mathrm{húzón} \\ \mathrm{nyomó} \ \mathrm{feszültséget!} \end{array}$

Shaded Hardware C(1,3)Hidden Hardware C(1,2)- Mentés Ctrl-S $\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$ Displacement Restraint A(4,2) KPF előírása Specified Force A(2,1) DPF előírása X Force: $F_0 \cdot \cos(\alpha)$ N Y Force: $F_0 \cdot \sin(\alpha)$ N - Mentés Ctrl-S $\mathbf{Simulation} \rightarrow \mathbf{Model} \ \mathbf{Solution}$ Solution Set A(1,2) megoldások tárolására Create $\texttt{Output Selection} \rightarrow \texttt{Element Forces}$ Solve A(2,1) megoldás Visualizer A(6,2)Undeformed V(3,1)Arrow V(3,2)Select Results V(1,2)Reaction Force, Element Force, Disp, Str.

4.2.ábra. A vizsgált szerkezethez tartozó eredmények

4.3.ábra. A vizsgált rúdhoz tartozó eredmények

RÁCSOS TARTÓ VIZSGÁLATA II.

Feladat az 5.1. ábrán vázolt szerkezet végeselemes modelljének felépítése. A vizsgált tartó vízszintes rúdjai 4×6 mm keresztmetszetű acélrudak, míg a többi rúd 3 mm átmérőjű acélhuzal. (A modell felépítésekor csak húzott-nyomott rúdelem kerüljön alkalmazásra!)

5.1. ábra. A vizsgált rácsos szerkezet

Határozzuk meg a támasztó erőket, rúderőket, illetve a rudak elmozdulásait és a bennük ébredő húzó-nyomó feszültséget!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

 $\underline{Simulation} \rightarrow \underline{Master \ Modeller}$

Options \rightarrow Units mm[Newton] Polylines A(2,1) kontúrok rajzolása Delete B(4,1) nem kívánt rajzelemek törlése Dimension A(4, 1) méretezés Modify Entity B(2,1) méretek megváltoztatása Divide At A(4,2) a vízszintes rudak elvágása Name Parts B(4,2) szerkezet elnevezése, tárolása Mentés Ctrl-S $\underline{Simulation} \rightarrow \underline{Beam} \ \underline{Sections}$ Solid Rectangle A(1,3) 4 × 6-os téglalap Store Section A(5,2) keresztmetszet tárolas Circular Beam A(1,3) 3 mm átmérőjű rúd Store Section A(5,2) keresztmetszet tárolás - Mentés Ctrl-S $\mathbf{Simulation} \rightarrow \mathbf{Meshing}$ Create FE Model... B(4, 2) VEM modell definiálás Anyag definiálásra utalni Define Beam Mesh A(1,1) háló generálás 1. Vízszintes rudak Length: 10 mm Family: Rod Beam Options elmentett négyszög KM

2. Többi rúd Length: 10 mm Family: Rod Beam Options elmentett kör KM - Mentés Ctrl-S Shaded Hardware C(1,3)Hidden Hardware C(1,2) $\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$ Displacement Restraint A(4,2) KPF előírása Specified, stb. Force A(2,1) DPF előírása Y Force: -120 N, -80 N - Mentés Ctrl-S $\underline{Simulation} \rightarrow \underline{Model \ Solution}$ Solution Set A(1,2) megoldások tárolására Create $\texttt{Output Selection} \rightarrow \texttt{Element Forces}$ Solve A(2,1) megoldás Visualizer A(6,2)Arrow V(3,2)Undeformed V(3,1)Select Results V(1,2)Reaction Force Element Force Displacement

5.2. ábra. A vizsgált rácsos szerkezethez tartozó eredmények

I-DEAS használata síkbeli tartószerkezetekre I.

6.1. I-DEAS használata síkbeli tartószerkezetekre

Adott a következő "C" -állvány feladat:

6.1. ábra. "C" állvány

Az állvány anyaga általános acél.

 $b = 0.05 \, m$ $p = 400 \cdot 10^6 \, Pa$ $F = 1 \cdot 10^3 \, N$

Határozzuk meg a fenti ábrán jelzett peremfeltételek mellett a "C" állvány veszélyes helyét (helyeit), továbbá azon helyeken a maximális feszültségek értékét!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{\mathbf{Simulation}} \rightarrow \underline{\mathbf{Master}} \ \underline{\mathbf{Modeller}}$

 $\begin{array}{l} \texttt{Options} \rightarrow \texttt{Units} \min[\texttt{Newton}] \\ \texttt{Polylines} \ A(2,1) \ \texttt{kontúrok} \ \texttt{rajzolása} \\ \texttt{Delete} \ B(4,1) \ \texttt{nem} \ \texttt{kívánt} \ \texttt{rajzelemek}, \ \texttt{méretek} \ \texttt{törlése} \\ \texttt{Dimension} \ A(4,1) \ \texttt{méretezés} \\ \texttt{Modify Entity} \ B(2,1) \ \texttt{méretek} \ \texttt{megváltoztatása} \ (\texttt{All}) \\ - \ \texttt{MENTÉS} \ \texttt{Ctrl-S} \\ \texttt{Surface by Boundary} \ A(5,1) \ \texttt{felület} \ \texttt{definiálás} \\ \texttt{Sketch in Place} \ A(1,1) \ \texttt{rajzfelület} \ \texttt{kiválasztás} \\ \texttt{Polylines} \ A(2,1) \ \texttt{Points} \ A(2,1) \ \texttt{a} \ \texttt{kör} \ \texttt{közép} \ \texttt{kijelölése} \\ \texttt{Circle Center} \ \texttt{Edge} \ A(3,1) \ \texttt{kör} \ \texttt{rajzolás} \\ \texttt{Trim} \ \texttt{at Curve} \ A(4,3) \ \texttt{kivágások} \ \texttt{a} \ \texttt{felületről} \\ \texttt{Name Parts} \ \ldots \ B(4,2) \ \texttt{alkatrész} \ \texttt{elnevezés} \\ - \ \texttt{MENTÉS} \ \texttt{Ctrl-S} \end{array}$

Simulation \rightarrow Meshing

Create FE Model... B(4, 2) VEM modell definiálás Physical Property A(5, 2) vastagság megadás Materials B(5, 1) anyagjellemzők beállítása Define Shell Mesh A(1, 1) háló generálás – MENTÉS Ctrl-S Simulation \rightarrow Boundary Conditions Displacement Restraint A(4, 2) KPF előírása Force A(2, 1) DPF előírása Force from Point A(2, 1) körön megoszló terheléshez Simulation \rightarrow Model Solution Solution Set A(1, 2) megoldások tárolására Solve A(2, 1) megoldás

Visualizer A(6,2)

6.2. ábra. A CALLV-hoz tartozó programképek

6.3. ábra. A CALLV-hoz tartozó programképek

I-DEAS használata síkbeli tartószerkezetekre II.

Adott a következő fogasszerű síkfeladat.

Az alkatrész anyaga általános acél.

b = 2 mm $F_1 = 100 N$ $F_2 = 500 N$

Határozzuk meg a fenti ábrán jelzett peremfeltételek mellett a fogas veszélyes helyét (helyeit), továbbá azon helyeken a maximális feszültségek értékét!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{Simulation} \rightarrow \underline{Master} \ \underline{Modeller}$

 $\begin{array}{l} \texttt{Options} \rightarrow \texttt{Units} \min[\texttt{Newton}] \\ \texttt{Workplane Appearance } B(2,3) \texttt{Grid, Snap} \\ \texttt{Lines } A(2,1) \ \texttt{kontúrok rajzolása} \\ \texttt{Dimension } A(4,1) \ \texttt{méretezés} \\ \texttt{Modify Entity } B(2,1) \ \texttt{méretek megváltoztatása} \\ - \ \texttt{MENTÉS Ctrl-S} \\ \texttt{Circle Center Edge } A(3,1) \ \texttt{kör rajzolás} \\ \texttt{Lines } A(2,1) \ \texttt{Points } A(2,1) \ \texttt{a kör közép} \\ \texttt{Surface by Boundary } A(5,1) \ \texttt{felület definiálás} \\ \texttt{Trim / Extend } A(4,2) \ \texttt{rajzelemek módosítása} \\ \texttt{Name Parts...} \ B(4,2) \ \texttt{alkatrész elnevezés} \end{array}$

- Mentés Ctrl-S

 $\mathbf{Simulation} \rightarrow \mathbf{Meshing}$

Create FE Model... B(4, 2) VEM modell definiálás Physical Property A(5, 2) lemezvastagság megadás Materials B(5, 1) anyagjellemzők beállítása Define Shell Mesh A(1, 1) háló generálás

- Mentés Ctrl-S

 $\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$

Displacement Restraint A(4,2) KPF előírása Force A(2,1) DPF előírása

Force from Point A(2,1) körön megoszló terheléshez Simulation \rightarrow Model Solution

Solution Set A(1,2) megoldások tárolására Solve A(2,1) megoldás

Visualizer A(6,2)

I-DEAS HASZNÁLATA TÉRBELI TARTÓSZERKEZETRE I.

Adott a következő "C" -állvány feladat:

8.1. ábra. "C" állvány

Az állvány anyaga bronz, a következő anyagjellemzőkkel:

Modulus of Elasticity: $E = 110 \, GPa$ Poissons ratio: $\nu = 0.37$ Mass Density: $\rho = 8700 \, \frac{kg}{m^3}$

A "C" állvány az alsó furatok segítségével van rögzítve. A felfelé mutató terhelés pedig a felső furatban működik, melynek nagysága

$$F = 2 kN$$

Határozzuk meg a fenti ábrán jelzett peremfeltételek mellett a "C" állvány veszélyes helyét (helyeit), továbbá azon helyeken a maximális feszültségek értékét!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{Simulation} \rightarrow \underline{Master \ Modeller}$

 $\begin{array}{l} \texttt{Options} \rightarrow \texttt{Units} \min[\texttt{Newton}] \\ \texttt{Polylines} \ A(2,1) \ \texttt{kontúrok} \ \texttt{rajzolása} \\ \texttt{Delete} \ B(4,1) \ \texttt{nem} \ \texttt{kívánt} \ \texttt{rajzelemek} \ \texttt{törlése} \\ \texttt{Dimension} \ A(4,1) \ \texttt{méretezés} \\ \texttt{Modify Entity} \ B(2,1) \ \texttt{méretek} \ \texttt{megváltoztatása} \\ - \ \texttt{MENTÉS Ctrl-S} \\ \texttt{Extrude} \ A(5,1) \ \texttt{térbeli} \ \texttt{obj.} \ \texttt{definiálása} \\ \texttt{Sketch} \ \texttt{in} \ \texttt{Place} \ A(1,1) \ \texttt{rajzfelület} \ \texttt{kiválasztás} \\ \texttt{Polylines} \ A(2,1) \ \texttt{vonal} \ \texttt{rajzolása} \\ \texttt{Circle Center} \ \texttt{Edge} \ A(3,1) \ \texttt{kör} \ (\texttt{Options}) \\ \texttt{Extrude} \ A(4,3) \ \texttt{kivágások} \ \texttt{a} \ \texttt{testből} \ (\texttt{Cut}) \\ \texttt{Name Parts} \ B(4,2) \ \texttt{alkatrész elnevezés} \\ - \ \texttt{MENTÉS Ctrl-S} \end{array}$

$\mathbf{Simulation} \rightarrow \mathbf{Meshing}$

Create FE Model... B(4,2) VEM modell definiálás Materials B(5,1) anyagjellemzők beállítása Solid Mesh A(1,1) háló generálás – MENTÉS Ctrl-S

$\mathbf{Simulation} \rightarrow \mathbf{Boundary} \ \mathbf{Conditions}$

Displacement Restraint A(4,2) KPF előírása Force A(2,1) DPF előírása – MENTÉS Ctrl-S <u>Simulation \rightarrow Model Solution</u> Solution Set A(1,2) megoldások tárolására Solve A(2,1) megoldás

New Visualizer A(6,2)

I-DEAS HASZNÁLATA TÉRBELI TARTÓSZERKEZETRE II.

Adott a következő térbeli feladat:

9.1. ábra. Fogas

A fogas anyaga réz, a következő anyagjellemzőkkel:

Modulus of Elasticity: $E = 115 \, GPa$ Poissons ratio: $\nu = 0.36$ Mass Density: $\rho = 8900 \, \frac{kg}{m^3}$

A fogas az oldalán van rögzítve, a jelzett módon. A lefelé mutató terhelés pedig a felső ágon, illetve az íves alsó részen működik, melynek nagysága

$$p_1 = 2 M P a \qquad p_2 = 4 M P a$$

Határozzuk meg a fenti ábrán jelzett peremfeltételek mellett a fogas veszélyes helyét (helyeit), továbbá azon helyeken a maximális feszültségek értékét!

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{Simulation} \rightarrow \underline{Master \ Modeller}$

 ${\bf Simulation} \to {\bf Meshing}$

 $\begin{array}{l} \texttt{Options} \rightarrow \texttt{Units} \ \texttt{mm}[\texttt{Newton}] \\ \texttt{Polylines} \ A(2,1) \ \texttt{kontúrok} \ \texttt{rajzolása} \\ \texttt{Delete} \ B(4,1) \ \texttt{nem} \ \texttt{kívánt} \ \texttt{rajzelemek} \ \texttt{törlése} \\ \texttt{Dimension} \ A(4,1) \ \texttt{méretezés} \\ \texttt{Modify Entity} \ B(2,1) \ \texttt{méretek} \ \texttt{megváltoztatása} \\ \texttt{Circle Center Edge} \ A(3,1) \ \texttt{kör} \ (\texttt{Options}) \\ \texttt{Lines} \ A(2,1) \ \texttt{Points} \ A(2,1) \ \texttt{a} \ \texttt{kör közép} \\ \texttt{Trim} \ / \ \texttt{Extend} \ A(4,2) \ \texttt{rajzelemek} \ \texttt{módosítása} \\ \texttt{Extrude} \ A(5,1) \ \texttt{térbeli} \ \texttt{obj.} \ \texttt{definiálása} \\ \texttt{Name Parts} \ ... \ B(4,2) \ \texttt{alkatrész} \ \texttt{elnevezés} \\ - \ \texttt{Mentés Ctrl-S} \end{array}$

Create FE Model... B(4, 2) VEM modell definiálásMaterials B(5, 1) anyagjellemzők beállításaSolid Mesh A(1, 1) háló generálás- MENTÉS Ctrl-SSimulation \rightarrow Boundary ConditionsForce A(2, 1) DPF előírásaDisplacement Restraint A(4, 2) KPF előírása- MENTÉS Ctrl-SSimulation \rightarrow Model SolutionSolution Set A(1, 2) megoldások tárolásáraSolve A(2, 1) megoldásNew Visualizer A(6, 2)

Sajátfrekvenciák meghatározása

I-DEAS használata sajátfrekvenicák meghatározására

Határozzuk meg a rézből készült kürt 15 legkisebb sajátfrekvenciáját.

_ _ _ _ _ _

10.1. ábra. Kürt vázlata

A fenti ábrán vázolt kürt csak egy jelleghelyes ábra, a konkrét méretezését a mellőzzük. Anyaga réz, a következő anyagjellemzőkkel:

Modulus of Elasticity: $E = 115 \, GPa$ Poissons ratio: $\nu = 0.36$ Mass Density: $\rho = 8900 \, \frac{kg}{m^3}$

A feladat végrehajtásához használandó főbb funkciók, parancsok:

$\underline{\textbf{Simulation}} \rightarrow \underline{\textbf{Master Modeller}}$	Define Shell Mesh $A(1,1)$ háló generálás
$\texttt{Options} \rightarrow \texttt{Units} \ \mathrm{mm}[\mathrm{Newton}]$	- Mentés Ctrl-S
Lines $A(2,1)$ tengely rajzolása	${\bf Simulation} \rightarrow {\bf Boundary} \ {\bf Conditions}$
Splines $A(3,2)$ a kürt oldal rajzolásához	Displacement Restraint $A(4,2)$ KPF előírása
Dimension $A(4,1)$ méretezés	Boundary Conditions $A(4,2)$
Modify Entity $B(2,1)$ méretek megváltoztatása	Normal Mode Dynamics - Lanczos $A(6,1)$
Revolve $A(5,1)$ kontúr forgatás	${\bf Simulation} \rightarrow {\bf Model \ Solution}$
Name Parts $B(4,2)$ alkatrész elnevezés	Solution Set $A(1,2)$ mennyi sajátfrekvenciát számoljon?
- Mentés Ctrl-S	Solve $A(2,1)$ megoldás
${\bf Simulation} \to {\bf Meshing}$	New Visualizer $A(6,2)$
Create FE Model $B(4, 2)$ VEM modell definiálás	
Materials $B(5,1)$ anyagjellemzők beállítása	